Esempio n. 1
0
def setAdjointSimulationProperties(histories, time, elastic_mode,
                                   elastic_sampling_method):

    properties = MonteCarlo.SimulationProperties()

    ## -------------------------- GENERAL PROPERTIES -------------------------- ##

    # Set the particle mode
    properties.setParticleMode(MonteCarlo.ADJOINT_ELECTRON_MODE)

    # Set the number of histories
    properties.setNumberOfHistories(histories)

    # Set the minimum number of rendezvous
    if histories > 100:
        properties.setMinNumberOfRendezvous(10)

    # Change time from minutes to seconds
    time_sec = time * 60

    # Set the wall time
    properties.setSimulationWallTime(time_sec)

    ## ---------------------- ADJOINT NEUTRON PROPERTIES ---------------------- ##

    ## ---------------------- ADJOINT PHOTON PROPERTIES ----------------------- ##

    ## --------------------- ADJOINT ELECTRON PROPERTIES ---------------------- ##

    # Set the min electron energy in MeV (Default is 100 eV)
    properties.setMinAdjointElectronEnergy(1e-4)

    # Set the max electron energy in MeV (Default is 20 MeV)
    properties.setMaxAdjointElectronEnergy(20.0)

    # Set the electron evaluation tolerance (Default is 1e-6)
    properties.setAdjointElectronEvaluationTolerance(1e-6)

    ## --- Adjoint Elastic Properties ---

    # Set the elastic distribution mode ( DECOUPLED, COUPLED, HYBRID )
    properties.setAdjointElasticElectronDistributionMode(elastic_mode)

    # Set the elastic coupled sampling method
    # ( TWO_D_UNION, ONE_D_UNION, MODIFIED_TWO_D_UNION )
    properties.setAdjointCoupledElasticSamplingMode(elastic_sampling_method)

    # Set the elastic cutoff angle cosine ( -1.0 < mu < 1.0 )
    properties.setAdjointElasticCutoffAngleCosine(1.0)

    return properties
def restartBroomstickSimulation( rendezvous_file_name,
                                 db_path,
                                 num_particles,
                                 threads,
                                 log_file = None,
                                 num_rendezvous = None ):

    ## Initialize the MPI session
    session = MPI.GlobalMPISession( len(sys.argv), sys.argv )

    # Suppress logging on all procs except for the master (proc=0)
    Utility.removeAllLogs()
    session.initializeLogs( 0, True )

    if not log_file is None:
        session.initializeLogs( log_file, 0, True )

    # Set the database path
    Collision.FilledGeometryModel.setDefaultDatabasePath( db_path )

    if not num_rendevous is None:
        new_simulation_properties = MonteCarlo.SimulationGeneralProperties()
        new_simulation_properties.setNumberOfHistories( int(num_particles) )
        new_simulation_properties.setMinNumberOfRendezvous( int(num_rendezvous) )

        factory = Manager.ParticleSimulationManagerFactory( rendezvous_file_name,
                                                            new_simulation_properties,
                                                            threads )
    else:
        factory = Manger.ParticleSimulationManagerFactory( rendezvous_file_name,
                                                           int(num_particles),
                                                           threads )
    
    manager = factory.getManager()

    # Allow logging on all procs
    session.restoreOutputStreams()

    ## Run the simulation
    if session.size() == 1:
        manager.runInterruptibleSimulation()
    else:
        manager.runSimulation()
def runBroomstickSimulation(sim_name,
                            db_path,
                            num_particles,
                            incoherent_model_type,
                            source_energy,
                            energy_bins,
                            threads,
                            log_file=None):

    ## Initialize the MPI session
    session = MPI.GlobalMPISession(len(sys.argv), sys.argv)

    # Suppress logging on all procs except for the master (proc=0)
    Utility.removeAllLogs()
    session.initializeLogs(0, True)

    if not log_file is None:
        session.initializeLogs(log_file, 0, True)

    ## Set the simulation properties
    simulation_properties = MonteCarlo.SimulationProperties()

    # Simulate photons only
    simulation_properties.setParticleMode(MonteCarlo.PHOTON_MODE)
    simulation_properties.setIncoherentModelType(incoherent_model_type)
    simulation_properties.setNumberOfPhotonHashGridBins(100)

    # Set the number of histories to run and the number of rendezvous
    simulation_properties.setNumberOfHistories(num_particles)
    simulation_properties.setMinNumberOfRendezvous(100)
    simulation_properties.setNumberOfSnapshotsPerBatch(1)

    ## Set up the materials
    database = Data.ScatteringCenterPropertiesDatabase(db_path)

    # Extract the properties for H from the database
    atom_properties = database.getAtomProperties(Data.ZAID(82000))

    # Set the definition for H for this simulation
    scattering_center_definitions = Collision.ScatteringCenterDefinitionDatabase(
    )
    atom_definition = scattering_center_definitions.createDefinition(
        "Pb", Data.ZAID(82000))

    if incoherent_model_type == MonteCarlo.IMPULSE_INCOHERENT_MODEL or incoherent_model_type == MonteCarlo.FULL_PROFILE_DB_IMPULSE_INCOHERENT_MODEL:
        atom_definition.setPhotoatomicDataProperties(
            atom_properties.getSharedPhotoatomicDataProperties(
                Data.PhotoatomicDataProperties.Native_EPR_FILE, 0))
    else:
        atom_definition.setPhotoatomicDataProperties(
            atom_properties.getSharedPhotoatomicDataProperties(
                Data.PhotoatomicDataProperties.ACE_EPR_FILE, 12))

    # Set the definition for material 1
    material_definitions = Collision.MaterialDefinitionDatabase()
    material_definitions.addDefinition("Pb", 1, ["Pb"], [1.0])

    ## Set up the geometry
    model_properties = DagMC.DagMCModelProperties("broomstick.h5m")
    model_properties.setMaterialPropertyName("mat")
    model_properties.setDensityPropertyName("rho")
    model_properties.setTerminationCellPropertyName("termination.cell")
    model_properties.setSurfaceFluxName("surface.flux")
    model_properties.setSurfaceCurrentName("surface.current")
    model_properties.useFastIdLookup()

    # Load the model
    model = DagMC.DagMCModel(model_properties)

    # Fill the model with the defined material
    filled_model = Collision.FilledGeometryModel(
        db_path, scattering_center_definitions, material_definitions,
        simulation_properties, model, True)

    ## Set up the source
    particle_distribution = ActiveRegion.StandardParticleDistribution(
        "mono-directional mono-energetic dist")

    particle_distribution.setEnergy(source_energy)
    particle_distribution.setPosition(0.0, 0.0, -500.1)
    particle_distribution.setDirection(0.0, 0.0, 1.0)
    particle_distribution.constructDimensionDistributionDependencyTree()

    # The generic distribution will be used to generate photons
    photon_distribution = ActiveRegion.StandardPhotonSourceComponent(
        0, 1.0, model, particle_distribution)

    # Assign the photon source component to the source
    source = ActiveRegion.StandardParticleSource([photon_distribution])

    ## Set up the event handler
    event_handler = Event.EventHandler(model, simulation_properties)

    # Set the energy and collision number bins in estimator 1
    event_handler.getEstimator(1).setEnergyDiscretization(energy_bins)
    event_handler.getEstimator(1).setCollisionNumberDiscretization([0, 1, 10])

    # Set the energy and collision number bins in estimator 2
    event_handler.getEstimator(2).setEnergyDiscretization(energy_bins)
    event_handler.getEstimator(2).setCollisionNumberDiscretization([0, 1, 10])

    ## Set up the simulation manager
    factory = Manager.ParticleSimulationManagerFactory(filled_model, source,
                                                       event_handler,
                                                       simulation_properties,
                                                       sim_name, "xml",
                                                       threads)

    # Create the simulation manager
    manager = factory.getManager()
    manager.useSingleRendezvousFile()

    # Allow logging on all procs
    session.restoreOutputStreams()

    ## Run the simulation
    if session.size() == 1:
        manager.runInterruptibleSimulation()
    else:
        manager.runSimulation()
Esempio n. 4
0
def sphereSimulation(sim_name,
                     db_path,
                     num_particles,
                     source_energy,
                     energy_bins,
                     threads,
                     log_file=None):
    ##---------------------------------------------------------------------------##
    ## Initialize the MPI Session
    ##---------------------------------------------------------------------------##

    session = MPI.GlobalMPISession(len(sys.argv), sys.argv)

    # Suppress logging on all procs except for the master (proc=0)
    Utility.removeAllLogs()
    session.initializeLogs(0, True)

    if not log_file is None:
        session.initializeLogs(log_file, 0, True)

##---------------------------------------------------------------------------##
## Set the simulation properties
##---------------------------------------------------------------------------##

    simulation_properties = MonteCarlo.SimulationProperties()

    # Simulate neutrons only
    simulation_properties.setParticleMode(MonteCarlo.NEUTRON_MODE)
    simulation_properties.setUnresolvedResonanceProbabilityTableModeOff()
    simulation_properties.setNumberOfNeutronHashGridBins(100)

    # Set the number of histories to run and the number of rendezvous
    simulation_properties.setNumberOfHistories(num_particles)
    simulation_properties.setMinNumberOfRendezvous(10)

    ##---------------------------------------------------------------------------##
    ## Set up the materials
    ##---------------------------------------------------------------------------##

    # Load the database
    database = Data.ScatteringCenterPropertiesDatabase(db_path)

    # Set the definition of H1 for this simulation
    scattering_center_definitions = Collision.ScatteringCenterDefinitionDatabase(
    )

    # Extract the properties for H1 from the database
    nuclide_properties = database.getNuclideProperties(Data.ZAID(82204))
    nuclide_definition = scattering_center_definitions.createDefinition(
        "Pb204", Data.ZAID(82204))
    nuclide_definition.setNuclearDataProperties(
        nuclide_properties.getSharedNuclearDataProperties(
            Data.NuclearDataProperties.ACE_FILE, 8, 293.6, False))

    nuclide_properties = database.getNuclideProperties(Data.ZAID(82206))
    nuclide_definition = scattering_center_definitions.createDefinition(
        "Pb206", Data.ZAID(82206))
    nuclide_definition.setNuclearDataProperties(
        nuclide_properties.getSharedNuclearDataProperties(
            Data.NuclearDataProperties.ACE_FILE, 8, 293.6, False))

    nuclide_properties = database.getNuclideProperties(Data.ZAID(82207))
    nuclide_definition = scattering_center_definitions.createDefinition(
        "Pb207", Data.ZAID(82207))
    nuclide_definition.setNuclearDataProperties(
        nuclide_properties.getSharedNuclearDataProperties(
            Data.NuclearDataProperties.ACE_FILE, 8, 293.6, False))

    nuclide_properties = database.getNuclideProperties(Data.ZAID(82208))
    nuclide_definition = scattering_center_definitions.createDefinition(
        "Pb208", Data.ZAID(82208))
    nuclide_definition.setNuclearDataProperties(
        nuclide_properties.getSharedNuclearDataProperties(
            Data.NuclearDataProperties.ACE_FILE, 8, 293.6, False))

    material_definitions = Collision.MaterialDefinitionDatabase()
    material_definitions.addDefinition("Pb_nat", 1,
                                       ["Pb204", "Pb206", "Pb207", "Pb208"],
                                       [0.014, 0.241, 0.221, 0.524])

    ##---------------------------------------------------------------------------##
    ## Set up the geometry
    ##---------------------------------------------------------------------------##

    # Set the model properties before loading the model
    model_properties = DagMC.DagMCModelProperties("sphere.h5m")
    model_properties.setMaterialPropertyName("mat")
    model_properties.setDensityPropertyName("rho")
    model_properties.setTerminationCellPropertyName("termination.cell")
    model_properties.setSurfaceFluxName("surface.flux")
    model_properties.setSurfaceCurrentName("surface.current")
    model_properties.useFastIdLookup()

    # Load the model
    model = DagMC.DagMCModel(model_properties)

    # Fill the model with the defined materials
    filled_model = Collision.FilledGeometryModel(
        db_path, scattering_center_definitions, material_definitions,
        simulation_properties, model, True)

    ##---------------------------------------------------------------------------##
    ## Set up the source
    ##---------------------------------------------------------------------------##

    # Define the generic particle distribution
    particle_distribution = ActiveRegion.StandardParticleDistribution(
        "source distribution")

    particle_distribution.setEnergy(source_energy)
    particle_distribution.setPosition(0.0, 0.0, 0.0)
    particle_distribution.constructDimensionDistributionDependencyTree()

    # The generic distribution will be used to generate neutrons
    neutron_distribution = ActiveRegion.StandardNeutronSourceComponent(
        0, 1.0, model, particle_distribution)

    # Assign the neutron source component to the source
    source = ActiveRegion.StandardParticleSource([neutron_distribution])

    ##---------------------------------------------------------------------------##
    ## Set up the event handler
    ##---------------------------------------------------------------------------##

    # The model must be passed to the event handler so that the estimators
    # defined in the model can be constructed
    event_handler = Event.EventHandler(model, simulation_properties)

    # Set the energy and collision number bins in estimator 1
    event_handler.getEstimator(1).setEnergyDiscretization(energy_bins)

    # Set the energy and collision number bins in estimator 2
    event_handler.getEstimator(2).setEnergyDiscretization(energy_bins)

    ##---------------------------------------------------------------------------##
    ## Set up the simulation manager
    ##---------------------------------------------------------------------------##

    # The factory will use the simulation properties and the MPI session
    # properties to determine the appropriate simulation manager to construct
    factory = Manager.ParticleSimulationManagerFactory(filled_model, source,
                                                       event_handler,
                                                       simulation_properties,
                                                       sim_name, "xml",
                                                       threads)

    # Create the simulation manager
    manager = factory.getManager()

    # Allow logging on all procs
    session.restoreOutputStreams()

    ##---------------------------------------------------------------------------##
    ## Run the simulation
    ##---------------------------------------------------------------------------##

    if session.size() == 1:
        manager.runInterruptibleSimulation()
    else:
        manager.runSimulation()
Esempio n. 5
0
##---------------------------------------------------------------------------##

session = MPI.GlobalMPISession(len(sys.argv), sys.argv)

# Suppress logging on all procs except for the master (proc=0)
Utility.removeAllLogs()
session.initializeLogs(0, True)

if not log_file is None:
    session.initializeLogs(log_file, 0, True)

##---------------------------------------------------------------------------##
## Set the simulation properties
##---------------------------------------------------------------------------##

simulation_properties = MonteCarlo.SimulationProperties()

# Simulate neutrons only
simulation_properties.setParticleMode(MonteCarlo.NEUTRON_MODE)
simulation_properties.setUnresolvedResonanceProbabilityTableModeOff()
simulation_properties.setNumberOfNeutronHashGridBins(100)

# Set the number of histories to run and the number of rendezvous
simulation_properties.setNumberOfHistories(num_particles)
simulation_properties.setMinNumberOfRendezvous(10)

##---------------------------------------------------------------------------##
## Set up the materials
##---------------------------------------------------------------------------##

# Load the database
Esempio n. 6
0
            coupled_react = Electron.createCoupledElasticReaction_LinLinCorrelated(
                native_data, method, 1e-15)
            # Coupled Distribution
            coupled_dist = Electron.createCoupledElasticDistribution_LinLinCorrelated(
                native_data, method, 1e-15)
            # Decoupled Reaction
            decoupled_react = Electron.createDecoupledElasticReaction_LinLinCorrelated(
                native_data, 1e-15)
            # Cutoff Distribution
            cutoff_dist = Electron.createCutoffElasticDistribution_LinLinCorrelated(
                native_data, 0.999999, 1e-15)

        print "\n----- ", method, " -----\n"

        n = 100
        electron = MonteCarlo.ElectronState(0)
        bank = MonteCarlo.ParticleBank()

        for energy in energies:
            fig, ax = plt.subplots()

            print "\t -- React 256 keV--"
            energy0 = 0.256
            electron.setEnergy(energy0)
            sampling_ratio = decoupled_react.getSamplingRatio(energy0)
            print "sampling_ratio = ", sampling_ratio
            random_numbers = [0.0] * 2 * n
            if sampling_ratio > 0.5:
                cdf1 = numpy.linspace(0.5, sampling_ratio - 1e-15, n / 2)
                cdf2 = numpy.linspace(sampling_ratio + 1e-15, 1.0 - 1e-15,
                                      n / 2)
Esempio n. 7
0
def runAdjointSimulation( sim_name,
                          db_path,
                          geom_name,
                          num_particles,
                          incoherent_model_type,
                          threads,
                          use_energy_bins = False,
                          log_file= None ):

    ## Initialize the MPI session
    session = MPI.GlobalMPISession( len(sys.argv), sys.argv )

    # Suppress logging on all procs except for the master (proc=0)
    Utility.removeAllLogs()
    session.initializeLogs( 0, True )

    if not log_file is None:
        session.initializeLogs( log_file, 0, True )

    ## Set the simulation properties
    simulation_properties = MonteCarlo.SimulationProperties()

    # Simulate photons only
    simulation_properties.setParticleMode( MonteCarlo.ADJOINT_PHOTON_MODE )
    simulation_properties.setIncoherentAdjointModelType( incoherent_model_type )
    simulation_properties.setMinAdjointPhotonEnergy( 1e-3 )
    
    if incoherent_model_type == MonteCarlo.DB_IMPULSE_INCOHERENT_ADJOINT_MODEL:
        simulation_properties.setMaxAdjointPhotonEnergy( energy_bins[-1]*1.5 )
    else:
        simulation_properties.setMaxAdjointPhotonEnergy( energy_bins[-1] )

    
    simulation_properties.setCriticalAdjointPhotonLineEnergies( [0.186211, 0.241995, 0.2656, 0.2952228, 0.3046, 0.3519321, 0.60932, 0.6496, 0.665447, 0.76836,  0.78596, 0.80618, 0.934056, 1.120294, 1.15521, 1.238122, 1.280976, 1.377669, 1.401515, 1.407988, 1.50921, 1.661274, 1.729595, 1.764491, 1.847429, 2.118514, 2.204059, 2.44770] )
    simulation_properties.setAdjointPhotonRouletteThresholdWeight( 0.0025 )
    simulation_properties.setAdjointPhotonRouletteSurvivalWeight(  0.005 )
    simulation_properties.setNumberOfAdjointPhotonHashGridBins( 100 )

    # Set the number of histories to run and the number of rendezvous
    simulation_properties.setNumberOfHistories( num_particles )
    simulation_properties.setMinNumberOfRendezvous( 100 )
    simulation_properties.setNumberOfSnapshotsPerBatch( 1 )

    ## Set up the materials
    database = Data.ScatteringCenterPropertiesDatabase( db_path )

    # Extract the properties from the database
    c_atom_properties = database.getAtomProperties( Data.ZAID(6000) )
    n_atom_properties = database.getAtomProperties( Data.ZAID(7000) )
    o_atom_properties = database.getAtomProperties( Data.ZAID(8000) )
    na_atom_properties = database.getAtomProperties( Data.ZAID(11000) )
    mg_atom_properties = database.getAtomProperties( Data.ZAID(12000) )
    al_atom_properties = database.getAtomProperties( Data.ZAID(13000) )
    si_atom_properties = database.getAtomProperties( Data.ZAID(14000) )
    ar_atom_properties = database.getAtomProperties( Data.ZAID(18000) )
    k_atom_properties = database.getAtomProperties( Data.ZAID(19000) )
    ca_atom_properties = database.getAtomProperties( Data.ZAID(20000) )
    ti_atom_properties = database.getAtomProperties( Data.ZAID(22000) )
    mn_atom_properties = database.getAtomProperties( Data.ZAID(25000) )
    fe_atom_properties = database.getAtomProperties( Data.ZAID(26000) )

    # Set the atom definitions
    scattering_center_definitions = Collision.ScatteringCenterDefinitionDatabase()

    c_atom_definition = scattering_center_definitions.createDefinition( "C", Data.ZAID(6000) )
    n_atom_definition = scattering_center_definitions.createDefinition( "N", Data.ZAID(7000) )
    o_atom_definition = scattering_center_definitions.createDefinition( "O", Data.ZAID(8000) )
    na_atom_definition = scattering_center_definitions.createDefinition( "Na", Data.ZAID(11000) )
    mg_atom_definition = scattering_center_definitions.createDefinition( "Mg", Data.ZAID(12000) )
    al_atom_definition = scattering_center_definitions.createDefinition( "Al", Data.ZAID(13000) )
    si_atom_definition = scattering_center_definitions.createDefinition( "Si", Data.ZAID(14000) )
    ar_atom_definition = scattering_center_definitions.createDefinition( "Ar", Data.ZAID(18000) )
    k_atom_definition = scattering_center_definitions.createDefinition( "K", Data.ZAID(19000) )
    ca_atom_definition = scattering_center_definitions.createDefinition( "Ca", Data.ZAID(20000) )
    ti_atom_definition = scattering_center_definitions.createDefinition( "Ti", Data.ZAID(22000) )
    mn_atom_definition = scattering_center_definitions.createDefinition( "Mn", Data.ZAID(25000) )
    fe_atom_definition = scattering_center_definitions.createDefinition( "Fe", Data.ZAID(26000) )

    data_file_type = Data.AdjointPhotoatomicDataProperties.Native_EPR_FILE
    file_version = 0

    c_atom_definition.setAdjointPhotoatomicDataProperties( c_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    n_atom_definition.setAdjointPhotoatomicDataProperties( n_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    o_atom_definition.setAdjointPhotoatomicDataProperties( o_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    na_atom_definition.setAdjointPhotoatomicDataProperties( na_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    mg_atom_definition.setAdjointPhotoatomicDataProperties( mg_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    al_atom_definition.setAdjointPhotoatomicDataProperties( al_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    si_atom_definition.setAdjointPhotoatomicDataProperties( si_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    ar_atom_definition.setAdjointPhotoatomicDataProperties( ar_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    k_atom_definition.setAdjointPhotoatomicDataProperties( k_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    ca_atom_definition.setAdjointPhotoatomicDataProperties( ca_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    ti_atom_definition.setAdjointPhotoatomicDataProperties( ti_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    mn_atom_definition.setAdjointPhotoatomicDataProperties( mn_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )
    fe_atom_definition.setAdjointPhotoatomicDataProperties( fe_atom_properties.getSharedAdjointPhotoatomicDataProperties( data_file_type, file_version ) )

    # Set the definition for material 1 (ave soil US from PNNL-15870 Rev1)
    material_definitions = Collision.MaterialDefinitionDatabase()
    material_definitions.addDefinition( "Soil", 1, ["O", "Na", "Mg", "Al", "Si", "K", "Ca", "Ti", "Mn", "Fe"], [0.670604, 0.005578, 0.011432, 0.053073, 0.201665, 0.007653, 0.026664, 0.002009, 0.000272, 0.021050] )
    
    material_definitions.addDefinition( "Air", 2, ["C", "N", "O", "Ar"], [0.000150, 0.784431, 0.231781, 0.004671] )

    # Set up the geometry
    model_properties = DagMC.DagMCModelProperties( geom_name )
    model_properties.setMaterialPropertyName( "mat" )
    model_properties.setDensityPropertyName( "rho" )
    model_properties.setTerminationCellPropertyName( "termination.cell" )
    model_properties.setReflectingSurfacePropertyName( "reflecting.surface" )
    model_properties.setSurfaceFluxName( "surface.flux" )
    model_properties.useFastIdLookup()

    # Load the model
    model = DagMC.DagMCModel( model_properties )

    # Fill the model with the defined material
    filled_model = Collision.FilledGeometryModel( db_path, scattering_center_definitions, material_definitions, simulation_properties, model, True )

    # Set up the source
    particle_distribution = ActiveRegion.StandardParticleDistribution( "isotropic point source" )

    uniform_energy = Distribution.UniformDistribution( 1e-3, energy_bins[-1] )
    energy_dimension_dist = ActiveRegion.IndependentEnergyDimensionDistribution( uniform_energy )
    particle_distribution.setDimensionDistribution( energy_dimension_dist )
    particle_distribution.setPosition( 0.0, 0.0, 5200.0 )
    particle_distribution.constructDimensionDistributionDependencyTree()

    # The generic distribution will be used to generate photons
    adjoint_photon_distribution = ActiveRegion.StandardAdjointPhotonSourceComponent( 0, 1.0, filled_model, particle_distribution )

    # Assign the photon source component to the source
    source = ActiveRegion.StandardParticleSource( [adjoint_photon_distribution] )

    ## Set up the event handler
    event_handler = Event.EventHandler( model, simulation_properties )

    # Create the discrete forward source line energy response function
    discrete_energy_response_function = ActiveRegion.EnergyParticleResponseFunction( Distribution.DiscreteDistribution( [0.186211, 0.241995, 0.2656, 0.2952228, 0.3046, 0.3519321, 0.60932, 0.6496, 0.665447, 0.76836, 0.78596, 0.80618, 0.934056, 1.120294, 1.15521, 1.238122, 1.280976, 1.377669, 1.401515, 1.407988, 1.50921, 1.661274, 1.729595, 1.764491, 1.847429, 2.118514, 2.204059, 2.44770],
                                                                                                                        [0.013622652525055947, 0.02713677292834634, 0.1908668348290806, 0.068936609755915, 0.10478963480812267, 0.13323253568461313, 0.17024573169362503, 0.012724455655272039, 0.0057297475318298504, 0.01831573116967687, 0.00396703617487893, 0.004730503514195252, 0.011627906976744184, 0.05583790540489965, 0.006111481201488011, 0.021833668909663845, 0.005366726296958854, 0.014925037986242614, 0.004977507653385827, 0.00895951377609449, 0.007971497219332189, 0.003918383844432301, 0.010770877463492038, 0.057260050448724176, 0.007578536088801728, 0.004341284870622224, 0.01842800577839986, 0.005793369810106211] ) )

    # Create the flux-to-effective dose from ICRP-116 table A.1, ISO values)
    flux_to_dose_response_function = ActiveRegion.SourceEnergyParticleResponseFunction( Distribution.TabularDistribution_LinLin( [0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.511, 0.6, 0.662, 0.8, 1.0, 1.117, 1.33, 1.5, 2.0, 3.0],
                                                                                                                                 [0.0288, 0.0560, 0.0812, 0.127, 0.158, 0.180, 0.199, 0.218, 0.239, 0.287, 0.429, 0.589, 0.932, 1.28, 1.63, 1.67, 1.97, 2.17, 2.62, 3.25, 3.60, 4.20, 4.66, 5.90, 8.08] ) )

    # Create the complete response function
    response = ActiveRegion.StandardParticleResponse( discrete_energy_response_function*flux_to_dose_response_function/1000.0 )

    source_norm = 1462129.344*(energy_bins[-1] - 1e-3)

    # Create the cell track-length flux estimator
    cell_flux_estimator = Event.WeightMultipliedCellTrackLengthFluxEstimator( 1, source_norm, [2], model )
    cell_flux_estimator.setParticleTypes( [MonteCarlo.ADJOINT_PHOTON] )
    cell_flux_estimator.setResponseFunctions( [response] )

    event_handler.addEstimator( cell_flux_estimator )

    # Create the second estimator
    if use_energy_bins:
        cell_flux_estimator_2 = Event.WeightMultipliedCellTrackLengthFluxEstimator( 2, source_norm, [2], model )
        cell_flux_estimator_2.setSourceEnergyDiscretization( energy_bins )
        cell_flux_estimator_2.setParticleTypes( [MonteCarlo.ADJOINT_PHOTON] )
        cell_flux_estimator_2.setResponseFunctions( [response] )
        
        event_handler.addEstimator( cell_flux_estimator_2 )

    # Set up the simulation manager
    factory = Manager.ParticleSimulationManagerFactory( filled_model,
                                                        source,
                                                        event_handler,
                                                        simulation_properties,
                                                        sim_name,
                                                        "xml",
                                                        threads )

    # Create the simulation manager
    manager = factory.getManager()
    manager.useSingleRendezvousFile()

    # Allow logging on all procs
    session.restoreOutputStreams()

    ## Run the simulation
    if session.size() == 1:
        manager.runInterruptibleSimulation()
    else:
        manager.runSimulation()
Esempio n. 8
0
def runForwardSimulation( sim_name,
                          db_path,
                          geom_name,
                          num_particles,
                          incoherent_model_type,
                          threads,
                          use_energy_bins = False,
                          use_native = False,
                          log_file = None,
                          enable_relax = True ):

    ## Initialize the MPI session
    session = MPI.GlobalMPISession( len(sys.argv), sys.argv )

    # Suppress logging on all procs except for the master (proc=0)
    Utility.removeAllLogs()
    session.initializeLogs( 0, True )

    if not log_file is None:
        session.initializeLogs( log_file, 0, True )

    ## Set the simulation properties
    simulation_properties = MonteCarlo.SimulationProperties()

    # Simulate photons only
    simulation_properties.setParticleMode( MonteCarlo.PHOTON_MODE )
    simulation_properties.setIncoherentModelType( incoherent_model_type )
    simulation_properties.setNumberOfPhotonHashGridBins( 100 )

    # Enable atomic relaxation
    if enable_relax:
        simulation_properties.setAtomicRelaxationModeOn( MonteCarlo.PHOTON )
    else:
        simulation_properties.setAtomicRelaxationModeOff( MonteCarlo.PHOTON )

    # Set the number of histories to run and the number of rendezvous
    simulation_properties.setNumberOfHistories( num_particles )
    simulation_properties.setMinNumberOfRendezvous( 10 )
    simulation_properties.setNumberOfSnapshotsPerBatch( 10 )

    ## Set up the materials
    database = Data.ScatteringCenterPropertiesDatabase( db_path )

    # Extract the properties from the database
    c_atom_properties = database.getAtomProperties( Data.ZAID(6000) )
    n_atom_properties = database.getAtomProperties( Data.ZAID(7000) )
    o_atom_properties = database.getAtomProperties( Data.ZAID(8000) )
    na_atom_properties = database.getAtomProperties( Data.ZAID(11000) )
    mg_atom_properties = database.getAtomProperties( Data.ZAID(12000) )
    al_atom_properties = database.getAtomProperties( Data.ZAID(13000) )
    si_atom_properties = database.getAtomProperties( Data.ZAID(14000) )
    ar_atom_properties = database.getAtomProperties( Data.ZAID(18000) )
    k_atom_properties = database.getAtomProperties( Data.ZAID(19000) )
    ca_atom_properties = database.getAtomProperties( Data.ZAID(20000) )
    ti_atom_properties = database.getAtomProperties( Data.ZAID(22000) )
    mn_atom_properties = database.getAtomProperties( Data.ZAID(25000) )
    fe_atom_properties = database.getAtomProperties( Data.ZAID(26000) )

    # Set the atom definitions
    scattering_center_definitions = Collision.ScatteringCenterDefinitionDatabase()

    c_atom_definition = scattering_center_definitions.createDefinition( "C", Data.ZAID(6000) )
    n_atom_definition = scattering_center_definitions.createDefinition( "N", Data.ZAID(7000) )
    o_atom_definition = scattering_center_definitions.createDefinition( "O", Data.ZAID(8000) )
    na_atom_definition = scattering_center_definitions.createDefinition( "Na", Data.ZAID(11000) )
    mg_atom_definition = scattering_center_definitions.createDefinition( "Mg", Data.ZAID(12000) )
    al_atom_definition = scattering_center_definitions.createDefinition( "Al", Data.ZAID(13000) )
    si_atom_definition = scattering_center_definitions.createDefinition( "Si", Data.ZAID(14000) )
    ar_atom_definition = scattering_center_definitions.createDefinition( "Ar", Data.ZAID(18000) )
    k_atom_definition = scattering_center_definitions.createDefinition( "K", Data.ZAID(19000) )
    ca_atom_definition = scattering_center_definitions.createDefinition( "Ca", Data.ZAID(20000) )
    ti_atom_definition = scattering_center_definitions.createDefinition( "Ti", Data.ZAID(22000) )
    mn_atom_definition = scattering_center_definitions.createDefinition( "Mn", Data.ZAID(25000) )
    fe_atom_definition = scattering_center_definitions.createDefinition( "Fe", Data.ZAID(26000) )

    if use_native:
        data_file_type = Data.PhotoatomicDataProperties.Native_EPR_FILE
        file_version = 0
    else:
        data_file_type = Data.PhotoatomicDataProperties.ACE_EPR_FILE
        file_version = 12

    c_atom_definition.setPhotoatomicDataProperties( c_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    n_atom_definition.setPhotoatomicDataProperties( n_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    o_atom_definition.setPhotoatomicDataProperties( o_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    na_atom_definition.setPhotoatomicDataProperties( na_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    mg_atom_definition.setPhotoatomicDataProperties( mg_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    al_atom_definition.setPhotoatomicDataProperties( al_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    si_atom_definition.setPhotoatomicDataProperties( si_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    ar_atom_definition.setPhotoatomicDataProperties( ar_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    k_atom_definition.setPhotoatomicDataProperties( k_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    ca_atom_definition.setPhotoatomicDataProperties( ca_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    ti_atom_definition.setPhotoatomicDataProperties( ti_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    mn_atom_definition.setPhotoatomicDataProperties( mn_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )
    fe_atom_definition.setPhotoatomicDataProperties( fe_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) )

    # Set the definition for material 1 (ave soil US from PNNL-15870 Rev1)
    material_definitions = Collision.MaterialDefinitionDatabase()
    material_definitions.addDefinition( "Soil", 1, ["O", "Na", "Mg", "Al", "Si", "K", "Ca", "Ti", "Mn", "Fe"], [0.670604, 0.005578, 0.011432, 0.053073, 0.201665, 0.007653, 0.026664, 0.002009, 0.000272, 0.021050] )
    
    material_definitions.addDefinition( "Air", 2, ["C", "N", "O", "Ar"], [0.000150, 0.784431, 0.231781, 0.004671] )

    # Set up the geometry
    model_properties = DagMC.DagMCModelProperties( geom_name )
    model_properties.setMaterialPropertyName( "mat" )
    model_properties.setDensityPropertyName( "rho" )
    model_properties.setTerminationCellPropertyName( "termination.cell" )
    model_properties.setReflectingSurfacePropertyName( "reflecting.surface" )
    model_properties.setSurfaceFluxName( "surface.flux" )
    model_properties.useFastIdLookup()

    # Load the model
    model = DagMC.DagMCModel( model_properties )

    # Fill the model with the defined material
    filled_model = Collision.FilledGeometryModel( db_path, scattering_center_definitions, material_definitions, simulation_properties, model, True )

    # Set up the source
    particle_distribution = ActiveRegion.StandardParticleDistribution( "contaminated soil dist" )

    decay_energy_dist = Distribution.DiscreteDistribution( [0.186211, 0.241995, 0.2656, 0.2952228, 0.3046, 0.3519321, 0.60932, 0.6496, 0.665447, 0.76836, 0.78596, 0.80618, 0.934056, 1.120294, 1.15521, 1.238122, 1.280976, 1.377669, 1.401515, 1.407988, 1.50921, 1.661274, 1.729595, 1.764491, 1.847429, 2.118514, 2.204059, 2.44770],
                                                        [3.64, 7.251, 51.0, 18.42, 28.0, 35.60, 45.49, 3.4, 1.531, 4.894, 1.06, 1.264, 3.107, 14.92, 1.633, 5.834, 1.434, 3.988, 1.330, 2.394, 2.130, 1.047, 2.878, 15.30, 2.025, 1.160, 4.924, 1.548] )
        
    energy_dimension_dist = ActiveRegion.IndependentEnergyDimensionDistribution( decay_energy_dist )
    particle_distribution.setDimensionDistribution( energy_dimension_dist )

    uniform_xy_position_dist = Distribution.UniformDistribution( -5.0, 5.0 )
    uniform_z_position_dist = Distribution.UniformDistribution( 5000, 5100 )

    x_position_dimension_dist = ActiveRegion.IndependentPrimarySpatialDimensionDistribution( uniform_xy_position_dist )
    y_position_dimension_dist = ActiveRegion.IndependentSecondarySpatialDimensionDistribution( uniform_xy_position_dist )
    z_position_dimension_dist = ActiveRegion.IndependentTertiarySpatialDimensionDistribution( uniform_z_position_dist )

    particle_distribution.setDimensionDistribution( x_position_dimension_dist )
    particle_distribution.setDimensionDistribution( y_position_dimension_dist )
    particle_distribution.setDimensionDistribution( z_position_dimension_dist )

    particle_distribution.constructDimensionDistributionDependencyTree()

    # The generic distribution will be used to generate photons
    photon_distribution = ActiveRegion.StandardPhotonSourceComponent( 0, 1.0, model, particle_distribution )

    # Assign the photon source component to the source
    source = ActiveRegion.StandardParticleSource( [photon_distribution] )

    # Set up the event handler
    event_handler = Event.EventHandler( model, simulation_properties )

    # Create the estimator response functions (flux-to-effective dose from
    # ICRP-116 table A.1, ISO values)
    flux_to_dose_dist = Distribution.TabularDistribution_LinLin( [0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.511, 0.6, 0.662, 0.8, 1.0, 1.117, 1.33, 1.5, 2.0, 3.0],
                                                                 [0.0288, 0.0560, 0.0812, 0.127, 0.158, 0.180, 0.199, 0.218, 0.239, 0.287, 0.429, 0.589, 0.932, 1.28, 1.63, 1.67, 1.97, 2.17, 2.62, 3.25, 3.60, 4.20, 4.66, 5.90, 8.08] )
    
    partial_response_function = ActiveRegion.EnergyParticleResponseFunction( flux_to_dose_dist )

    # convert from pSv to nSv
    response_function = partial_response_function / 1000.0

    response = ActiveRegion.StandardParticleResponse( response_function )

    source_norm = 1462129.344

    # Create the surface flux estimator
    surface_flux_estimator = Event.WeightMultipliedSurfaceFluxEstimator( 1, source_norm, [13], model )
    surface_flux_estimator.setParticleTypes( [MonteCarlo.PHOTON] )
    surface_flux_estimator.setCosineCutoffValue( 0.1 )
    surface_flux_estimator.setResponseFunctions( [response] )
    
    event_handler.addEstimator( surface_flux_estimator )

    # Create the second surface flux estimator
    if use_energy_bins:
        surface_flux_estimator_2 = Event.WeightMultipliedSurfaceFluxEstimator( 2, source_norm, [13], model )
        surface_flux_estimator_2.setEnergyDiscretization( energy_bins )
        surface_flux_estimator_2.setParticleTypes( [MonteCarlo.PHOTON] )
        surface_flux_estimator_2.setCosineCutoffValue( 0.1 )
        surface_flux_estimator_2.setResponseFunctions( [response] )

        event_handler.addEstimator( surface_flux_estimator_2 )

    # Set up the simulation manager
    factory = Manager.ParticleSimulationManagerFactory( filled_model,
                                                        source,
                                                        event_handler,
                                                        simulation_properties,
                                                        sim_name,
                                                        "xml",
                                                        threads )

    # Create the simulation manager
    manager = factory.getManager()
    manager.useSingleRendezvousFile()

    # Allow logging on all procs
    session.restoreOutputStreams()

    ## Run the simulation
    if session.size() == 1:
        manager.runInterruptibleSimulation()
    else:
        manager.runSimulation()
Esempio n. 9
0
def setSimulationProperties(histories, time, interpolation, grid_policy,
                            elastic_mode, elastic_sampling_method):

    properties = MonteCarlo.SimulationProperties()

    ## -------------------------- GENERAL PROPERTIES -------------------------- ##

    # Set the particle mode
    properties.setParticleMode(MonteCarlo.ELECTRON_MODE)

    # Set the number of histories
    properties.setNumberOfHistories(histories)

    # Set the minimum number of rendezvous
    if histories > 100:
        properties.setMinNumberOfRendezvous(10)

    # Change time from minutes to seconds
    time_sec = time * 60

    # Set the wall time
    properties.setSimulationWallTime(time_sec)

    ## -------------------------- NEUTRON PROPERTIES -------------------------- ##

    ## -------------------------- PHOTON PROPERTIES --------------------------- ##

    ## ------------------------- ELECTRON PROPERTIES -------------------------- ##

    # Set the min electron energy in MeV (Default is 100 eV)
    properties.setMinElectronEnergy(1e-4)

    # Set the max electron energy in MeV (Default is 20 MeV)
    properties.setMaxElectronEnergy(20.0)

    # Set the bivariate interpolation (LOGLOGLOG, LINLINLIN, LINLINLOG)
    properties.setElectronTwoDInterpPolicy(interpolation)

    # Set the bivariate Grid Policy (UNIT_BASE_CORRELATED, CORRELATED, UNIT_BASE)
    properties.setElectronTwoDGridPolicy(grid_policy)

    # Set the electron evaluation tolerance (Default is 1e-8)
    properties.setElectronEvaluationTolerance(1e-8)

    ## --- Elastic Properties ---

    # Turn elastic electron scattering off
    # properties.setElasticModeOff()

    # Set the elastic distribution mode ( DECOUPLED, COUPLED, HYBRID )
    properties.setElasticElectronDistributionMode(elastic_mode)

    # Set the elastic coupled sampling method
    # ( TWO_D_UNION, ONE_D_UNION, MODIFIED_TWO_D_UNION )
    properties.setCoupledElasticSamplingMode(elastic_sampling_method)

    # Set the elastic cutoff angle cosine ( -1.0 < mu < 1.0 )
    properties.setElasticCutoffAngleCosine(1.0)

    ## --- Electroionization Properties ---

    # Turn the electro-ionization reaction off
    # properties.setElectroionizationModeOff()

    ## --- Bremsstrahlung Properties ---

    # Turn electron bremsstrahlung reaction off
    # properties.setBremsstrahlungModeOff()

    # Set the bremsstrahlung angular distribution function
    # ( DIPOLE, TABULAR, ??? )
    properties.setBremsstrahlungAngularDistributionFunction(
        MonteCarlo.DIPOLE_DISTRIBUTION)

    ## --- Atomic Excitation Properties ---

    # Turn electron atomic excitation reaction off
    # properties.setAtomicExcitationModeOff()

    return properties