def SubRegion(src_grid, sub_grid, def_grid): # The sapcing of the src image was changed, so we have to find the new spacing of the sub region reg_grid = ConvertGrid(src_grid, def_grid) spacing = (np.array(reg_grid.spacing().tolist()) / np.array( src_grid.spacing().tolist())) * np.array(sub_grid.spacing().tolist()) # Because we updated the spacing, the origin of the sub region will change and we have to find the new origin # The new origin is the upper left real coordinate of the subregion to extract pixel_origin = np.array(sub_grid.origin().tolist()) / np.array( src_grid.spacing().tolist()) upL_real = pixel_origin * np.array(reg_grid.spacing().tolist()) + np.array( reg_grid.origin().tolist()) # Now need to find the bottom right in real coordinates btR_real = (spacing * np.array(sub_grid.size().tolist())) + upL_real # Now that we have the top left and bottom right, we need to convert them to index corrdiantes of the deformation grid upL = np.floor((upL_real - np.array(def_grid.origin().tolist())) / np.array(def_grid.spacing().tolist())) btR = np.floor((btR_real - np.array(def_grid.origin().tolist())) / np.array(def_grid.spacing().tolist())) xrng = [int(upL[0]), int(btR[0])] yrng = [int(upL[1]), int(btR[1])] new_sub_grid = cc.MakeGrid( ca.Vec3Di(sub_grid.size()[0], sub_grid.size()[1], 1), ca.Vec3Df(spacing[0], spacing[1], 1), ca.Vec3Df(upL_real[0], upL_real[1], 0)) return xrng, yrng, new_sub_grid
def bb_grid_solver(source_image, affine): in_sz = source_image.size().tolist() in_sp = source_image.spacing().tolist() in_or = source_image.origin().tolist() C1temp = in_or[0:2] C1temp.append(1) C1 = C1temp C2 = np.array([in_sz[0] * in_sp[0] + in_or[0], in_or[1], 1]) C3 = np.array([in_or[0], in_sz[1] * in_sp[1] + in_or[1], 1]) C4 = np.array( [in_sz[0] * in_sp[0] + in_or[0], in_sz[1] * in_sp[1] + in_or[1], 1]) corners = np.matrix([C1, C2, C3, C4]) tCorners = affine * corners.transpose() bbMax = np.max(tCorners[:, 0:4], 1) bbMin = np.min(tCorners[:, 0:4], 1) dim = np.ceil(bbMax - bbMin) out_sp = (np.squeeze(np.array(dim)) / source_image.size()[0:3] ) # * (1/np.sqrt(2)) if out_sp[2] == 0.0: out_sp[2] = 1.0 out_sz = np.squeeze(np.array(dim)) / out_sp.transpose() out_or = np.squeeze( np.array(bbMin)) # Maybe needs to be the center of the image?? grid = cc.MakeGrid( [np.int(np.ceil(out_sz[0])), np.int(np.ceil(out_sz[1])), 1], [out_sp[0], out_sp[1], 1], [out_or[0], out_or[1], 0]) return grid
def ConvertGrid(I_src_grid, I_tar_grid): '''Given a source grid and target grid, returns a grid for the source that is in the world coordinates of the target grid''' nS = np.multiply( np.divide(I_tar_grid.size().tolist(), [float(i) for i in I_src_grid.size().tolist()]), I_tar_grid.spacing().tolist()) return cc.MakeGrid(I_src_grid.size(), ca.Vec3Df(nS[0], nS[1], nS[2]), 'center')
# tmp = cc.LoadMHA(BFIdir + fname) # cc.WriteGrid(tmp.grid(), BFIdir + 'block{0}_grid.txt'.format(block)) # tmp = cc.LoadMHA(MRI_fname) # cc.WriteGrid(tmp.grid(), MRIdir + 'T2_grid.txt'.format(block)) # sys.exit() #BFIgrid = cc.LoadGrid(BFIdir + 'block{0}_grid.txt'.format(block)) #MRIgrid = cc.LoadGrid(MRIdir + 'T2_grid.txt'.format(block)) MRI = cc.LoadMHA(MRI_fname,ca.MEM_HOST) MRIgrid = MRI.grid() #MRIgrid = cc.MakeGrid(MRI.size(),MRI.spacing(),'center') #MRI.setGrid(MRIgrid) #BFI = cc.LoadMHA(BFIdir + 'M15_01_seg_crop_hd8.mha',ca.MEM_HOST) BFI_full = cc.LoadMHA(BFIdir + 'M15_01_hd8_VE.mha',ca.MEM_HOST) BFI = cc.SubVol(BFI_full, yrng=[146,626]) BFIgrid = cc.MakeGrid(ca.Vec3Di(480,480,2239),ca.Vec3Df(0.1185,0.1185,0.030),'center') BFI.setGrid(BFIgrid) #BFIgrid = BFI.grid() print MRIgrid print BFIgrid # print 'b4 memory', 480*480*874*4/1024./1024 *7 # 7 blocks, mem size # print 'mri memory', 256*256*256*4/1024./1024 *7 # 7 blocks, mem size # print 'mri big memory', 512*512*512*4/1024./1024 *7 # 7 blocks, mem size # print 'single mri ', 256*256*256*4/1024./1024 #landmarks = get_new_landmarks(block) # Use these landmarks for an affine ### landmarks = [[[1893.0,123.0,401.0], [187.0,135.0,202.0]], ### [[1798.0,416.0,333.0], [183.0,131.0,48.0]], ### [[892.0,222.0,251.0], [84.0,109.0,132.0]], ### [[2142.0,260.0,332.0], [217.0,114.0,125.0]],
def main(): secNum = sys.argv[1] mkyNum = sys.argv[2] region = str(sys.argv[3]) # channel = sys.argv[3] ext = 'M{0}/section_{1}/{2}/'.format(mkyNum, secNum, region) ss_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/' conf_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/' memT = ca.MEM_DEVICE try: with open( ss_dir + 'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt' .format(mkyNum, secNum), 'r') as f: region_dict = json.load(f) f.close() except IOError: region_dict = {} region_dict[region] = {} region_dict['size'] = map( int, raw_input("What is the size of the full resolution image x,y? "). split(',')) region_dict[region]['bbx'] = map( int, raw_input( "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? " ).split(',')) region_dict[region]['bby'] = map( int, raw_input( "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? " ).split(',')) if region not in region_dict: region_dict[region] = {} region_dict[region]['bbx'] = map( int, raw_input( "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? " ).split(',')) region_dict[region]['bby'] = map( int, raw_input( "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? " ).split(',')) img_region = common.LoadITKImage( ss_dir + 'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_{2}.tiff'. format(mkyNum, secNum, region), ca.MEM_HOST) ssiSrc = common.LoadITKImage( ss_dir + 'src_registration/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0.nrrd' .format(mkyNum, secNum), ca.MEM_HOST) bfi_df = common.LoadITKField( ss_dir + 'Blockface_registered/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0_to_bfi_real.mha' .format(mkyNum, secNum), ca.MEM_DEVICE) # Figure out the same region in the low resolution image: There is a transpose from here to matlab so dimensions are flipped low_sz = ssiSrc.size().tolist() yrng_raw = [(low_sz[1] * region_dict[region]['bbx'][0]) / np.float(region_dict['size'][0]), (low_sz[1] * region_dict[region]['bbx'][1]) / np.float(region_dict['size'][0])] xrng_raw = [(low_sz[0] * region_dict[region]['bby'][0]) / np.float(region_dict['size'][1]), (low_sz[0] * region_dict[region]['bby'][1]) / np.float(region_dict['size'][1])] yrng = [np.int(np.floor(yrng_raw[0])), np.int(np.ceil(yrng_raw[1]))] xrng = [np.int(np.floor(xrng_raw[0])), np.int(np.ceil(xrng_raw[1]))] low_sub = cc.SubVol(ssiSrc, xrng, yrng) # Figure out the grid for the sub region in relation to the sidescape originout = [ ssiSrc.origin().x + ssiSrc.spacing().x * xrng[0], ssiSrc.origin().y + ssiSrc.spacing().y * yrng[0], 0 ] spacingout = [ (low_sub.size().x * ssiSrc.spacing().x) / (img_region.size().x), (low_sub.size().y * ssiSrc.spacing().y) / (img_region.size().y), 1 ] gridout = cc.MakeGrid(img_region.size().tolist(), spacingout, originout) img_region.setGrid(gridout) only_sub = np.zeros(ssiSrc.size().tolist()[0:2]) only_sub[xrng[0]:xrng[1], yrng[0]:yrng[1]] = np.squeeze(low_sub.asnp()) only_sub = common.ImFromNPArr(only_sub) only_sub.setGrid(ssiSrc.grid()) # Deform the only sub region to only_sub.toType(ca.MEM_DEVICE) def_sub = ca.Image3D(bfi_df.grid(), bfi_df.memType()) cc.ApplyHReal(def_sub, only_sub, bfi_df) def_sub.toType(ca.MEM_HOST) # Now have to find the bounding box in the deformation space (bfi space) if 'deformation_bbx' not in region_dict[region]: bb_def = np.squeeze(pp.LandmarkPicker([np.squeeze(def_sub.asnp())])) bb_def_y = [bb_def[0][0], bb_def[1][0]] bb_def_x = [bb_def[0][1], bb_def[1][1]] region_dict[region]['deformation_bbx'] = bb_def_x region_dict[region]['deformation_bby'] = bb_def_y with open( ss_dir + 'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt' .format(mkyNum, secNum), 'w') as f: json.dump(region_dict, f) f.close() # Now need to extract the region and create a deformation and image that have the same resolution as the img_region deform_sub = cc.SubVol(bfi_df, region_dict[region]['deformation_bbx'], region_dict[region]['deformation_bby']) common.DebugHere() sizeout = [ int( np.ceil((deform_sub.size().x * deform_sub.spacing().x) / img_region.spacing().x)), int( np.ceil((deform_sub.size().y * deform_sub.spacing().y) / img_region.spacing().y)), 1 ] region_grid = cc.MakeGrid(sizeout, img_region.spacing().tolist(), deform_sub.origin().tolist()) def_im_region = ca.Image3D(region_grid, deform_sub.memType()) up_deformation = ca.Field3D(region_grid, deform_sub.memType()) img_region.toType(ca.MEM_DEVICE) cc.ResampleWorld(up_deformation, deform_sub, ca.BACKGROUND_STRATEGY_PARTIAL_ZERO) cc.ApplyHReal(def_im_region, img_region, up_deformation) ss_out = ss_dir + 'Blockface_registered/M{0}/section_{1}/{2}/'.format( mkyNum, secNum, region) if not pth.exists(pth.expanduser(ss_out)): os.mkdir(pth.expanduser(ss_out)) common.SaveITKImage( def_im_region, pth.expanduser(ss_out) + 'M{0}_01_section_{1}_{2}_def_to_bfi.nrrd'.format( mkyNum, secNum, region)) common.SaveITKImage( def_im_region, pth.expanduser(ss_out) + 'M{0}_01_section_{1}_{2}_def_to_bfi.tiff'.format( mkyNum, secNum, region)) del img_region, def_im_region, ssiSrc, deform_sub # Now apply the same deformation to the confocal images conf_grid = cc.LoadGrid( conf_dir + 'sidelight_registered/M{0}/section_{1}/{2}/affine_registration_grid.txt' .format(mkyNum, secNum, region)) cf_out = conf_dir + 'blockface_registered/M{0}/section_{1}/{2}/'.format( mkyNum, secNum, region) # confocal.toType(ca.MEM_DEVICE) # def_conf = ca.Image3D(region_grid, deform_sub.memType()) # cc.ApplyHReal(def_conf, confocal, up_deformation) for channel in range(0, 4): z_stack = [] num_slices = len( glob.glob(conf_dir + 'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/*.tiff'. format(mkyNum, secNum, channel, region))) for z in range(0, num_slices): src_im = common.LoadITKImage( conf_dir + 'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/M{0}_01_section_{1}_LGN_RHS_Ch{2}_conf_aff_sidelight_z{4}.tiff' .format(mkyNum, secNum, channel, region, str(z).zfill(2))) src_im.setGrid( cc.MakeGrid( ca.Vec3Di(conf_grid.size().x, conf_grid.size().y, 1), conf_grid.spacing(), conf_grid.origin())) src_im.toType(ca.MEM_DEVICE) def_im = ca.Image3D(region_grid, ca.MEM_DEVICE) cc.ApplyHReal(def_im, src_im, up_deformation) def_im.toType(ca.MEM_HOST) common.SaveITKImage( def_im, cf_out + 'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.tiff' .format(mkyNum, secNum, channel, region, str(z).zfill(2))) if z == 0: common.SaveITKImage( def_im, cf_out + 'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.nrrd' .format(mkyNum, secNum, channel, region, str(z).zfill(2))) z_stack.append(def_im) print('==> Done with Ch {0}: {1}/{2}'.format( channel, z, num_slices - 1)) stacked = cc.Imlist_to_Im(z_stack) stacked.setSpacing( ca.Vec3Df(region_grid.spacing().x, region_grid.spacing().y, conf_grid.spacing().z)) common.SaveITKImage( stacked, cf_out + 'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_stack.nrrd' .format(mkyNum, secNum, channel, region)) if channel == 0: cc.WriteGrid( stacked.grid(), cf_out + 'deformed_registration_grid.txt'.format( mkyNum, secNum, region))
# for a in folderList: # print a #Load in the T2 image and downsample it to the resolution of the DW images #### T2_list = sorted(glob.glob(indir + 'T2DICOM_scan26/*')) refIm = dicom.read_file(T2_list[0]) PixelDims = (int(refIm.Rows), int(refIm.Columns), len(T2_list)) # PixelSpacing = (0.5,0.5,0.5) T2Array = np.zeros(PixelDims, dtype=refIm.pixel_array.dtype) for filename in T2_list: ds = dicom.read_file(filename) T2Array[:, :, T2_list.index(filename)] = ds.pixel_array T2MRI = common.ImFromNPArr(T2Array) T2MRI.setGrid(cc.MakeGrid(T2MRI.grid().size(), 0.5)) T2MRI.toType(ca.MEM_DEVICE) #Swap the axis of the images so they align with the gradient directions T2MRI = cc.SwapAxes(T2MRI, 0, 1) T2MRI = cc.SwapAxes(T2MRI, 0, 2) T2MRI = cc.FlipDim(T2MRI, 2) # T2MRI = cc.FlipDim(T2MRI,2) DWIgrid = cc.MakeGrid([120, 144, 120], 0.5, [0, 0, 0]) down_T2 = ca.Image3D(DWIgrid, ca.MEM_DEVICE) ca.Resample(down_T2, T2MRI) #### #Display the list # cc.WriteMHA(down_T2,outdir + 'Images/T2_downSample_to_DWImha')
MRI_VE = ca.Image3D(grid2D, MRI.memType()) ca.Copy(MRI_VE, MRI) ca.Copy(BFI_VE, BFI) cc.SetRegionLTE(MRI_VE, MRI, 0.13, 1) MRI_VE *= -1 square = ca.Image3D(grid2D, BFI.memType()) cc.CreateRect(square, [0, 0], [440, 440]) BFI_VE *= square cc.VarianceEqualize_I(BFI_VE, sigma=5.0) cc.VarianceEqualize_I(MRI_VE, sigma=5.0) grid_orig = BFI_VE.grid().copy() grid_new = cc.MakeGrid(grid_orig.size(), [1, 1, 1], 'center') BFI_VE.setGrid(grid_new) MRI_VE.setGrid(grid_new) BFI_VE_def = ca.Image3D(grid_new, BFI_VE.memType()) # do rigid reg first # A = AffineReg(BFI_VE, MRI_VE, constraint='rigid', plot=debug) A = AffineReg(BFI_VE, MRI_VE, plot=debug, maxIter=400, verbose=0)[1] cc.ApplyAffineReal(BFI_VE_def, BFI_VE, A) # cd.DispImage(BFI_VE_def) # cd.DispImage(MRI_VE) # hA = ca.Field3D(BFI_VE.grid(), BFI_VE.memType()) # cc.AtoH(hA, A) # cd.DispHGrid(hA, splat=False) # sys.exit()
############################# imagedir = '/home/sci/crottman/korenberg/results/' + reg_type + '/' if reg_type in ['landmark', 've_reg']: fname_end = '_as_MRI_' + col + '.mha' else: fname_end = '_as_MRI_' + col + '_' + str(sz) + '.mha' if sz >= 512: mType = ca.MEM_HOST else: mType = ca.MEM_DEVICE if reg_type is not 'best': grid = cc.MakeGrid([sz, sz, sz], [256.0 / sz, 256.0 / sz, 256.0 / sz], 'center') blocks = ca.Field3D(grid, mType) ca.SetMem(blocks, 0.0) weights = blocks.copy() ca.SetMem(weights, 0.0) for i in xrange(1, 5): fname = imagedir + 'block' + str(i) + fname_end try: blk = cc.LoadMHA(fname, mType) except IOError: print 'Warning... block ' + str(i) + ' does not exist' continue blocks += blk weight3 = blk.copy() try:
def main(): # Extract the Monkey number and section number from the command line global frgNum global secOb mkyNum = sys.argv[1] secNum = sys.argv[2] frgNum = int(sys.argv[3]) write = True # if not os.path.exists(os.path.expanduser('~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'.format(mkyNum,secNum))): # cf = initial(secNum, mkyNum) try: secOb = Config.Load( secSpec, pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum))) except IOError as e: try: temp = Config.LoadYAMLDict(pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum)), include=False) secOb = Config.MkConfig(temp, secSpec) except IOError: print 'It appears there is no configuration file for this section. Please initialize one and restart.' sys.exit() if frgNum == int(secOb.yamlList[frgNum][-6]): Fragmenter() try: secOb = Config.Load( secSpec, pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum))) except IOError: print 'It appeas that the include yaml file list does not match your fragmentation number. Please check them and restart.' sys.exit() if not pth.exists( pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))): common.Mkdir_p( pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))): common.Mkdir_p( pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))): os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))): os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))) frgOb = Config.MkConfig(secOb.yamlList[frgNum], frgSpec) ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(frgOb, ca.MEM_HOST) #Extract the saturation Image from the color iamge bfiHsv = common.FieldFromNPArr( matplotlib.colors.rgb_to_hsv( np.rollaxis(np.array(np.squeeze(bfiSrc.asnp())), 0, 3)), ca.MEM_HOST) bfiHsv.setGrid(bfiSrc.grid()) bfiSat = ca.Image3D(bfiSrc.grid(), bfiHsv.memType()) ca.Copy(bfiSat, bfiHsv, 1) #Histogram equalize, normalize and mask the blockface saturation image bfiSat = cb.HistogramEqualize(bfiSat, 256) bfiSat.setGrid(bfiSrc.grid()) bfiSat *= -1 bfiSat -= ca.Min(bfiSat) bfiSat /= ca.Max(bfiSat) bfiSat *= bfiMsk bfiSat.setGrid(bfiSrc.grid()) #Write out the blockface region after adjusting the colors with a format that supports header information if write: common.SaveITKImage( bfiSat, pth.expanduser(secOb.bfiSrcPath + 'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_sat.nrrd'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Set the sidescape grid relative to that of the blockface ssiSrc.setGrid(ConvertGrid(ssiSrc.grid(), bfiSat.grid())) ssiMsk.setGrid(ConvertGrid(ssiMsk.grid(), bfiSat.grid())) ssiSrc *= ssiMsk #Write out the sidescape masked image in a format that stores the header information if write: common.SaveITKImage( ssiSrc, pth.expanduser(secOb.ssiSrcPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}.nrrd'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Update the image parameters of the sidescape image for future use frgOb.imSize = ssiSrc.size().tolist() frgOb.imOrig = ssiSrc.origin().tolist() frgOb.imSpac = ssiSrc.spacing().tolist() updateFragOb(frgOb) #Find the affine transform between the two fragments bfiAff, ssiAff, aff = Affine(bfiSat, ssiSrc, frgOb) updateFragOb(frgOb) #Write out the affine transformed images in a format that stores header information if write: common.SaveITKImage( bfiAff, pth.expanduser( secOb.bfiOutPath + 'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_aff_ssi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) common.SaveITKImage( ssiAff, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_aff_bfi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) bfiVe = bfiAff.copy() ssiVe = ssiSrc.copy() cc.VarianceEqualize_I(bfiVe, sigma=frgOb.sigVarBfi, eps=frgOb.epsVar) cc.VarianceEqualize_I(ssiVe, sigma=frgOb.sigVarSsi, eps=frgOb.epsVar) #As of right now, the largest pre-computed FFT table is 2048, so resample onto that grid for registration regGrd = ConvertGrid( cc.MakeGrid(ca.Vec3Di(2048, 2048, 1), ca.Vec3Df(1, 1, 1), ca.Vec3Df(0, 0, 0)), ssiSrc.grid()) ssiReg = ca.Image3D(regGrd, ca.MEM_HOST) bfiReg = ca.Image3D(regGrd, ca.MEM_HOST) cc.ResampleWorld(ssiReg, ssiVe) cc.ResampleWorld(bfiReg, bfiVe) #Create the default configuration object for IDiff Matching and then set some parameters idCf = Config.SpecToConfig(IDiff.Matching.MatchingConfigSpec) idCf.compute.useCUDA = True idCf.io.outputPrefix = '/home/sci/blakez/IDtest/' #Run the registration ssiDef, phi = DefReg(ssiReg, bfiReg, frgOb, ca.MEM_DEVICE, idCf) #Turn the deformation into a displacement field so it can be applied to the large tif with C++ code affV = phi.copy() cc.ApplyAffineReal(affV, phi, np.linalg.inv(frgOb.affine)) ca.HtoV_I(affV) #Apply the found deformation to the input ssi ssiSrc.toType(ca.MEM_DEVICE) cc.HtoReal(phi) affPhi = phi.copy() ssiBfi = ssiSrc.copy() upPhi = ca.Field3D(ssiSrc.grid(), phi.memType()) cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine)) cc.ResampleWorld(upPhi, affPhi, bg=2) cc.ApplyHReal(ssiBfi, ssiSrc, upPhi) # ssiPhi = ca.Image3D(ssiSrc.grid(), phi.memType()) # upPhi = ca.Field3D(ssiSrc.grid(), phi.memType()) # cc.ResampleWorld(upPhi, phi, bg=2) # cc.ApplyHReal(ssiPhi, ssiSrc, upPhi) # ssiBfi = ssiSrc.copy() # cc.ApplyAffineReal(ssiBfi, ssiPhi, np.linalg.inv(frgOb.affine)) # #Apply affine to the deformation # affPhi = phi.copy() # cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine)) if write: common.SaveITKImage( ssiBfi, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_def_bfi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) cc.WriteMHA( affPhi, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_real.mha'. format(frgNum, secOb.mkyNum, secOb.secNum))) cc.WriteMHA( affV, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_disp.mha'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Create the list of names that the deformation should be applied to # nameList = ['M15_01_0956_SideLight_DimLED_10x_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c1_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c2_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c3_ORG.tif'] # appLarge(nameList, affPhi) common.DebugHere()