Esempio n. 1
0
    def showGeometry(self):

        Visualization.RenderModel(self.model,
                                  text_height=0.003,
                                  deformed_shape=True,
                                  deformed_scale=40000000,
                                  render_loads=True)
Esempio n. 2
0
                     False, False, False, True, True)
truss.DefineReleases('ae', False, False, False, False, True, True, False,
                     False, False, False, True, True)

# Add nodal loads
truss.AddNodeLoad('a', 'FY', 600)
truss.AddNodeLoad('a', 'FX', 200)
truss.AddNodeLoad('a', 'FZ', -800)

# Analyze the model
truss.Analyze(False)

# Render the model
Visualization.RenderModel(truss,
                          text_height=0.2,
                          deformed_shape=True,
                          deformed_scale=1000,
                          render_loads=True)

# Print results
a = truss.GetNode('a')
b = truss.GetNode('b')
c = truss.GetNode('c')
d = truss.GetNode('d')
e = truss.GetNode('e')

print('Node b Reactions: ', b.RxnFX, b.RxnFY, b.RxnFZ, b.RxnMX, b.RxnMY,
      b.RxnMZ)
print('Node c Reactions: ', c.RxnFX, c.RxnFY, c.RxnFZ, c.RxnMX, c.RxnMY,
      c.RxnMZ)
print('Node e Reactions: ', d.RxnFX, d.RxnFY, d.RxnFZ, d.RxnMX, d.RxnMY,
Esempio n. 3
0
# Add a beam with the following properties:
# E = 29000 ksi, G = 11400 ksi, Iy = 100 in^4, Iz = 250 in^4, J = 250 in^4, A = 15 in^2
MomentFrame.AddMember("M3", "N2", "N3", 29000, 11400, 100, 250, 250, 15)

# Provide fixed supports at the bases of the columns
MomentFrame.DefineSupport("N1", True, True, True, True, True, True)
MomentFrame.DefineSupport("N4", True, True, True, True, True, True)

# Add a nodal lateral load of 50 kips at the left side of the frame
MomentFrame.AddNodeLoad("N2", "FX", 50)

# Analyze the frame
MomentFrame.Analyze()

# Display the model for viewing, with the text height 5 model units (inches) high
Visualization.RenderModel(MomentFrame, 5)

# Print the shear, moment, and deflection diagrams for member 'M3'
MomentFrame.GetMember("M3").PlotShear("Fy")
MomentFrame.GetMember("M3").PlotMoment("Mz")
MomentFrame.GetMember("M3").PlotDeflection("dy")

# Print reactions at the bottom of the frame
print("Left Support X Reaction: {Rxn:.2f} kip".format(
    Rxn=MomentFrame.GetNode("N1").RxnFX))
print("Left Support Y Reaction: {Rxn:.2f} kip".format(
    Rxn=MomentFrame.GetNode("N1").RxnFY))
print("Left Support Moment Reaction: {Rxn:.2f} kip-ft".format(
    Rxn=MomentFrame.GetNode("N1").RxnMZ))

print("Right Support X Reacton: {Rxn:.2f} kip".format(
Esempio n. 4
0
                       False)  # Not constrained for torsion at 'N2'

# Add a downward point load of 5 kips at the midspan of the beam
SimpleBeam.add_member_pt_load('M1', 'Fy', -5, 7 * 12, 'D')  # 5 kips Dead load
SimpleBeam.add_member_pt_load('M1', 'Fy', -8, 7 * 12, 'L')  # 8 kips Live load

# Add load combinations
SimpleBeam.add_load_combo('1.4D', {'D': 1.4})
SimpleBeam.add_load_combo('1.2D+1.6L', {'D': 1.2, 'L': 1.6})

# Analyze the beam and perform a statics check
SimpleBeam.analyze(check_statics=True)

Visualization.RenderModel(SimpleBeam,
                          text_height=10,
                          deformed_shape=True,
                          deformed_scale=30,
                          render_loads=True,
                          combo_name='1.2D+1.6L')

# Print the shear, moment, and deflection diagrams
SimpleBeam.Members['M1'].plot_shear('Fy', '1.2D+1.6L')
SimpleBeam.Members['M1'].plot_moment('Mz', '1.2D+1.6L')
SimpleBeam.Members['M1'].plot_deflection('dy', '1.2D+1.6L')

# Print reactions at each end of the beam
print('Left Support Reaction:', SimpleBeam.Nodes['N1'].RxnFY['1.2D+1.6L'],
      'kip')
print('Right Support Reacton:', SimpleBeam.Nodes['N2'].RxnFY['1.2D+1.6L'],
      'kip')

# Print the max/min shears and moments in the beam
Esempio n. 5
0
for i in range(num_segs):
    # Add members between nodes
    cantilever.AddMember(str(i+1), str(i+1), str(i+2), E, G, I, I, 200/12**4, 10/12**2)

# Add a fixed support at the base of the column
cantilever.DefineSupport('1', True, True, True, True, True, True)

# Add a -10 kip axial load to the top of the column
cantilever.AddNodeLoad(str(num_nodes), 'FY', -P)

# Add a 5 kip lateral load to the top of the column
cantilever.AddNodeLoad(str(num_nodes), 'FX', H)

# Render the model for visualization
Visualization.RenderModel(cantilever, 0.3)

# Perform 2nd order analysis
cantilever.Analyze_PDelta() 
# cantilever.Analyze()

# Print the moment at the base of the column
print('PyNite Calculated Moment: ', -cantilever.GetMember('1').Moment('Mz', 0.001))

# Print the deflection at the top of the column
print('PyNite Calculated Displacement: ', cantilever.GetNode(str(num_nodes)).DX*12)

# Print the AISC benchmark problem solution:
alpha = (P*L**2/(E*I))**0.5
Mmax = H*L*(math.tan(alpha)/alpha)
ymax = H*L**3/(3*E*I)*(3*(math.tan(alpha)-alpha)/alpha**3)
# Add a load combination named '1.0W' with a factor of 1.0 applied to any loads designated as 'W'
model.add_load_combo('1.0W', {'W': 1.0})

# Analyze the model
model.analyze(check_statics=True)

# +-----------------------+
# | Discussion of Results |
# +-----------------------+

# Render the wall. The quad mesh will be set to show 'Mx' results.
from PyNite import Visualization
Visualization.RenderModel(model,
                          annotation_size=mesh_size / 6,
                          deformed_shape=False,
                          combo_name='1.0W',
                          color_map='Mx',
                          render_loads=True)

# The it should be noted that the rendered contours are smoothed. Smoothing averages the corner
# stresses from every quad framing into each node. This leads to a much more accurate contour.
# An unsmoothed plot would essentially show quad center stresses at the quad element corners.

# Here are the expected results from Timoshenko's "Theory of Plates and Shells" Table 35, p. 202.
# Note that the deflection values for the PyNite solution are slightly larger, due to transverse
# shear deformations being accounted for.
D = E * t**3 / (12 * (1 - nu**2))
print('Solution from Timoshenko Table 35 for b/a = 2.0:')
print('Expected displacement: ', 0.00254 * load * width**4 / D)
print('Expected Mx at Center:', -0.0412 * load * width**2)
print('Expected Mx at Edges:', 0.0829 * load * width**2)
Esempio n. 7
0
# Provide simple supports
SimpleBeam.DefineSupport('N1', True, True, True, False, False, False)
SimpleBeam.DefineSupport('N2', True, True, True, True, False, False)

# Add a uniform load of 200 lbs/ft to the beam
SimpleBeam.AddMemberDistLoad('M1', 'Fy', -200 / 1000 / 12, -200 / 1000 / 12, 0,
                             168)

# Alternatively the following line would do apply the load to the full length of the member as well
# SimpleBeam.AddMemberDistLoad('M1', 'Fy', 200/1000/12, 200/1000/12)

# Analyze the beam
SimpleBeam.Analyze()

# Print the shear, moment, and deflection diagrams
SimpleBeam.GetMember('M1').PlotShear('Fy')
SimpleBeam.GetMember('M1').PlotMoment('Mz')
SimpleBeam.GetMember('M1').PlotDeflection('dy')

# Print reactions at each end of the beam
print('Left Support Reaction:', SimpleBeam.GetNode('N1').RxnFY, 'kip')
print('Right Support Reacton:', SimpleBeam.GetNode('N2').RxnFY, 'kip')

# Render the deformed shape of the beam magnified 100 times, with a text height of 5 inches
from PyNite import Visualization
Visualization.RenderModel(SimpleBeam,
                          text_height=5,
                          deformed_shape=True,
                          deformed_scale=100,
                          render_loads=True)
Esempio n. 8
0
meshsize = 1  # ft
load = 250  # psf

myWall = RectWall(width, height, t, E, nu, meshsize, 'Fixed', 'Fixed', 'Fixed',
                  'Fixed')
myWall.add_load(0, height, load, load)

# Analyze the wall
import cProfile
cProfile.run('myWall.analyze()', sort='cumtime')

# Render the wall. The default load combination 'Combo 1' will be displayed since we're not specifying otherwise.
# The plates will be set to show the 'Mx' results
from PyNite import Visualization
Visualization.RenderModel(myWall.fem,
                          text_height=meshsize / 6,
                          render_loads=True,
                          color_map='Mx')

# Plot the displacement contour
myWall.plot_disp()

# Plot the shear force contours
myWall.plot_forces('Qx')
myWall.plot_forces('Qy')

# Plot the moment contours
myWall.plot_forces('Mx')
myWall.plot_forces('My')
myWall.plot_forces('Mxy')

# Results from Timoshenko's "Theory of Plates and Shells" textbook
Esempio n. 9
0
# +-----------------------+
# | Discussion of Results |
# +-----------------------+

# MITC4 elements are very accurate, but there are some nuances to be aware of. They are described
# below.

# Render the wall. The default load combination 'Combo 1' will be displayed since we're not
# specifying otherwise. The quad mesh will be set to show 'Mx' results. It will be noted that the
# results are `unsmoothed` making the contour plot look "striped" like a step function. This will
# be discussed below in more detail.
from PyNite import Visualization

Visualization.RenderModel(myWall.fem,
                          text_height=meshsize / 6,
                          deformed_shape=False,
                          combo_name='Combo 1',
                          color_map='Mx',
                          render_loads=True)

# The `RectWall` class has a smoothing algorithm built into it. Let's plot a smoothed contour for
# Mx for comparison.
myWall.plot_forces('Mx')

# Essentially, smoothing averages the corner stresses from every quad framing into each node. This
# leads to a much more accurate solution. The unsmoothed plot is essentially showing quad center
# stresses at the quad element corners.

# Here are the expected results from Timoshenko's "Theory of Plates and Shells" Table 35, p. 202.
# Note that the deflection values for the PyNite solution are slightly larger, due to transverse
# shear deformations being accounted for.
D = E * t**3 / (12 * (1 - nu**2))
truss.DefineReleases('AD', False, False, False, False, True, True, \
                           False, False, False, False, True, True)
truss.DefineReleases('BC', False, False, False, False, True, True, \
                           False, False, False, False, True, True)
truss.DefineReleases('BD', False, False, False, False, True, True, \
                           False, False, False, False, True, True)
truss.DefineReleases('BE', False, False, False, False, True, True, \
                           False, False, False, False, True, True)

# Add nodal loads
truss.AddNodeLoad('A', 'FX', 10)
truss.AddNodeLoad('A', 'FY', 60)
truss.AddNodeLoad('A', 'FZ', 20)

# Analyze the model
truss.Analyze()

# Print results
print('Member BC calculated axial force: ' +
      str(truss.GetMember('BC').MaxAxial()))
print('Member BC expected axial force: 32.7 Tension')
print('Member BD calculated axial force: ' +
      str(truss.GetMember('BD').MaxAxial()))
print('Member BD expected axial force: 45.2 Tension')
print('Member BE calculated axial force: ' +
      str(truss.GetMember('BE').MaxAxial()))
print('Member BE expected axial force: 112.1 Compression')

# Render the model for viewing. The text height will be set to 50 mm.
Visualization.RenderModel(truss, 0.05)
SimpleBeam.AddMember("M1", "N1", "N2", 29000, 11400, 100, 150, 250, 20)

# Provide simple supports
SimpleBeam.DefineSupport("N1", True, True, True, False, False, False)
SimpleBeam.DefineSupport("N2", False, True, True, True, False, False)

# Add a uniform load of 200 lbs/ft to the beam
SimpleBeam.AddMemberDistLoad("M1", "Fy", 200 / 1000 / 12, 200 / 1000 / 12, 0,
                             168)

# Alternatively the following line would do apply the load to the full length of the member as well
# SimpleBeam.AddMemberDistLoad("M1", "Fy", 200/1000/12, 200/1000/12)

# Analyze the beam
SimpleBeam.Analyze()

# Print the shear, moment, and deflection diagrams
SimpleBeam.GetMember("M1").PlotShear("Fy")
SimpleBeam.GetMember("M1").PlotMoment("Mz")
SimpleBeam.GetMember("M1").PlotDeflection("dy")

# Print reactions at each end of the beam
print("Left Support Reaction: {Rxn:.2f} kip".format(
    Rxn=SimpleBeam.GetNode("N1").RxnFY))
print("Right Support Reacton: {Rxn:.2f} kip".format(
    Rxn=SimpleBeam.GetNode("N2").RxnFY))

# Render the beam for viewing with a text height of 5 inches
from PyNite import Visualization
Visualization.RenderModel(SimpleBeam, 5)
path = os.path.join(os.path.dirname(__file__), 'gridmembers.csv')
member_list = inputfiles.read_csv(path)

# Add the members to the model
for member in member_list:
    Name, iNode, jNode = member
    model.AddMember(Name, iNode, jNode, E, G, Iy, Iz, J, A)

# Import supports from file
path = os.path.join(os.path.dirname(__file__), 'gridsupports.csv')
support_list = inputfiles.read_dict_from_csv(path)
for row in support_list:
    model.DefineSupport(**row)

# Import node loads from file
path = os.path.join(os.path.dirname(__file__), 'gridnodesloads.csv')
node_loads = inputfiles.read_csv(path)
for load in node_loads:
    Node, Direction, P = load
    # Add node loads
    model.AddNodeLoad(Node, Direction, float(P))

# Analyze the model
model.Analyze(check_statics=True)

# Render the model
Visualization.RenderModel(model,
                          deformed_shape=True,
                          text_height=0.25,
                          render_loads=True)
Esempio n. 13
0
# Simple beam created by using an end release at fixed supports
# Units used in this example are inches, and kips

# Import `FEModel3D` from `PyNite`
from PyNite import FEModel3D
from PyNite import Visualization

myModel = FEModel3D()

myModel.AddNode('N1', 0, 0, 0)
myModel.AddNode('N2', 10 * 12, 0, 0)

myModel.DefineSupport('N1', True, True, True, True, True, True)
myModel.DefineSupport('N2', True, True, True, True, True, True)

myModel.AddMember('M1', 'N1', 'N2', 29000, 11400, 100, 150, 250, 10)

myModel.DefineReleases('M1', False, False, False, False, False, True, \
                             False, False, False, False, False, True)

myModel.AddMemberDistLoad('M1', 'Fy', -0.5, -0.5)

Visualization.RenderModel(myModel)

myModel.Analyze()

myModel.GetMember('M1').PlotShear('Fy')
myModel.GetMember('M1').PlotMoment('Mz')
print('Calculated moment: ' + str(myModel.GetMember('M1').MinMoment('Mz')))
print('Expected moment: ' + str(-0.5 * (10 * 12)**2 / 8))
Esempio n. 14
0
system = FEModel3D()

system.AddNode('1', 0, 0, 0)
system.AddNode('2', 30, 0, 0)
system.AddNode('3', 10, 0, 0)
system.AddNode('4', 20, 0, 0)

system.AddSpring('S1', '1', '3', 1000)
system.AddSpring('S2', '3', '4', 2000)
system.AddSpring('S3', '4', '2', 3000)

system.DefineSupport('1', True, True, True, True, True, True)
system.DefineSupport('2', True, True, True, True, True, True)

system.DefineSupport('3', False, True, True, True, True, True)
system.DefineSupport('4', False, True, True, True, True, True)

system.AddNodeLoad('4', 'FX', 5000)

system.Analyze(True)

print(system.GetNode('3').DX['Combo 1'])
print(system.GetNode('4').DX['Combo 1'])
print('')
print(system.GetNode('1').RxnFX['Combo 1'])
print(system.GetNode('2').RxnFX['Combo 1'])

from PyNite import Visualization
Visualization.RenderModel(system, text_height=0.5, deformed_shape=True,
                          deformed_scale=1)
Esempio n. 15
0
# Import `FEModel3D` from `PyNite`
from PyNite import FEModel3D
from PyNite import Visualization

myModel = FEModel3D()

myModel.AddNode('N1', 0, 0, 0)
myModel.AddNode('N2', 10 * 12, 0, 0)

myModel.DefineSupport('N1', True, True, True, True, True, True)
myModel.DefineSupport('N2', True, True, True, True, True, True)

myModel.AddMember('M1', 'N1', 'N2', 29000, 11400, 100, 150, 250, 10)

myModel.DefineReleases('M1', False, False, False, False, False, True, \
                             False, False, False, False, False, True)

myModel.AddMemberDistLoad('M1', 'Fy', -0.5, -0.5)

myModel.Analyze()

Visualization.RenderModel(myModel,
                          text_height=3,
                          deformed_shape=True,
                          deformed_scale=100,
                          render_loads=True)

myModel.GetMember('M1').PlotShear('Fy')
myModel.GetMember('M1').PlotMoment('Mz')
print('Calculated moment: ' + str(myModel.GetMember('M1').MinMoment('Mz')))
print('Expected moment: ' + str(-0.5 * (10 * 12)**2 / 8))
Esempio n. 16
0
width = 20  # ft
height = 20  # ft
nu = 0.3
meshsize = 1  # ft
load = 250  # psf

myWall = RectWall(width, height, t, E, nu, meshsize, 'Fixed', 'Fixed', 'Fixed',
                  'Fixed')
myWall.add_load(0, height, load, load)

# Analyze the wall
myWall.analyze()

# Render the wall
from PyNite import Visualization
Visualization.RenderModel(myWall.fem, meshsize / 6)

# Plot the displacement contour
myWall.plot_disp()

# Plot the shear force contours
myWall.plot_forces('Qx')
myWall.plot_forces('Qy')

# Plot the moment contours
myWall.plot_forces('Mx')
myWall.plot_forces('My')
myWall.plot_forces('Mxy')

# Results from Timoshenko's "Theory of Plates and Shells"
D = E * t**3 / (12 * (1 - nu**2))
Esempio n. 17
0
beam.AddMemberDistLoad('AB', 'Fy', -2 / 12, -2 / 12)
beam.AddMemberDistLoad('BC', 'Fy', -2 / 12, -2 / 12)
beam.AddMemberDistLoad('CD', 'Fy', -2 / 12, -2 / 12)

# Add support settlements
beam.AddNodeDisplacement('B', 'DY', -5 / 8)
beam.AddNodeDisplacement('C', 'DY', -1.5)
beam.AddNodeDisplacement('D', 'DY', -0.75)

# Analyze the beam
beam.Analyze()

# Render the beam's deformed shape
Visualization.RenderModel(beam,
                          text_height=12,
                          deformed_shape=True,
                          deformed_scale=40,
                          render_loads=True)

# Print reactions
print('Calculated Reaction at A:', beam.GetNode('A').RxnFY, 'k')
print('Calculated Reaction at B:', beam.GetNode('B').RxnFY, 'k')
print('Calculated Reaction at C:', beam.GetNode('C').RxnFY, 'k')
print('Calculated Reaction at D:', beam.GetNode('D').RxnFY, 'k')
print('Expected Reaction at A: -1.098 k')
print('Expected Reaction at B: 122.373 k')
print('Expected Reaction at C: -61.451 k')
print('Expected Reaction at D: 60.176 k')

# Print the shear diagrams
beam.GetMember('AB').PlotShear('Fy')
Esempio n. 18
0
 def visulize(self, **kwargs):
     Visualization.RenderModel(self.frame, **kwargs)
frame.AddNode('N1', 0, 0, 0)
frame.AddNode('N2', 10*12, 0, 0)
frame.AddNode('N3', 10*12, 0, -10*12)
frame.AddNode('N4', 10*12, -20*12, -10*12)

# Define the supports
frame.DefineSupport('N1', True, True, True, True, True, True)
frame.DefineSupport('N4', True, True, True, True, True, True)

# Create members (all members will have the same properties in this example)
J = 100
Iy = 200
Iz = 1000
E = 30000
G = 10000
A = 100

frame.AddMember('M12', 'N1', 'N2', E, G, Iy, Iz, J, A)
frame.AddMember('M23', 'N2', 'N3', E, G, Iy, Iz, J, A)
frame.AddMember('M34', 'N3', 'N4', E, G, Iy, Iz, J, A)

# Add nodal loads
frame.AddNodeLoad('N2', 'FY', -5)
frame.AddNodeLoad('N2', 'MX', -100*12)
frame.AddNodeLoad('N3', 'FZ', 40)

frame.Analyze()
Visualization.RenderModel(frame)

print('Calculated results: ', frame.GetNode('N2').DY, frame.GetNode('N3').DZ)
print('Expected results: ', -0.063, 1.825)
Esempio n. 20
0
# Provide fixed supports
TorqueBeam.DefineSupport('N1', False, True, True, True, True, True)
TorqueBeam.DefineSupport('N2', True, True, True, True, True, True)

# Add a point load of 5 kip-ft and 10 kip-ft at 3ft and 11 ft along the beam respectively
TorqueBeam.AddMemberPtLoad('M1', 'Mx', 5, 3 * 12)
TorqueBeam.AddMemberPtLoad('M1', 'Mx', 10, 11 * 12)

# Analyze the beam and perform a statics check
TorqueBeam.Analyze(check_statics=True)

from PyNite import Visualization
Visualization.RenderModel(TorqueBeam,
                          text_height=5,
                          deformed_shape=True,
                          deformed_scale=30,
                          render_loads=True)

# Print the torsion diagram
TorqueBeam.GetMember('M1').PlotTorsion()

# Print reactions at each end of the beam
print('**Individual Support Reactions**')
print('Left Support Reaction: {Rxn:.2f} kip'.format(
    Rxn=TorqueBeam.GetNode('N1').RxnMX['Combo 1']))
print('Right Support Reacton: {Rxn:.2f} kip'.format(
    Rxn=TorqueBeam.GetNode('N2').RxnMX['Combo 1']))

# Print the max/min torques on the beam
print('**Member Internal Torsion**')
frame.DefineSupport('N6', True, True, True, True, True, True)

# Create members (all members will have the same properties in this example)
J = 250
Iy = 250
Iz = 200
E = 30000
G = 250
A = 12

frame.AddMember('M1', 'N1', 'N2', E, G, Iz, Iy, J, A)
frame.AddMember('M2', 'N2', 'N3', E, G, Iy, Iz, J, A)
frame.AddMember('M3', 'N3', 'N4', E, G, Iy, Iz, J, A)
frame.AddMember('M4', 'N4', 'N5', E, G, Iy, Iz, J, A)
frame.AddMember('M5', 'N5', 'N6', E, G, Iz, Iy, J, A)

# Add nodal loads
frame.AddNodeLoad('N3', 'FY', -30)
frame.AddNodeLoad('N4', 'FY', -30)

# Analyze the model
frame.Analyze()

# Render the model for viewing
Visualization.RenderModel(frame, text_height=15, deformed_shape=True, deformed_scale=10, render_loads=True)

node1 = frame.GetNode('N1')
node6 = frame.GetNode('N6')
print('Calculated reactions: ', node1.RxnFZ, node1.RxnFY, node1.RxnMX, node6.RxnFZ, node6.RxnFY, node6.RxnMX)
print('Expected reactions: ', 11.69, 30, 1810, -11.69, 30, -1810)
print('Calculated displacements: ', frame.GetNode('N3').DY, frame.GetNode('N4').DY, frame.GetNode('N3').RX, frame.GetNode('N4').RX)
Esempio n. 22
0
    # Add members between nodes
    cantilever.AddMember(str(i+1), str(i+1), str(i+2), E, G, I, I, 200/12**4, 10/12**2)

# Add a fixed support at the base of the column
cantilever.DefineSupport('1', True, True, True, True, True, True)

# Add a -10 kip axial load to the top of the column
cantilever.AddNodeLoad(str(num_nodes), 'FY', -P)

# Add a 5 kip lateral load to the top of the column
cantilever.AddNodeLoad(str(num_nodes), 'FX', H)

# Perform 2nd order analysis
cantilever.Analyze_PDelta() 

# Render the deformed shape
Visualization.RenderModel(cantilever, text_height=0.3, deformed_shape=True, deformed_scale=2, render_loads=True)

# Print the moment at the base of the column
print('PyNite Calculated Moment: ', -cantilever.GetMember('1').Moment('Mz', 0.001, 'Combo 1'))

# Print the deflection at the top of the column
print('PyNite Calculated Displacement: ', cantilever.GetNode(str(num_nodes)).DX['Combo 1']*12)

# Print the AISC benchmark problem solution:
alpha = (P*L**2/(E*I))**0.5
Mmax = H*L*(math.tan(alpha)/alpha)
ymax = H*L**3/(3*E*I)*(3*(math.tan(alpha)-alpha)/alpha**3)
print('AISC Benchmark Problem Moment: ', Mmax)
print('AISC Benchmark Problem Displacement: ', ymax*12)
Esempio n. 23
0
# BracedFrame.AddLoadCombo('1.4D', factors={'D':1.4})
BracedFrame.AddLoadCombo('1.2D+1.0W', factors={'D': 1.2, 'W': 1.0})
BracedFrame.AddLoadCombo('0.9D+1.0W', factors={'D': 0.9, 'W': 1.0})

# Analyze the braced frame
# P-Delta analysis could also be performed using BracedFrame.Analyze_PDelta().
# Generally, P-Delta analysis will have little effect on a model of a braced
# frame, as there is usually very little bending moment in the members.
BracedFrame.Analyze()

# Display the deformed shape of the structure magnified 50 times with the text
# height 5 model units (inches) high
from PyNite import Visualization
Visualization.RenderModel(BracedFrame,
                          text_height=5,
                          deformed_shape=True,
                          deformed_scale=50,
                          combo_name='1.2D+1.0W')

# Plot the axial load diagrams for the braces. We should see no compression on
# 'Brace2' and 64 kips on 'Brace1' if the tension-only analysis worked
# correctly.
BracedFrame.GetMember('Brace1').PlotAxial(combo_name='1.2D+1.0W')
BracedFrame.GetMember('Brace2').PlotAxial(combo_name='1.2D+1.0W')

# Report the frame reactions for the load combination '1.2D+1.0W'. We should
# see a -50 kip horizontal reaction at node 'N1', and a zero kip reaction at
# node 'N4' if the tension-only analysis worked correctly. Similarly, we
print('1.2D+1.0W: N1 reaction FY =',
      '{:.3f}'.format(BracedFrame.GetNode('N1').RxnFY['1.2D+1.0W']), 'kip')
print('1.2D+1.0W: N1 reaction FX =',
Esempio n. 24
0
                           False, False, False, False, True, True)
truss.DefineReleases('BE', False, False, False, False, True, True, \
                           False, False, False, False, True, True)

# Add nodal loads
truss.AddNodeLoad('A', 'FX', 10)
truss.AddNodeLoad('A', 'FY', 60)
truss.AddNodeLoad('A', 'FZ', 20)

# Analyze the model
truss.Analyze()

# Print results
print('Member BC calculated axial force: ' +
      str(truss.GetMember('BC').MaxAxial()))
print('Member BC expected axial force: 32.7 Tension')
print('Member BD calculated axial force: ' +
      str(truss.GetMember('BD').MaxAxial()))
print('Member BD expected axial force: 45.2 Tension')
print('Member BE calculated axial force: ' +
      str(truss.GetMember('BE').MaxAxial()))
print('Member BE expected axial force: 112.1 Compression')

# Render the model for viewing. The text height will be set to 50 mm.
# Because the members in this example are nearly rigid, there will be virtually no deformation. The deformed shape won't be rendered.
# The program has created a default load case 'Case 1' and a default load combo 'Combo 1' since we didn't specify any. We'll display 'Case 1'.
Visualization.RenderModel(truss,
                          text_height=0.05,
                          render_loads=True,
                          case='Case 1')