def AtlasWriteOutput(cf, atlas, m_array, nodeSubjectsIds, isReporter):
    # save initial momenta for all individuals
    for itsub in range(len(nodeSubjectsIds)):
        common.SaveITKField(
            m_array[itsub], cf.io.outputPrefix +
            str(nodeSubjectsIds[itsub]).replace('.', '_') + "_m0.mhd")

    # save the atlas
    if isReporter:
        common.SaveITKImage(atlas, cf.io.outputPrefix + "atlas.mhd")
def main():

	secNum = sys.argv[1]
	mkyNum = sys.argv[2]
	channel = sys.argv[3]
	region = str(sys.argv[4])

	conf_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/src_registration/'
	side_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/src_registration/'
	save_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/sidelight_registered/'

	# DIC = '/home/sci/blakez/Reflect Affine/DIC_to_Reflect.txt'
	src_pt = conf_dir + 'M{0}/section_{1}/{2}/section_{1}_confocal_relation_with_sidelight.txt'.format(mkyNum, secNum, region)
	tar_pt = side_dir + 'M{0}/section_{1}/section_{1}_sidelight_relation_with_confocal.txt'.format(mkyNum, secNum)
	# SID = '/home/sci/blakez/Reflect Affine/sidelight_to_DIC.txt'

	src_im = common.LoadITKImage(conf_dir + 'M{0}/section_{1}/{3}/Ch{2}/M{0}_{1}_LGN_RHS_Ch{2}_z00.tif'.format(mkyNum, secNum, channel, region))
	# tar_im = common.LoadITKImage('M{0}/{1}/Crop_ThirdNerve_EGFP_z16.tiff'.format(mkyNum, secNum))

	# The points need to be chosen in the origin corrected sidescape for downstream purposes
	affine = load_and_solve(tar_pt, src_pt)
	out_grid = bb_grid_solver(src_im, affine)

	z_stack = []
	num_slices = len(glob.glob(conf_dir + 'M{0}/section_{1}/{3}/Ch{2}/*'.format(mkyNum, secNum, channel, region)))

	for z in range(0, num_slices):

		src_im = common.LoadITKImage(conf_dir + 'M{0}/section_{1}/{4}/Ch{2}/M{0}_{1}_LGN_RHS_Ch{2}_z{3}.tif'.format(mkyNum, secNum, channel, str(z).zfill(2), region))
		aff_im = ca.Image3D(out_grid, ca.MEM_HOST)
		cc.ApplyAffineReal(aff_im, src_im, affine)
		common.SaveITKImage(aff_im, save_dir + 'M{0}/section_{1}/{4}/Ch{2}/M{0}_01_section_{1}_LGN_RHS_Ch{2}_conf_aff_sidelight_z{3}.tiff'.format(mkyNum, secNum, channel, str(z).zfill(2), region))
		z_stack.append(aff_im)
		print('==> Done with {0}/{1}'.format(z, num_slices - 1))


	stacked = cc.Imlist_to_Im(z_stack)
	stacked.setSpacing(ca.Vec3Df(out_grid.spacing()[0], out_grid.spacing()[1], 0.03/num_slices))
	common.SaveITKImage(stacked, save_dir + 'M{0}/section_{1}/{3}/Ch{2}/M{0}_01_section_{1}_Ch{2}_conf_aff_sidelight_stack.nrrd'.format(mkyNum, secNum, channel, region))
	common.DebugHere()
	if channel==0:
		cc.WriteGrid(stacked.grid(), save_dir + 'M{0}/section_{1}/{2}/affine_registration_grid.txt'.format(mkyNum, secNum, region))
Esempio n. 3
0
def GeoRegWriteOuput(subjectId, cf, p, t, Imsmts, cpinds, cpstates, msmtinds,
                     gradAtMsmts, EnergyHistory):
    # save initial image and momenta for regression geodesic
    common.SaveITKImage(p.I0, cf.io.outputPrefix + subjectId + "I0.mhd")
    common.SaveITKField(p.m0, cf.io.outputPrefix + subjectId + "m0.mhd")

    # save residual images for regression geodesic
    # TODO:

    # write Energy details
    energyFilename = cf.io.outputPrefix + subjectId + "Energy.csv"
    with open(energyFilename, 'w') as f:
        csv_writer = csv.writer(f, delimiter='\t')
        csv_writer.writerows(EnergyHistory)
def intensity_normalization_histeq(args):
    for i in range(0, len(args.input_images)):
        image = common.LoadITKImage(args.output_images[i], ca.MEM_HOST)
        grid = image.grid()
        image_np = common.AsNPCopy(image)
        nan_mask = np.isnan(image_np)
        image_np[nan_mask] = 0
        image_np /= np.amax(image_np)

        # perform histogram equalization if needed
        if args.histeq:
            image_np[image_np != 0] = exposure.equalize_hist(
                image_np[image_np != 0])
        image_result = common.ImFromNPArr(image_np, ca.MEM_HOST)
        image_result.setGrid(grid)
        common.SaveITKImage(image_result, args.output_images[i])
Esempio n. 5
0
def HGMWriteOutput(cf, groupState, tDiscGroup, isReporter):
    # save initial momenta for residual geodesics, p, for all individuals
    for i in range(len(groupState.t)):
        if tDiscGroup[i].J is not None:
            common.SaveITKField(
                tDiscGroup[i].p0, cf.io.outputPrefix +
                str(tDiscGroup[i].subjectId).replace('.', '_') + "_p0.mhd")
            # write individual's energy history
            energyFilename = cf.io.outputPrefix + str(
                tDiscGroup[i].subjectId).replace('.',
                                                 '_') + "ResidualEnergy.csv"
            HGMWriteEnergyHistoryToFile(tDiscGroup[i].Energy, energyFilename)

    # save initial image and momenta for group gedoesic
    if isReporter:
        common.SaveITKImage(groupState.I0, cf.io.outputPrefix + "I0.mhd")
        common.SaveITKField(groupState.m0, cf.io.outputPrefix + "m0.mhd")
        # write energy history
        energyFilename = cf.io.outputPrefix + "TotalEnergyHistory.csv"
        HGMWriteEnergyHistoryToFile(groupState.EnergyHistory, energyFilename)
def MatchingImageMomentaWriteOuput(cf, geodesicState, EnergyHistory, m0, n1):
    grid = geodesicState.J0.grid()
    mType = geodesicState.J0.memType()

    # save momenta for the gedoesic
    common.SaveITKField(geodesicState.p0, cf.io.outputPrefix + "p0.mhd")

    # save matched momenta for the geodesic
    if cf.vectormomentum.matchImOnly:
        m0 = common.LoadITKField(cf.study.m, mType)

    ca.CoAd(geodesicState.p, geodesicState.rhoinv, m0)
    common.SaveITKField(geodesicState.p, cf.io.outputPrefix + "m1.mhd")

    # momenta match energy
    if cf.vectormomentum.matchImOnly:
        vecdiff = ca.ManagedField3D(grid, mType)
        ca.Sub_I(geodesicState.p, n1)
        ca.Copy(vecdiff, geodesicState.p)
        geodesicState.diffOp.applyInverseOperator(geodesicState.p)
        momentaMatchEnergy = ca.Dot(vecdiff, geodesicState.p) / (
            float(geodesicState.p0.nVox()) * geodesicState.SigmaSlope *
            geodesicState.SigmaSlope)
        # save energy
        energyFilename = cf.io.outputPrefix + "testMomentaMatchEnergy.csv"
        with open(energyFilename, 'w') as f:
            print >> f, momentaMatchEnergy

    # save matched image for the geodesic
    tempim = ca.ManagedImage3D(grid, mType)
    ca.ApplyH(tempim, geodesicState.J0, geodesicState.rhoinv)
    common.SaveITKImage(tempim, cf.io.outputPrefix + "I1.mhd")

    # save energy
    energyFilename = cf.io.outputPrefix + "energy.csv"
    MatchingImageMomentaWriteEnergyHistoryToFile(EnergyHistory, energyFilename)
def main():
    secNum = sys.argv[1]
    mkyNum = sys.argv[2]
    region = str(sys.argv[3])
    # channel = sys.argv[3]
    ext = 'M{0}/section_{1}/{2}/'.format(mkyNum, secNum, region)
    ss_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/'
    conf_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/'
    memT = ca.MEM_DEVICE

    try:
        with open(
                ss_dir +
                'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt'
                .format(mkyNum, secNum), 'r') as f:
            region_dict = json.load(f)
            f.close()
    except IOError:
        region_dict = {}
        region_dict[region] = {}
        region_dict['size'] = map(
            int,
            raw_input("What is the size of the full resolution image x,y? ").
            split(','))
        region_dict[region]['bbx'] = map(
            int,
            raw_input(
                "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? "
            ).split(','))
        region_dict[region]['bby'] = map(
            int,
            raw_input(
                "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? "
            ).split(','))

    if region not in region_dict:
        region_dict[region] = {}
        region_dict[region]['bbx'] = map(
            int,
            raw_input(
                "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? "
            ).split(','))
        region_dict[region]['bby'] = map(
            int,
            raw_input(
                "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? "
            ).split(','))

    img_region = common.LoadITKImage(
        ss_dir +
        'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_{2}.tiff'.
        format(mkyNum, secNum, region), ca.MEM_HOST)
    ssiSrc = common.LoadITKImage(
        ss_dir +
        'src_registration/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0.nrrd'
        .format(mkyNum, secNum), ca.MEM_HOST)
    bfi_df = common.LoadITKField(
        ss_dir +
        'Blockface_registered/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0_to_bfi_real.mha'
        .format(mkyNum, secNum), ca.MEM_DEVICE)

    # Figure out the same region in the low resolution image: There is a transpose from here to matlab so dimensions are flipped
    low_sz = ssiSrc.size().tolist()
    yrng_raw = [(low_sz[1] * region_dict[region]['bbx'][0]) /
                np.float(region_dict['size'][0]),
                (low_sz[1] * region_dict[region]['bbx'][1]) /
                np.float(region_dict['size'][0])]
    xrng_raw = [(low_sz[0] * region_dict[region]['bby'][0]) /
                np.float(region_dict['size'][1]),
                (low_sz[0] * region_dict[region]['bby'][1]) /
                np.float(region_dict['size'][1])]
    yrng = [np.int(np.floor(yrng_raw[0])), np.int(np.ceil(yrng_raw[1]))]
    xrng = [np.int(np.floor(xrng_raw[0])), np.int(np.ceil(xrng_raw[1]))]
    low_sub = cc.SubVol(ssiSrc, xrng, yrng)

    # Figure out the grid for the sub region in relation to the sidescape
    originout = [
        ssiSrc.origin().x + ssiSrc.spacing().x * xrng[0],
        ssiSrc.origin().y + ssiSrc.spacing().y * yrng[0], 0
    ]
    spacingout = [
        (low_sub.size().x * ssiSrc.spacing().x) / (img_region.size().x),
        (low_sub.size().y * ssiSrc.spacing().y) / (img_region.size().y), 1
    ]

    gridout = cc.MakeGrid(img_region.size().tolist(), spacingout, originout)
    img_region.setGrid(gridout)

    only_sub = np.zeros(ssiSrc.size().tolist()[0:2])
    only_sub[xrng[0]:xrng[1], yrng[0]:yrng[1]] = np.squeeze(low_sub.asnp())
    only_sub = common.ImFromNPArr(only_sub)
    only_sub.setGrid(ssiSrc.grid())

    # Deform the only sub region to
    only_sub.toType(ca.MEM_DEVICE)
    def_sub = ca.Image3D(bfi_df.grid(), bfi_df.memType())
    cc.ApplyHReal(def_sub, only_sub, bfi_df)
    def_sub.toType(ca.MEM_HOST)

    # Now have to find the bounding box in the deformation space (bfi space)
    if 'deformation_bbx' not in region_dict[region]:
        bb_def = np.squeeze(pp.LandmarkPicker([np.squeeze(def_sub.asnp())]))
        bb_def_y = [bb_def[0][0], bb_def[1][0]]
        bb_def_x = [bb_def[0][1], bb_def[1][1]]
        region_dict[region]['deformation_bbx'] = bb_def_x
        region_dict[region]['deformation_bby'] = bb_def_y

    with open(
            ss_dir +
            'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt'
            .format(mkyNum, secNum), 'w') as f:
        json.dump(region_dict, f)
        f.close()

    # Now need to extract the region and create a deformation and image that have the same resolution as the img_region
    deform_sub = cc.SubVol(bfi_df, region_dict[region]['deformation_bbx'],
                           region_dict[region]['deformation_bby'])

    common.DebugHere()
    sizeout = [
        int(
            np.ceil((deform_sub.size().x * deform_sub.spacing().x) /
                    img_region.spacing().x)),
        int(
            np.ceil((deform_sub.size().y * deform_sub.spacing().y) /
                    img_region.spacing().y)), 1
    ]

    region_grid = cc.MakeGrid(sizeout,
                              img_region.spacing().tolist(),
                              deform_sub.origin().tolist())

    def_im_region = ca.Image3D(region_grid, deform_sub.memType())
    up_deformation = ca.Field3D(region_grid, deform_sub.memType())

    img_region.toType(ca.MEM_DEVICE)
    cc.ResampleWorld(up_deformation, deform_sub,
                     ca.BACKGROUND_STRATEGY_PARTIAL_ZERO)
    cc.ApplyHReal(def_im_region, img_region, up_deformation)

    ss_out = ss_dir + 'Blockface_registered/M{0}/section_{1}/{2}/'.format(
        mkyNum, secNum, region)

    if not pth.exists(pth.expanduser(ss_out)):
        os.mkdir(pth.expanduser(ss_out))

    common.SaveITKImage(
        def_im_region,
        pth.expanduser(ss_out) +
        'M{0}_01_section_{1}_{2}_def_to_bfi.nrrd'.format(
            mkyNum, secNum, region))
    common.SaveITKImage(
        def_im_region,
        pth.expanduser(ss_out) +
        'M{0}_01_section_{1}_{2}_def_to_bfi.tiff'.format(
            mkyNum, secNum, region))
    del img_region, def_im_region, ssiSrc, deform_sub

    # Now apply the same deformation to the confocal images
    conf_grid = cc.LoadGrid(
        conf_dir +
        'sidelight_registered/M{0}/section_{1}/{2}/affine_registration_grid.txt'
        .format(mkyNum, secNum, region))
    cf_out = conf_dir + 'blockface_registered/M{0}/section_{1}/{2}/'.format(
        mkyNum, secNum, region)
    # confocal.toType(ca.MEM_DEVICE)
    # def_conf = ca.Image3D(region_grid, deform_sub.memType())
    # cc.ApplyHReal(def_conf, confocal, up_deformation)

    for channel in range(0, 4):
        z_stack = []
        num_slices = len(
            glob.glob(conf_dir +
                      'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/*.tiff'.
                      format(mkyNum, secNum, channel, region)))
        for z in range(0, num_slices):
            src_im = common.LoadITKImage(
                conf_dir +
                'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/M{0}_01_section_{1}_LGN_RHS_Ch{2}_conf_aff_sidelight_z{4}.tiff'
                .format(mkyNum, secNum, channel, region,
                        str(z).zfill(2)))
            src_im.setGrid(
                cc.MakeGrid(
                    ca.Vec3Di(conf_grid.size().x,
                              conf_grid.size().y, 1), conf_grid.spacing(),
                    conf_grid.origin()))
            src_im.toType(ca.MEM_DEVICE)
            def_im = ca.Image3D(region_grid, ca.MEM_DEVICE)
            cc.ApplyHReal(def_im, src_im, up_deformation)
            def_im.toType(ca.MEM_HOST)
            common.SaveITKImage(
                def_im, cf_out +
                'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.tiff'
                .format(mkyNum, secNum, channel, region,
                        str(z).zfill(2)))
            if z == 0:
                common.SaveITKImage(
                    def_im, cf_out +
                    'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.nrrd'
                    .format(mkyNum, secNum, channel, region,
                            str(z).zfill(2)))
            z_stack.append(def_im)
            print('==> Done with Ch {0}: {1}/{2}'.format(
                channel, z, num_slices - 1))
        stacked = cc.Imlist_to_Im(z_stack)
        stacked.setSpacing(
            ca.Vec3Df(region_grid.spacing().x,
                      region_grid.spacing().y,
                      conf_grid.spacing().z))
        common.SaveITKImage(
            stacked, cf_out +
            'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_stack.nrrd'
            .format(mkyNum, secNum, channel, region))
        if channel == 0:
            cc.WriteGrid(
                stacked.grid(),
                cf_out + 'deformed_registration_grid.txt'.format(
                    mkyNum, secNum, region))
Esempio n. 8
0
def Matching(cf):

    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)
    if os.path.isfile(cf.io.outputPrefix + 'm0.mhd'):
        print cf.io.outputPrefix
        return ()

    # if os.path.isfile(cf.io.outputPrefix+'m0.mhd'):
    #     return();
    # else:
    #     print cf.io.outputPrefix;
    #     return();
    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    I0 = common.LoadITKImage(cf.study.I0, mType)
    I1 = common.LoadITKImage(cf.study.I1, mType)
    #ca.DivC_I(I0,255.0)
    #ca.DivC_I(I1,255.0)
    grid = I0.grid()

    It = ca.Image3D(grid, mType)

    ca.ThreadMemoryManager.init(grid, mType, 1)

    #common.DebugHere()
    # TODO: need to work on these
    t = [x * 1. / cf.optim.nTimeSteps for x in range(cf.optim.nTimeSteps + 1)]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    p = MatchingVariables(I0,
                          I1,
                          cf.vectormomentum.sigma,
                          t,
                          checkpointinds,
                          checkpointstates,
                          cf.vectormomentum.diffOpParams[0],
                          cf.vectormomentum.diffOpParams[1],
                          cf.vectormomentum.diffOpParams[2],
                          cf.optim.Niter,
                          cf.optim.stepSize,
                          cf.optim.maxPert,
                          cf.optim.nTimeSteps,
                          integMethod=cf.optim.integMethod,
                          optMethod=cf.optim.method,
                          nInv=cf.optim.NIterForInverse,
                          plotEvery=cf.io.plotEvery,
                          plotSlice=cf.io.plotSlice,
                          quiverEvery=cf.io.quiverEvery,
                          outputPrefix=cf.io.outputPrefix)

    print(p.stepSize)

    RunMatching(p)

    # write output
    if cf.io.outputPrefix is not None:
        # reset all variables by shooting once, may have been overwritten
        CAvmCommon.IntegrateGeodesic(p.m0,p.t,p.diffOp,\
                          p.m, p.g, p.ginv,\
                          p.scratchV1, p.scratchV2,p. scratchV3,\
                          p.checkpointstates, p.checkpointinds,\
                          Ninv=p.nInv, integMethod = p.integMethod)
        ca.ApplyH(It, I0, p.ginv)
        common.SaveITKField(p.m0, cf.io.outputPrefix + "m0.mhd")
        common.SaveITKField(p.ginv, cf.io.outputPrefix + "phiinv.mhd")
        #common.SaveITKField(p.g, cf.io.outputPrefix+"phi.mhd")
        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
Esempio n. 9
0
def write_result(result, output_prefix):
    common.SaveITKImage(result['I1'], output_prefix+"I1.mhd")
    common.SaveITKField(result['phiinv'], output_prefix+"phiinv.mhd")
def GeodesicShooting(cf):

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(GeodesicShootingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.useCUDA else ca.MEM_HOST
    #common.DebugHere()
    I0 = common.LoadITKImage(cf.study.I0, mType)
    m0 = common.LoadITKField(cf.study.m0, mType)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    # set up diffOp
    if mType == ca.MEM_HOST:
        diffOp = ca.FluidKernelFFTCPU()
    else:
        diffOp = ca.FluidKernelFFTGPU()
    diffOp.setAlpha(cf.diffOpParams[0])
    diffOp.setBeta(cf.diffOpParams[1])
    diffOp.setGamma(cf.diffOpParams[2])
    diffOp.setGrid(grid)

    g = ca.Field3D(grid, mType)
    ginv = ca.Field3D(grid, mType)
    mt = ca.Field3D(grid, mType)
    It = ca.Image3D(grid, mType)
    t = [
        x * 1. / cf.integration.nTimeSteps
        for x in range(cf.integration.nTimeSteps + 1)
    ]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    scratchV1 = ca.Field3D(grid, mType)
    scratchV2 = ca.Field3D(grid, mType)
    scratchV3 = ca.Field3D(grid, mType)
    # scale momenta to shoot
    cf.study.scaleMomenta = float(cf.study.scaleMomenta)
    if abs(cf.study.scaleMomenta) > 0.000000:
        ca.MulC_I(m0, float(cf.study.scaleMomenta))
        CAvmCommon.IntegrateGeodesic(m0,t,diffOp, mt, g, ginv,\
                                     scratchV1,scratchV2,scratchV3,\
                                     keepstates=checkpointstates,keepinds=checkpointinds,
                                     Ninv=cf.integration.NIterForInverse, integMethod = cf.integration.integMethod)
    else:
        ca.Copy(It, I0)
        ca.Copy(mt, m0)
        ca.SetToIdentity(ginv)
        ca.SetToIdentity(g)

    # write output
    if cf.io.outputPrefix is not None:
        # scale back shotmomenta before writing
        if abs(cf.study.scaleMomenta) > 0.000000:
            ca.ApplyH(It, I0, ginv)
            ca.CoAd(mt, ginv, m0)
            ca.DivC_I(mt, float(cf.study.scaleMomenta))

        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
        common.SaveITKField(mt, cf.io.outputPrefix + "m1.mhd")
        common.SaveITKField(ginv, cf.io.outputPrefix + "phiinv.mhd")
        common.SaveITKField(g, cf.io.outputPrefix + "phi.mhd")
        GeodesicShootingPlots(g, ginv, I0, It, cf)
        if cf.io.saveFrames:
            SaveFrames(checkpointstates, checkpointinds, I0, It, m0, mt, cf)
Esempio n. 11
0
print 'Attempting to make volumes'
ssi_reg_vol = cc.Imlist_to_Im(reg_list)
ssi_aff_vol = cc.Imlist_to_Im(aff_list)
bfi_org_vol = cc.Imlist_to_Im(bfi_list)

ssi_reg_vol.setSpacing(
    ca.Vec3Df(ssi_reg_vol.spacing()[0],
              ssi_reg_vol.spacing()[1], 0.030))
ssi_aff_vol.setSpacing(
    ca.Vec3Df(ssi_aff_vol.spacing()[0],
              ssi_aff_vol.spacing()[1], 0.030))
bfi_org_vol.setSpacing(
    ca.Vec3Df(bfi_org_vol.spacing()[0],
              bfi_org_vol.spacing()[1], 0.030))

print 'Volumes Created and Attempting to Save'

common.SaveITKImage(
    ssi_reg_vol,
    out_path + 'M{0}_01_section_{1}_to_section_{2}_reg_ssi_stack.nrrd'.format(
        monkeyNum, slicestart, slicefinish))
common.SaveITKImage(
    ssi_aff_vol,
    out_path + 'M{0}_01_section_{1}_to_section_{2}_aff_ssi_stack.nrrd'.format(
        monkeyNum, slicestart, slicefinish))
common.SaveITKImage(
    bfi_org_vol,
    out_path + 'M{0}_01_section_{1}_to_section_{2}_org_bfi_stack.nrrd'.format(
        monkeyNum, slicestart, slicefinish))
Esempio n. 12
0
def predict_image(args):
    if (args.use_CPU_for_shooting):
        mType = ca.MEM_HOST
    else:
        mType = ca.MEM_DEVICE

    # load the prediction network
    predict_network_config = torch.load(args.prediction_parameter)
    prediction_net = create_net(args, predict_network_config)

    batch_size = args.batch_size
    patch_size = predict_network_config['patch_size']
    input_batch = torch.zeros(batch_size, 2, patch_size, patch_size,
                              patch_size).cuda()

    # start prediction
    for i in range(0, len(args.moving_image)):
        common.Mkdir_p(os.path.dirname(args.output_prefix[i]))
        if (args.affine_align):
            # Perform affine registration to both moving and target image to the ICBM152 atlas space.
            # Registration is done using Niftireg.
            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.moving_image[i], "-res",
                args.output_prefix[i] + "moving_affine.nii", "-aff",
                args.output_prefix[i] + 'moving_affine_transform.txt'
            ])

            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.target_image[i], "-res",
                args.output_prefix[i] + "target_affine.nii", "-aff",
                args.output_prefix[i] + 'target_affine_transform.txt'
            ])

            moving_image = common.LoadITKImage(
                args.output_prefix[i] + "moving_affine.nii", mType)
            target_image = common.LoadITKImage(
                args.output_prefix[i] + "target_affine.nii", mType)
        else:
            moving_image = common.LoadITKImage(args.moving_image[i], mType)
            target_image = common.LoadITKImage(args.target_image[i], mType)

        #preprocessing of the image
        moving_image_np = preprocess_image(moving_image, args.histeq)
        target_image_np = preprocess_image(target_image, args.histeq)

        grid = moving_image.grid()
        moving_image_processed = common.ImFromNPArr(moving_image_np, mType)
        target_image_processed = common.ImFromNPArr(target_image_np, mType)
        moving_image.setGrid(grid)
        target_image.setGrid(grid)

        predict_transform_space = False
        if 'matlab_t7' in predict_network_config:
            predict_transform_space = True
        # run actual prediction
        prediction_result = util.predict_momentum(moving_image_np,
                                                  target_image_np, input_batch,
                                                  batch_size, patch_size,
                                                  prediction_net,
                                                  predict_transform_space)

        m0 = prediction_result['image_space']
        m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi = common.AsNPCopy(registration_result['phiinv'])
        phi_square = np.power(phi, 2)

        for sample_iter in range(1, args.samples):
            print(sample_iter)
            prediction_result = util.predict_momentum(
                moving_image_np, target_image_np, input_batch, batch_size,
                patch_size, prediction_net, predict_transform_space)
            m0 += prediction_result['image_space']
            m0_reg = common.FieldFromNPArr(prediction_result['image_space'],
                                           mType)
            registration_result = registration_methods.geodesic_shooting(
                moving_image_processed, target_image_processed, m0_reg,
                args.shoot_steps, mType, predict_network_config)
            phi += common.AsNPCopy(registration_result['phiinv'])
            phi_square += np.power(
                common.AsNPCopy(registration_result['phiinv']), 2)

        m0_mean = np.divide(m0, args.samples)
        m0_reg = common.FieldFromNPArr(m0_mean, mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi_mean = registration_result['phiinv']
        phi_var = np.divide(phi_square, args.samples) - np.power(
            np.divide(phi, args.samples), 2)

        #save result
        common.SaveITKImage(registration_result['I1'],
                            args.output_prefix[i] + "I1.mhd")
        common.SaveITKField(phi_mean,
                            args.output_prefix[i] + "phiinv_mean.mhd")
        common.SaveITKField(common.FieldFromNPArr(phi_var, mType),
                            args.output_prefix[i] + "phiinv_var.mhd")
def main():
    # Extract the Monkey number and section number from the command line
    global frgNum
    global secOb

    mkyNum = sys.argv[1]
    secNum = sys.argv[2]
    frgNum = int(sys.argv[3])
    write = True

    # if not os.path.exists(os.path.expanduser('~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'.format(mkyNum,secNum))):
    #     cf = initial(secNum, mkyNum)

    try:
        secOb = Config.Load(
            secSpec,
            pth.expanduser(
                '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                .format(mkyNum, secNum)))
    except IOError as e:
        try:
            temp = Config.LoadYAMLDict(pth.expanduser(
                '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                .format(mkyNum, secNum)),
                                       include=False)
            secOb = Config.MkConfig(temp, secSpec)
        except IOError:
            print 'It appears there is no configuration file for this section. Please initialize one and restart.'
            sys.exit()
        if frgNum == int(secOb.yamlList[frgNum][-6]):
            Fragmenter()
            try:
                secOb = Config.Load(
                    secSpec,
                    pth.expanduser(
                        '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                        .format(mkyNum, secNum)))
            except IOError:
                print 'It appeas that the include yaml file list does not match your fragmentation number. Please check them and restart.'
                sys.exit()

    if not pth.exists(
            pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))):
        common.Mkdir_p(
            pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))):
        common.Mkdir_p(
            pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum)))

    frgOb = Config.MkConfig(secOb.yamlList[frgNum], frgSpec)
    ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(frgOb, ca.MEM_HOST)

    #Extract the saturation Image from the color iamge
    bfiHsv = common.FieldFromNPArr(
        matplotlib.colors.rgb_to_hsv(
            np.rollaxis(np.array(np.squeeze(bfiSrc.asnp())), 0, 3)),
        ca.MEM_HOST)
    bfiHsv.setGrid(bfiSrc.grid())
    bfiSat = ca.Image3D(bfiSrc.grid(), bfiHsv.memType())
    ca.Copy(bfiSat, bfiHsv, 1)
    #Histogram equalize, normalize and mask the blockface saturation image
    bfiSat = cb.HistogramEqualize(bfiSat, 256)
    bfiSat.setGrid(bfiSrc.grid())
    bfiSat *= -1
    bfiSat -= ca.Min(bfiSat)
    bfiSat /= ca.Max(bfiSat)
    bfiSat *= bfiMsk
    bfiSat.setGrid(bfiSrc.grid())

    #Write out the blockface region after adjusting the colors with a format that supports header information
    if write:
        common.SaveITKImage(
            bfiSat,
            pth.expanduser(secOb.bfiSrcPath +
                           'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_sat.nrrd'.
                           format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Set the sidescape grid relative to that of the blockface
    ssiSrc.setGrid(ConvertGrid(ssiSrc.grid(), bfiSat.grid()))
    ssiMsk.setGrid(ConvertGrid(ssiMsk.grid(), bfiSat.grid()))
    ssiSrc *= ssiMsk

    #Write out the sidescape masked image in a format that stores the header information
    if write:
        common.SaveITKImage(
            ssiSrc,
            pth.expanduser(secOb.ssiSrcPath +
                           'frag{0}/M{1}_01_ssi_section_{2}_frag{0}.nrrd'.
                           format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Update the image parameters of the sidescape image for future use
    frgOb.imSize = ssiSrc.size().tolist()
    frgOb.imOrig = ssiSrc.origin().tolist()
    frgOb.imSpac = ssiSrc.spacing().tolist()
    updateFragOb(frgOb)

    #Find the affine transform between the two fragments
    bfiAff, ssiAff, aff = Affine(bfiSat, ssiSrc, frgOb)
    updateFragOb(frgOb)

    #Write out the affine transformed images in a format that stores header information
    if write:
        common.SaveITKImage(
            bfiAff,
            pth.expanduser(
                secOb.bfiOutPath +
                'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_aff_ssi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))
        common.SaveITKImage(
            ssiAff,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_aff_bfi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))

    bfiVe = bfiAff.copy()
    ssiVe = ssiSrc.copy()
    cc.VarianceEqualize_I(bfiVe, sigma=frgOb.sigVarBfi, eps=frgOb.epsVar)
    cc.VarianceEqualize_I(ssiVe, sigma=frgOb.sigVarSsi, eps=frgOb.epsVar)

    #As of right now, the largest pre-computed FFT table is 2048, so resample onto that grid for registration
    regGrd = ConvertGrid(
        cc.MakeGrid(ca.Vec3Di(2048, 2048, 1), ca.Vec3Df(1, 1, 1),
                    ca.Vec3Df(0, 0, 0)), ssiSrc.grid())
    ssiReg = ca.Image3D(regGrd, ca.MEM_HOST)
    bfiReg = ca.Image3D(regGrd, ca.MEM_HOST)
    cc.ResampleWorld(ssiReg, ssiVe)
    cc.ResampleWorld(bfiReg, bfiVe)

    #Create the default configuration object for IDiff Matching and then set some parameters
    idCf = Config.SpecToConfig(IDiff.Matching.MatchingConfigSpec)
    idCf.compute.useCUDA = True
    idCf.io.outputPrefix = '/home/sci/blakez/IDtest/'

    #Run the registration
    ssiDef, phi = DefReg(ssiReg, bfiReg, frgOb, ca.MEM_DEVICE, idCf)

    #Turn the deformation into a displacement field so it can be applied to the large tif with C++ code
    affV = phi.copy()
    cc.ApplyAffineReal(affV, phi, np.linalg.inv(frgOb.affine))
    ca.HtoV_I(affV)

    #Apply the found deformation to the input ssi
    ssiSrc.toType(ca.MEM_DEVICE)
    cc.HtoReal(phi)
    affPhi = phi.copy()
    ssiBfi = ssiSrc.copy()
    upPhi = ca.Field3D(ssiSrc.grid(), phi.memType())

    cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine))
    cc.ResampleWorld(upPhi, affPhi, bg=2)
    cc.ApplyHReal(ssiBfi, ssiSrc, upPhi)

    # ssiPhi = ca.Image3D(ssiSrc.grid(), phi.memType())
    # upPhi = ca.Field3D(ssiSrc.grid(), phi.memType())
    # cc.ResampleWorld(upPhi, phi, bg=2)
    # cc.ApplyHReal(ssiPhi, ssiSrc, upPhi)
    # ssiBfi = ssiSrc.copy()
    # cc.ApplyAffineReal(ssiBfi, ssiPhi, np.linalg.inv(frgOb.affine))

    # #Apply affine to the deformation
    # affPhi = phi.copy()
    # cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine))

    if write:
        common.SaveITKImage(
            ssiBfi,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_def_bfi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))
        cc.WriteMHA(
            affPhi,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_real.mha'.
                format(frgNum, secOb.mkyNum, secOb.secNum)))
        cc.WriteMHA(
            affV,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_disp.mha'.
                format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Create the list of names that the deformation should be applied to
    # nameList = ['M15_01_0956_SideLight_DimLED_10x_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c1_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c2_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c3_ORG.tif']

    # appLarge(nameList, affPhi)

    common.DebugHere()
def Fragmenter():
    tmpOb = Config.Load(
        frgSpec,
        pth.expanduser(
            '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/section_{1}_frag0.yaml'
            .format(secOb.mkyNum, secOb.secNum)))
    dictBuild = {}
    #Load in the whole image so that the fragment can cropped out
    ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(tmpOb, ca.MEM_HOST)

    #Because some of the functions only woth with gray images
    bfiGry = ca.Image3D(bfiSrc.grid(), bfiSrc.memType())
    ca.Copy(bfiGry, bfiSrc, 1)

    lblSsi, _ = ndimage.label(np.squeeze(ssiMsk.asnp()) > 0)
    lblBfi, _ = ndimage.label(np.squeeze(bfiMsk.asnp()) > 0)

    seedPt = np.squeeze(pp.LandmarkPicker([lblBfi, lblSsi]))
    subMskBfi = common.ImFromNPArr(lblBfi == lblBfi[seedPt[0, 0],
                                                    seedPt[0,
                                                           1]].astype('int8'),
                                   sp=bfiSrc.spacing(),
                                   orig=bfiSrc.origin())
    subMskSsi = common.ImFromNPArr(lblSsi == lblSsi[seedPt[1, 0],
                                                    seedPt[1,
                                                           1]].astype('int8'),
                                   sp=ssiSrc.spacing(),
                                   orig=ssiSrc.origin())

    bfiGry *= subMskBfi
    bfiSrc *= subMskBfi
    ssiSrc *= subMskSsi
    #Pick points that are the bounding box of the desired subvolume
    corners = np.array(
        pp.LandmarkPicker(
            [np.squeeze(bfiGry.asnp()),
             np.squeeze(ssiSrc.asnp())]))
    bfiCds = corners[:, 0]
    ssiCds = corners[:, 1]

    #Extract the region from the source images
    bfiRgn = cc.SubVol(bfiSrc,
                       xrng=[bfiCds[0, 0], bfiCds[1, 0]],
                       yrng=[bfiCds[0, 1], bfiCds[1, 1]])
    ssiRgn = cc.SubVol(ssiSrc,
                       xrng=[ssiCds[0, 0], ssiCds[1, 0]],
                       yrng=[ssiCds[0, 1], ssiCds[1, 1]])

    #Extract the region from the mask images
    rgnMskSsi = cc.SubVol(subMskSsi,
                          xrng=[ssiCds[0, 0], ssiCds[1, 0]],
                          yrng=[ssiCds[0, 1], ssiCds[1, 1]])
    rgnMskBfi = cc.SubVol(subMskBfi,
                          xrng=[bfiCds[0, 0], bfiCds[1, 0]],
                          yrng=[bfiCds[0, 1], bfiCds[1, 1]])

    dictBuild['rgnBfi'] = np.divide(
        bfiCds, np.array(bfiSrc.size().tolist()[0:2], 'float')).tolist()
    dictBuild['rgnSsi'] = np.divide(
        ssiCds, np.array(ssiSrc.size().tolist()[0:2], 'float')).tolist()

    #Check the output directory for the source files of the fragment
    if not pth.exists(
            pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum)))
    #Check the output directory for the mask files of the fragment
    if not pth.exists(
            pth.expanduser(secOb.ssiMskPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiMskPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiMskPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiMskPath + 'frag{0}'.format(frgNum)))

    dictBuild[
        'ssiSrcName'] = 'frag{0}/M{1}_01_ssi_section_{2}_frag1.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'bfiSrcName'] = 'frag{0}/M{1}_01_bfi_section_{2}_frag1.mha'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'ssiMskName'] = 'frag{0}/M{1}_01_ssi_section_{2}_frag1_mask.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'bfiMskName'] = 'frag{0}/M{1}_01_bfi_section_{2}_frag1_mask.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)

    #Write out the masked and cropped images so that they can be loaded from the YAML file
    #The BFI region needs to be saved as color and mha format so that the grid information is carried over.
    common.SaveITKImage(
        ssiRgn, pth.expanduser(secOb.ssiSrcPath + dictBuild['ssiSrcName']))
    cc.WriteColorMHA(
        bfiRgn, pth.expanduser(secOb.bfiSrcPath + dictBuild['bfiSrcName']))
    common.SaveITKImage(
        rgnMskSsi, pth.expanduser(secOb.ssiMskPath + dictBuild['ssiMskName']))
    common.SaveITKImage(
        rgnMskBfi, pth.expanduser(secOb.bfiMskPath + dictBuild['bfiMskName']))

    frgOb = Config.MkConfig(dictBuild, frgSpec)
    updateFragOb(frgOb)

    return None