Esempio n. 1
0
def correlate2(data, h, dev=None):
    """computes normalized cross correlation of 2d <data> with template <h> on the GPU Device <dev>
    boundary conditions are clamping to edge.
    h is converted to float32
    if dev == None a new one is created

    """

    if not dev:
        dev = OCLDevice(useDevice=imgtools.__OPENCLDEVICE__)

    # normalize data and template
    #data

    dtype = data.dtype.type

    dtypes_kernels = {
        np.float32: "mean_var_2d_float",
        np.uint16: "mean_var_2d_short"
    }

    if not dtype in dtypes_kernels.keys():
        raise TypeError(
            "data type %s not supported yet, please convert to:" % dtype,
            dtypes_kernels.keys())

    proc = OCLProcessor(dev, absPath("kernels/correlate_kernels.cl"))

    Ny, Nx = h.shape

    inImg = dev.createImage_like(data)
    meanBuf = dev.createBuffer(data.size,
                               dtype=dtype,
                               mem_flags=cl.mem_flags.READ_WRITE)
    varBuf = dev.createBuffer(data.size,
                              dtype=dtype,
                              mem_flags=cl.mem_flags.READ_WRITE)

    dev.writeImage(inImg, data)

    proc.runKernel(dtypes_kernels[dtype], inImg.shape, None, inImg,
                   np.int32(data.shape[1]), np.int32(Nx), np.int32(Ny),
                   meanBuf, varBuf)

    dataMean, dataVar = dev.readBuffer(meanBuf, dtype).reshape(
        data.shape), dev.readBuffer(varBuf, dtype).reshape(data.shape)

    #template
    hMean = 1. * np.mean(h.flatten())
    hVar = 1. * np.var(h.flatten())

    res = convolve2(dev, data - dataMean, h - hMean)

    print hMean, hVar
    # # res = convolve2(dev,data-dataMean,h)

    # return res
    # return dataVar
    return res / np.maximum(1.e-6, np.sqrt(dataVar * hVar))
Esempio n. 2
0
def _correlate2(data, h, dev=None):
    """computes normalized cross correlation of 2d <data> with template <h> on the GPU Device <dev>
    boundary conditions are clamping to edge.
    h is converted to float32
    if dev == None a new one is created

    """

    if not dev:
        dev = OCLDevice(useDevice=imgtools.__OPENCLDEVICE__)

    dtype = data.dtype.type

    dtypes_kernels = {
        np.float32: "correlate2d_float",
        np.uint16: "correlate2d_short"
    }

    if not dtype in dtypes_kernels.keys():
        raise TypeError(
            "data type %s not supported yet, please convert to:" % dtype,
            dtypes_kernels.keys())

    proc = OCLProcessor(dev, absPath("kernels/correlate_kernels.cl"))

    Ny, Nx = h.shape

    hbuf = dev.createBuffer(Nx * Ny,
                            dtype=np.float32,
                            mem_flags=cl.mem_flags.READ_ONLY)
    inImg = dev.createImage_like(data)
    outImg = dev.createImage_like(data, mem_flags="READ_WRITE")

    dev.writeImage(inImg, data)

    dev.writeBuffer(hbuf, h.astype(np.float32).flatten())

    proc.runKernel(dtypes_kernels[dtype], inImg.shape, None, inImg, hbuf,
                   np.int32(Nx), np.int32(Ny), outImg)

    return dev.readImage(outImg)
Esempio n. 3
0
def correlate2(data,h, dev = None):
    """computes normalized cross correlation of 2d <data> with template <h> on the GPU Device <dev>
    boundary conditions are clamping to edge.
    h is converted to float32
    if dev == None a new one is created

    """

    if not dev:
        dev = OCLDevice(useDevice = imgtools.__OPENCLDEVICE__)


    # normalize data and template
    #data

    dtype = data.dtype.type

    dtypes_kernels = {np.float32:"mean_var_2d_float",
                      np.uint16:"mean_var_2d_short"}

    if not dtype in dtypes_kernels.keys():
        raise TypeError("data type %s not supported yet, please convert to:"%dtype,dtypes_kernels.keys())


    proc = OCLProcessor(dev,absPath("kernels/correlate_kernels.cl"))

    Ny,Nx = h.shape

    inImg = dev.createImage_like(data)
    meanBuf = dev.createBuffer(data.size,dtype=dtype,mem_flags= cl.mem_flags.READ_WRITE)
    varBuf = dev.createBuffer(data.size,dtype=dtype,mem_flags= cl.mem_flags.READ_WRITE)

    dev.writeImage(inImg,data)

    proc.runKernel(dtypes_kernels[dtype],inImg.shape,None,inImg,np.int32(data.shape[1]),np.int32(Nx),np.int32(Ny),meanBuf,varBuf)

    dataMean, dataVar = dev.readBuffer(meanBuf,dtype).reshape(data.shape),dev.readBuffer(varBuf,dtype).reshape(data.shape)

    #template
    hMean = 1.*np.mean(h.flatten())
    hVar = 1.*np.var(h.flatten())

    res = convolve2(dev,data-dataMean,h - hMean)

    print hMean, hVar
    # # res = convolve2(dev,data-dataMean,h)

    # return res
    # return dataVar
    return res/np.maximum(1.e-6,np.sqrt(dataVar*hVar))
Esempio n. 4
0
def _correlate2(data,h, dev = None):
    """computes normalized cross correlation of 2d <data> with template <h> on the GPU Device <dev>
    boundary conditions are clamping to edge.
    h is converted to float32
    if dev == None a new one is created

    """

    if not dev:
        dev = OCLDevice(useDevice = imgtools.__OPENCLDEVICE__)

    dtype = data.dtype.type

    dtypes_kernels = {np.float32:"correlate2d_float",
                      np.uint16:"correlate2d_short"}

    if not dtype in dtypes_kernels.keys():
        raise TypeError("data type %s not supported yet, please convert to:"%dtype,dtypes_kernels.keys())


    proc = OCLProcessor(dev,absPath("kernels/correlate_kernels.cl"))

    Ny,Nx = h.shape

    hbuf = dev.createBuffer(Nx*Ny,dtype=np.float32,mem_flags= cl.mem_flags.READ_ONLY)
    inImg = dev.createImage_like(data)
    outImg = dev.createImage_like(data,mem_flags="READ_WRITE")

    dev.writeImage(inImg,data)

    dev.writeBuffer(hbuf,h.astype(np.float32).flatten())

    proc.runKernel(dtypes_kernels[dtype],inImg.shape,None,inImg,hbuf,np.int32(Nx),np.int32(Ny),outImg)


    return dev.readImage(outImg)
Esempio n. 5
0
    def __init__(self, size = None):
        """ e.g. size = (300,300)"""

        try:
            # simulate GPU fail...
            # raise Exception()

            self.dev = OCLDevice(useGPU = True, 
                                 useDevice = spimagine.__OPENCLDEVICE__)

            self.isGPU = True
            self.dtypes = [np.float32,np.uint16]

        except Exception as e:
            print e
            print "could not find GPU OpenCL device -  trying CPU..."

            try:
                self.dev = OCLDevice(useGPU = False)
                self.isGPU = False
                self.dtypes = [np.float32]
            except Exception as e:
                print e
                print "could not find any OpenCL device ... sorry"

        self.memMax = .4*self.dev.device.get_info(getattr(
            cl.device_info,"MAX_MEM_ALLOC_SIZE"))

        self.memMax = 2.*self.dev.device.get_info(getattr(
            cl.device_info,"MAX_MEM_ALLOC_SIZE"))

        self.proc = OCLProcessor(self.dev,absPath("kernels/volume_render.cl"),
                                 "-cl-fast-relaxed-math -cl-unsafe-math-optimizations -cl-mad-enable")
        # self.proc = OCLProcessor(self.dev,absPath("kernels/volume_render.cl"),options="-cl-fast-relaxed-math")

        self.invMBuf = self.dev.createBuffer(16,dtype=np.float32,
                                            mem_flags = cl.mem_flags.READ_ONLY)

        self.invPBuf = self.dev.createBuffer(16,dtype=np.float32,
                                            mem_flags = cl.mem_flags.READ_ONLY)


        self.projection = np.zeros((4,4))
        self.modelView = np.zeros((4,4))
                
        if size:
            self.resize(size)
        else:
            self.resize((200,200))

        self.set_dtype()
        self.set_gamma()
        self.set_max_val()
        self.set_min_val()

        self.set_alpha_pow()
        self.set_box_boundaries()
        self.set_units()

        self.set_modelView()
        self.set_projection()
Esempio n. 6
0
class VolumeRenderer:
    """ renders a data volume by ray casting/max projection

    usage:
               rend = VolumeRenderer((400,400))
               rend.set_data(d)
               rend.set_units(1.,1.,2.)
               rend.set_modelView(rotMatX(.7))
    """

    def __init__(self, size = None):
        """ e.g. size = (300,300)"""

        try:
            # simulate GPU fail...
            # raise Exception()

            self.dev = OCLDevice(useGPU = True, 
                                 useDevice = spimagine.__OPENCLDEVICE__)

            self.isGPU = True
            self.dtypes = [np.float32,np.uint16]

        except Exception as e:
            print e
            print "could not find GPU OpenCL device -  trying CPU..."

            try:
                self.dev = OCLDevice(useGPU = False)
                self.isGPU = False
                self.dtypes = [np.float32]
            except Exception as e:
                print e
                print "could not find any OpenCL device ... sorry"

        self.memMax = .4*self.dev.device.get_info(getattr(
            cl.device_info,"MAX_MEM_ALLOC_SIZE"))

        self.memMax = 2.*self.dev.device.get_info(getattr(
            cl.device_info,"MAX_MEM_ALLOC_SIZE"))

        self.proc = OCLProcessor(self.dev,absPath("kernels/volume_render.cl"),
                                 "-cl-fast-relaxed-math -cl-unsafe-math-optimizations -cl-mad-enable")
        # self.proc = OCLProcessor(self.dev,absPath("kernels/volume_render.cl"),options="-cl-fast-relaxed-math")

        self.invMBuf = self.dev.createBuffer(16,dtype=np.float32,
                                            mem_flags = cl.mem_flags.READ_ONLY)

        self.invPBuf = self.dev.createBuffer(16,dtype=np.float32,
                                            mem_flags = cl.mem_flags.READ_ONLY)


        self.projection = np.zeros((4,4))
        self.modelView = np.zeros((4,4))
                
        if size:
            self.resize(size)
        else:
            self.resize((200,200))

        self.set_dtype()
        self.set_gamma()
        self.set_max_val()
        self.set_min_val()

        self.set_alpha_pow()
        self.set_box_boundaries()
        self.set_units()

        self.set_modelView()
        self.set_projection()

    def set_dtype(self,dtype = None):
        if hasattr(self,"dtype") and  dtype is self.dtype:
            return

        if dtype is None:
            dtype = self.dtypes[0]

        if dtype in self.dtypes:
            self.dtype = dtype
        else:
            raise NotImplementedError("data type should be either %s not %s"%(self.dtypes,dtype))

        self.reset_buffer()


    def resize(self,size):
        self.width, self.height = size
        self.reset_buffer()


    def reset_buffer(self):
        self.buf = self.dev.createBuffer(self.height*self.width,dtype=np.float32)
        self.bufAlpha = self.dev.createBuffer(self.height*self.width,dtype=np.float32)
        self.bufDepth = self.dev.createBuffer(self.height*self.width,dtype=np.float32)

        self.bufNormals = self.dev.createBuffer(3*self.height*self.width,dtype=np.float32)

        self.bufNormalsScratch = self.dev.createBuffer(3*self.height*self.width,dtype=np.float32)
        


    def _get_downsampled_data_slices(self,data):
        """in case data is bigger then gpu texture memory, we should downsample it
        if so returns the slice of data to be rendered
        else returns None (no downsampling)
        """
        # Nstep = int(np.ceil(np.sqrt(1.*data.nbytes/self.memMax)))
        Nstep = int(np.ceil((1.*data.nbytes/self.memMax)**(1./3)))

        slices = [slice(0,d,Nstep) for d in data.shape]
        if Nstep>1:
            logger.info("downsample image by factor of  %s"%Nstep)
            return slices
        else:
            return None

    def set_max_val(self,maxVal = 0.):
        self.maxVal = maxVal

    def set_min_val(self,minVal = 0.):
        self.minVal = minVal
        
    def set_gamma(self,gamma = 1.):
        self.gamma = gamma

    def set_alpha_pow(self,alphaPow = 10.):
        self.alphaPow = alphaPow


    def set_data(self,data, autoConvert = True, copyData = False):
        if not autoConvert and not data.dtype in self.dtypes:
            raise NotImplementedError("data type should be either %s not %s"%(self.dtypes,data.dtype))

        if data.dtype.type in self.dtypes:
            self.set_dtype(data.dtype.type)
            _data = data
        else:
            print "converting type from %s to %s"%(data.dtype.type,self.dtype)
            _data = data.astype(self.dtype)

        self.dataSlices = self._get_downsampled_data_slices(_data)

        if self.dataSlices is not None:
            self.set_shape(_data[self.dataSlices].shape[::-1])
        else:
            self.set_shape(_data.shape[::-1])

        self.update_data(_data, copyData = copyData)
        self.update_matrices()

    def set_shape(self,dataShape):
        if self.isGPU:
            self.dataImg = self.dev.createImage(dataShape,
                mem_flags = cl.mem_flags.READ_ONLY,
                channel_type = cl_datatype_dict[self.dtype])
        else:
            self.dataImg = self.dev.createImage(dataShape,
                mem_flags = cl.mem_flags.READ_ONLY,
                channel_order = cl.channel_order.INTENSITY,
                channel_type = cl_datatype_dict[self.dtype])

    def update_data(self,data, copyData = False):
        #do we really want to copy here?

        if self.dataSlices is not None:
            self._data = data[self.dataSlices].copy()
        else:
            if copyData:
                self._data = data.copy()
            else:
                self._data = data

        if self._data.dtype != self.dtype:
            self._data = self._data.astype(self.dtype)

        self.dev.writeImage(self.dataImg,self._data)

    def set_box_boundaries(self,boxBounds = [-1,1,-1,1,-1,1]):
        self.boxBounds = np.array(boxBounds)

    def set_units(self,stackUnits = np.ones(3)):
        self.stackUnits = np.array(stackUnits)

    def set_projection(self,projection = mat4_identity()):
        self.projection = projection
        self.update_matrices()

        
    def set_modelView(self, modelView = mat4_identity()):
        self.modelView = 1.*modelView
        self.update_matrices()

    def update_matrices(self):
        if hasattr(self,"dataImg"):
            mScale = self._stack_scale_mat()
            invM = inv(np.dot(self.modelView,mScale))
            self.dev.writeBuffer(self.invMBuf,invM.flatten().astype(np.float32))
            invP = inv(self.projection)
            self.dev.writeBuffer(self.invPBuf,invP.flatten().astype(np.float32))

    # def _get_user_coords(self,x,y,z):
    #     p = array([x,y,z,1])
    #     worldp = dot(self.modelView,p)[:-2]
    #     userp = (worldp+[1.,1.])*.5*array([self.width,self.height])
    #     return userp[0],userp[1]

    def _stack_scale_mat(self):
        # scaling the data according to size and units
        Nx,Ny,Nz = self.dataImg.shape
        dx,dy,dz = self.stackUnits

        # mScale =  scaleMat(1.,1.*dx*Nx/dy/Ny,1.*dx*Nx/dz/Nz)
        maxDim = max(d*N for d,N in zip([dx,dy,dz],[Nx,Ny,Nz]))
        return mat4_scale(1.*dx*Nx/maxDim,1.*dy*Ny/maxDim,1.*dz*Nz/maxDim)


    def render(self,data = None, stackUnits = None,
               minVal = None, maxVal = None, gamma = None,
               modelView = None, projection = None,
               boxBounds = None, return_alpha = False, method="max_project",
               numParts = 1, currentPart = 0):

        if data is not None:
            self.set_data(data)

        if maxVal is not None:
            self.set_max_val(maxVal)

        if minVal is not None:
            self.set_min_val(minVal)

        if gamma is not None:
            self.set_gamma(gamma)

        if stackUnits is not None:
            self.set_units(stackUnits)

        if modelView is not None:
            self.set_modelView(modelView)

        if projection is not None:
            self.set_projection(projection)

        if not hasattr(self,'dataImg'):
            print "no data provided, set_data(data) before"
            if return_alpha:
                return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height), self.dev.readBuffer(self.bufAlpha,dtype = np.float32).reshape(self.width,self.height)
            else:
                return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height)


        if not modelView and not hasattr(self,'modelView'):
            print "no modelView provided and set_modelView() not called before!"
            if return_alpha:
                return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height), self.dev.readBuffer(self.bufAlpha,dtype = np.float32).reshape(self.width,self.height)
            else:
                return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height)

        # mScale = self._stack_scale_mat()
        # invM = inv(np.dot(self.modelView,mScale))
        # self.dev.writeBuffer(self.invMBuf,invM.flatten().astype(np.float32))

        # invP = inv(self.projection)
        # self.dev.writeBuffer(self.invPBuf,invP.flatten().astype(np.float32))

        if method=="max_project":
            if self.dtype == np.uint16:
                method = "max_project_short"
            else:
                method = "max_project_float"

            self.proc.runKernel(method,
                            (self.width,self.height),
                            None,
                            self.buf,self.bufAlpha,
                            np.int32(self.width),np.int32(self.height),
                            np.float32(self.boxBounds[0]),
                            np.float32(self.boxBounds[1]),
                            np.float32(self.boxBounds[2]),
                            np.float32(self.boxBounds[3]),
                            np.float32(self.boxBounds[4]),
                            np.float32(self.boxBounds[5]),
                            np.float32(self.minVal),                                
                            np.float32(self.maxVal),
                            np.float32(self.gamma),
                            np.float32(self.alphaPow),
                            self.invPBuf,
                            self.invMBuf,
                            self.dataImg)


        if method=="max_project_part":
            if self.dtype == np.uint16:
                method = "max_project_part_short"
            else:
                method = "max_project_part_float"

            self.proc.runKernel(method,
                            (self.width,self.height),
                            None,
                            self.buf,self.bufAlpha,
                            np.int32(self.width),np.int32(self.height),
                            np.float32(self.boxBounds[0]),
                            np.float32(self.boxBounds[1]),
                            np.float32(self.boxBounds[2]),
                            np.float32(self.boxBounds[3]),
                            np.float32(self.boxBounds[4]),
                            np.float32(self.boxBounds[5]),
                            np.float32(self.minVal),                                
                            np.float32(self.maxVal),
                            np.float32(self.gamma),
                            np.float32(self.alphaPow),
                            np.int32(numParts),
                            np.int32(currentPart),
                            self.invPBuf,
                            self.invMBuf,
                            self.dataImg)
    
        if method=="iso_surface":
            self.proc.runKernel("iso_surface",
                            (self.width,self.height),
                            None,
                            self.buf,self.bufAlpha,
                            np.int32(self.width),np.int32(self.height),
                            np.float32(self.boxBounds[0]),
                            np.float32(self.boxBounds[1]),
                            np.float32(self.boxBounds[2]),
                            np.float32(self.boxBounds[3]),
                            np.float32(self.boxBounds[4]),
                            np.float32(self.boxBounds[5]),
                            np.float32(self.maxVal/2),
                            np.float32(self.gamma),
                            self.invPBuf,
                            self.invMBuf,
                            self.dataImg,
                            np.int32(self.dtype == np.uint16)
                            )

        if method=="iso_surface_new":
            self.proc.runKernel("iso_surface_new",
                            (self.width,self.height),
                            None,
                            self.bufNormals,
                            self.bufAlpha,
                            np.int32(self.width),np.int32(self.height),
                            np.float32(self.boxBounds[0]),
                            np.float32(self.boxBounds[1]),
                            np.float32(self.boxBounds[2]),
                            np.float32(self.boxBounds[3]),
                            np.float32(self.boxBounds[4]),
                            np.float32(self.boxBounds[5]),
                            np.float32(self.maxVal/2),
                            np.float32(self.gamma),
                            self.invPBuf,
                            self.invMBuf,
                            self.dataImg,
                            np.int32(self.dtype == np.uint16)
                            )


            self.proc.runKernel("blur_normals_x",
                            (self.width,self.height),
                            None,
                            self.bufNormals,
                            self.bufNormalsScratch,
                            np.int32(3))
            self.proc.runKernel("blur_normals_y",
                            (self.width,self.height),
                            None,
                            self.bufNormalsScratch,
                            self.bufNormals,
                            np.int32(3))

            self.proc.runKernel("iso_shading",
                                (self.width,self.height),
                                None,
                                self.bufNormals,
                                self.bufAlpha,
                                self.invMBuf,
                                self.invPBuf,
                                self.buf)

            # return self.dev.readBuffer(self.bufNormals,dtype = np.float32).reshape(self.width,self.height,3)
            
        if return_alpha:
            return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height),  self.dev.readBuffer(self.bufAlpha,dtype = np.float32).reshape(self.width,self.height)
        else:
            return self.dev.readBuffer(self.buf,dtype = np.float32).reshape(self.width,self.height)
Esempio n. 7
0
    res = convolve2(dev, data - dataMean, h - hMean)

    print hMean, hVar
    # # res = convolve2(dev,data-dataMean,h)

    # return res
    # return dataVar
    return res / np.maximum(1.e-6, np.sqrt(dataVar * hVar))

    # return dataMean, dataVar


if __name__ == '__main__':

    N, Nh = 64, 11
    data = np.zeros((N, ) * 2, np.float32)

    t = np.linspace(-1, 1, Nh)

    hx = np.exp(-3 * t**2)
    hy = np.exp(-3 * t**2)

    h = np.outer(hy, hx)

    # h = np.ones((Nh,)*2)

    data[10:10 + Nh, 1:1 + Nh] = 1. * h

    dev = OCLDevice()
    out = correlate2(data, h, dev)