try: from numpy import * from matplotlib.pyplot import * except ImportError: print("Need numpy and matplotlib to test PyUQTk") try: import PyUQTk.array as uqtkarray import PyUQTk.quad as uqtkquad import PyUQTk.pce as uqtkpce except ImportError: print("PyUQTk array and quad module not found") # get quad points and weights x = uqtkarray.dblArray2D() w = uqtkarray.dblArray1D() print('Create an instance of Quad class') ndim = 2 level = 8 q = uqtkquad.Quad('LU', 'full', ndim, level) print('Now set and get the quadrature rule...') q.SetRule() q.GetRule(x, w) # print out x and w print('Displaying the quadrature points and weights:\n') print(x) print(w) n = len(x)
try: from numpy import * from matplotlib.pyplot import * except ImportError: "Need numpy and matplotlib to test PyUQTk" try: import PyUQTk.array as uqtkarray import PyUQTk.quad as uqtkquad import PyUQTk.pce as uqtkpce except ImportError: print "PyUQTk array and quad module not found" # get quad points and weights x = uqtkarray.dblArray2D() w = uqtkarray.dblArray1D() print 'Create an instance of Quad class' ndim = 1 level = 8 q = uqtkquad.Quad('LU', 'full', ndim, level) print 'Now set and get the quadrature rule...' q.SetRule() q.GetRule(x, w) # print out x and w print 'Displaying the quadrature points and weights:\n' # print x # print w n = len(x)
dim = 2 mchain.setChainDim(dim) mchain.initMethod("am") g = uqtkarray.dblArray1D(dim, .1) mchain.initChainPropCovDiag(g) nCalls = L * M thin2 = thin1 * L mchain.setWriteFlag(0) mchain.setOutputInfo("txt", "chain.dat", M, nCalls) mchain.runChain(nCalls, xstart) mchain.getSamples() samples = mchain.samples samples2 = zeros((dim, nCalls)) samples.getnpdblArray(samples2) samples2 = samples2.T propcov = uqtkarray.dblArray2D(2, 2, 0) mchain.getChainPropCov(propcov) m1 = propcov[0, 0] m2 = propcov[1, 1] # ax2.contour(qx,qy,qz,250,alpha=.4) # ax2.plot(samples2[L*nburn::thin2,0],samples2[L*nburn::thin2,1],'*g',alpha=.1) # plot mixing of samples ax3.plot(samples1[nburn::thin1, 0], 'k', alpha=.4) ax3.plot(samples2[L * nburn::thin2, 0], 'g', alpha=.4) ax4.plot(samples1[nburn::thin1, 1], 'k', alpha=.4) ax4.plot(samples2[L * nburn::thin2, 1], 'g', alpha=.4) print 'acor using HMCMC', acor(samples1[nburn::thin1, 0]) print 'acor using MCMC', acor(samples2[L * nburn::thin2, 0])