def _objfun_impl(self, x):
        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)
        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)

        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])
        DV_others = sum(x[5::4])
        if self.f_dimension == 1:
            return (DV1 + DV2 + DV_others,)
        else:
            return (DV1 + DV2 + DV_others, x[1])
Esempio n. 2
0
    def _objfun_impl(self, x):
        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            rsc, vsc = propagate_lagrangian(rsc, vsc, T[i] * DAY2SEC,
                                            self.__common_mu)
        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)

        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])
        DV_others = sum(x[5::4])
        if self.f_dimension == 1:
            return (DV1 + DV2 + DV_others, )
        else:
            return (DV1 + DV2 + DV_others, x[1])
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start, t0=epoch(x[0]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis)
        plot_planet(self.target, t0=epoch(x[0] + x[1]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            plot_kepler(rsc, vsc, T[
                        i] * DAY2SEC, self.__common_mu, N=200, color='b', legend=False, units=AU, ax=axis)
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(
            l, sol=0, color='r', legend=False, units=AU, ax=axis, N=200)
        plt.show()
        return axis
Esempio n. 4
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start,
                    t0=epoch(x[0]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axis)
        plot_planet(self.target,
                    t0=epoch(x[0] + x[1]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axis)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            plot_kepler(rsc,
                        vsc,
                        T[i] * DAY2SEC,
                        self.__common_mu,
                        N=200,
                        color='b',
                        legend=False,
                        units=AU,
                        ax=axis)
            rsc, vsc = propagate_lagrangian(rsc, vsc, T[i] * DAY2SEC,
                                            self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(l,
                     sol=0,
                     color='r',
                     legend=False,
                     units=AU,
                     ax=axis,
                     N=200)
        plt.show()
        return axis