Esempio n. 1
0
    def __init__(self, i, j, r, map, terrain=Ground(), loading=False):
        if loading:
            return

        Hexagon.__init__(self, i, j, r, loading=loading)
        poly = QPolygon()
        for p in self.corners:
            poly << QPoint(*p)
        QGraphicsPolygonItem.__init__(self, poly)
        self.terrain = terrain
        self.units = []
        self.unitImages = []
        self.map = map
        self.setBrush(QBrush(self.terrain.image))
        self.setPen(QPen())
Esempio n. 2
0
    def __load__(cls, d, game):
        t = cls(0, 0, 0, None, loading=True)
        Hexagon.__load__(d, t)

        t.map = game.map
        t.terrain = load(Terrain, d['terrain'])
        t.units = []
        t.unitImages = []
        units = map(partial(load, Unit, game=game, tile=t), d['units'])
        
        poly = QPolygon()
        for p in t.corners:
            poly << QPoint(*p)
        QGraphicsPolygonItem.__init__(t, poly)

        t.setBrush(QBrush(t.terrain.image))
        t.setPen(QPen())

        for unit in units:
            t.addUnit(unit)

        return t
Esempio n. 3
0
    def _makeArrow( self, ra, rb, both_ways=True):

        ca = QPointF( ra.x() + float(ra.width()) / 2.0, ra.y() + float(ra.height()) / 2.0)
        cb = QPointF( rb.x() + rb.width() / 2.0, rb.y() + rb.height() / 2.0)

        dx = cb.x() - ca.x()
        dy = cb.y() - ca.y()
        d = dist(dx,dy)


        a = math.atan2(float(dy),float(dx)) # The result is between -pi and pi

        # ra_rad = dist(ra.width() / 2, ra.height() / 2)
        # rb_rad = dist(rb.width() / 2, rb.height() / 2)

        x,y = squircle(ra.width() / 2, ra.height() / 2, to_squircle_angle(ra.width() / 2, ra.height() / 2,a))
        ra_rad = dist(x,y) + 10
        # painter.drawLine(ca,QPoint(ca.x() + x, ca.y() + y))

        na = a
        if a < 0:
            na += math.pi
        else:
            na -= math.pi

        x,y = squircle(float(rb.width()) / 2.0, float(rb.height()) / 2.0, to_squircle_angle(float(rb.width()) / 2.0, float(rb.height()) / 2.0,na))
        rb_rad = dist(x,y)+10

        # ra_rad = rb_rad = 0


        # painter.drawLine(ca,cb)
        # painter.drawRect(ra)
        # painter.setPen(Qt.GlobalColor.red)
        # painter.drawRect(rb)
        # painter.setPen(Qt.GlobalColor.black)

        # for t in range(100):
        #     ang = 6.28/100.0*float(t)
        #     x,y = squircle( 200,50,ang)
        #     painter.drawPoint(300 + x,100 + y)

        qp = QPolygonF()
        h = 5

        v = []
        v.append(QPointF(ra_rad,0))

        if not both_ways:
            v.append(QPointF(ra_rad,-h/2))
        else:
            v.append(QPointF(ra_rad + 2*h,-2*h))
            v.append(QPointF(ra_rad + 2*h,-h/2))


        v.append(QPointF(d - rb_rad - 2*h,-h/2))
        v.append(QPointF(d - rb_rad - 2*h,-2*h))
        v.append(QPointF(d - rb_rad, 0))
        v.append(QPointF(d - rb_rad - 2*h,+2*h))
        v.append(QPointF(d - rb_rad - 2*h,+h/2))

        if not both_ways:
            v.append(QPointF(ra_rad,+h/2))
        else:
            v.append(QPointF(ra_rad + 2*h,+h/2))
            v.append(QPointF(ra_rad + 2*h,+2*h))

        v.append(QPointF(ra_rad,0))

        p = QPolygonF(v)
        item = QGraphicsPolygonItem(p)
        item.translate(ca.x(),ca.y())
        item.rotate(math.degrees(a))
        return item