Esempio n. 1
0
## Build the second layer (uniform)
URC2 =  (np.identity(NH))
ERC2= erd*(np.identity(NH));


## BUILD THE K_MATRIX
kx_inc = n_i * np.sin(theta) * np.cos(phi);
ky_inc = n_i * np.sin(theta) * np.sin(phi);  # constant in ALL LAYERS; ky = 0 for normal incidence
kz_inc = cmath.sqrt(n_i**2 - kx_inc ** 2 - ky_inc ** 2);

Kx, Ky = km.K_matrix_cubic_2D(kx_inc, ky_inc, k0, Lx, Ly,  PQ[0], PQ[1]);


#gap media
Wg, Vg, Kzg = hl.homogeneous_module(Kx, Ky, 2);

## Get Kzr and Kztrans
Wr, Vr, Kzr = hl.homogeneous_module(Kx, Ky, er1);
Ar, Br = sm.A_B_matrices_half_space(Wr, Wg, Vr, Vg); #make sure this order is right
Sr, Sr_dict = sm.S_R(Ar, Br)
Sg = Sr_dict;


## =================================================================##
##               First LAYER (homogeneous)
## =======================================================================##
P, Q, Kzl = pq.P_Q_kz(Kx, Ky, E_conv, mu_conv)
omega_sq =  P @ Q; ## no gaurantees this is hermitian or symmetric
W1, lambda_matrix = em.eigen_W(omega_sq)
V1 = em.eigen_V(Q, W1, lambda_matrix)
Esempio n. 2
0
def run_RCWA_2D(lam0, theta, phi, ER, UR, layer_thicknesses, lattice_constants,
                pte, ptm, N, M, e_half):
    '''
    :param lam0:
    :param theta: incident angle
    :param phi:   incident angle (azimuthal)
    :param ER: list of convolution matrices for each layer
    :param UR: list of convolution matrices for each layer
    :param layer_thicknesses: list of thicknesses of each layer
    :param lattice_constants: [Lx, Ly] 2 element array containing lattice constants of the 2D unit cell
    :param pte: te mode amplitude
    :param ptm: tm mode amplitude
    :param N:    num orders for x direction
    :param M:    num orders for y direction
    :param e_half: [e_r e_t], dielectric constants of the reflection and transmission spaces
    :return:
    '''
    ## convention specifications
    normal_vector = np.array([0, 0, -1])  # positive z points down;
    ate_vector = np.array([0, 1, 0])
    # vector for the out of plane E-field
    ## ===========================

    Lx = lattice_constants[0]
    Ly = lattice_constants[1]
    NM = (2 * N + 1) * (2 * M + 1)

    # define vacuum wavevector k0
    k0 = 2 * np.pi / lam0
    ## ============== values to keep track of =======================##
    S_matrices = list()
    kz_storage = list()
    ## ==============================================================##

    m_r = 1
    e_r = e_half[0]
    ## incident wave properties, at this point, everything is in units of k_0
    n_i = np.sqrt(e_r * m_r)

    # actually, in the definitions here, kx = k0*sin(theta)*cos(phi), so kx, ky here are normalized
    kx_inc = n_i * np.sin(theta) * np.cos(phi)
    ky_inc = n_i * np.sin(theta) * np.sin(phi)
    # constant in ALL LAYERS; ky = 0 for normal incidence
    kz_inc = cmath.sqrt(e_r * 1 - kx_inc**2 - ky_inc**2)

    # remember, these Kx and Ky come out already normalized
    Kx, Ky = km.K_matrix_cubic_2D(kx_inc, ky_inc, k0, Lx, Ly, N, M)
    # Kx and Ky are diagonal but have a 0 on it

    ## =============== K Matrices for gap medium =========================
    ## specify gap media (this is an LHI so no eigenvalue problem should be solved
    e_h = 1
    Wg, Vg, Kzg = hl.homogeneous_module(Kx, Ky, e_h)

    ### ================= Working on the Reflection Side =========== ##
    Wr, Vr, kzr = hl.homogeneous_module(Kx, Ky, e_r)
    kz_storage.append(kzr)

    ## calculating A and B matrices for scattering matrix
    # since gap medium and reflection media are the same, this doesn't affect anything
    Ar, Br = sm.A_B_matrices(Wg, Wr, Vg, Vr)

    ## s_ref is a matrix, Sr_dict is a dictionary
    S_ref, Sr_dict = sm.S_R(Ar, Br)
    # scatter matrix for the reflection region
    S_matrices.append(S_ref)
    Sg = Sr_dict

    ## go through the layers
    for i in range(len(ER)):
        # ith layer material parameters
        e_conv = ER[i]
        mu_conv = UR[i]

        # longitudinal k_vector
        P, Q, kzl = pq.P_Q_kz(Kx, Ky, e_conv, mu_conv)
        kz_storage.append(kzl)
        Gamma_squared = P @ Q

        ## E-field modes that can propagate in the medium, these are well-conditioned
        W_i, lambda_matrix = em.eigen_W(Gamma_squared)
        V_i = em.eigen_V(Q, W_i, lambda_matrix)

        # now defIne A and B, slightly worse conditoined than W and V
        A, B = sm.A_B_matrices(W_i, Wg, V_i, Vg)
        # ORDER HERE MATTERS A LOT because W_i is not diagonal

        # calculate scattering matrix
        Li = layer_thicknesses[i]
        S_layer, Sl_dict = sm.S_layer(A, B, Li, k0, lambda_matrix)
        S_matrices.append(S_layer)

        ## update global scattering matrix using redheffer star
        Sg_matrix, Sg = rs.RedhefferStar(Sg, Sl_dict)

    ##========= Working on the Transmission Side==============##
    m_t = 1
    e_t = e_half[1]
    Wt, Vt, kz_trans = hl.homogeneous_module(Kx, Ky, e_t)

    # get At, Bt
    # since transmission is the same as gap, order does not matter
    At, Bt = sm.A_B_matrices(Wg, Wt, Vg, Vt)

    ST, ST_dict = sm.S_T(At, Bt)
    S_matrices.append(ST)
    # update global scattering matrix
    Sg_matrix, Sg = rs.RedhefferStar(Sg, ST_dict)

    ## finally CONVERT THE GLOBAL SCATTERING MATRIX BACK TO A MATRIX

    K_inc_vector = n_i * np.array([np.sin(theta) * np.cos(phi), \
                                    np.sin(theta) * np.sin(phi), np.cos(theta)])

    E_inc, cinc, Polarization = ic.initial_conditions(K_inc_vector, theta,
                                                      normal_vector, pte, ptm,
                                                      N, M)
    # print(cinc.shape)
    # print(cinc)

    cinc = np.linalg.inv(Wr) @ cinc
    ## COMPUTE FIELDS: similar idea but more complex for RCWA since you have individual modes each contributing
    reflected = Wr @ Sg['S11'] @ cinc
    transmitted = Wt @ Sg['S21'] @ cinc

    rx = reflected[0:NM, :]
    # rx is the Ex component.
    ry = reflected[NM:, :]
    #
    tx = transmitted[0:NM, :]
    ty = transmitted[NM:, :]

    # longitudinal components; should be 0
    rz = np.linalg.inv(kzr) @ (Kx @ rx + Ky @ ry)
    tz = np.linalg.inv(kz_trans) @ (Kx @ tx + Ky @ ty)

    ## we need to do some reshaping at some point

    ## apparently we're not done...now we need to compute 'diffraction efficiency'
    r_sq = np.square(np.abs(rx)) + np.square(np.abs(ry)) + np.square(
        np.abs(rz))
    t_sq = np.square(np.abs(tx)) + np.square(np.abs(ty)) + np.square(
        np.abs(tz))
    R = np.real(kzr) @ r_sq / np.real(kz_inc)
    #division by a scalar
    T = np.real(kz_trans) @ t_sq / (np.real(kz_inc))

    return np.sum(R), np.sum(T)


## need a simulation which can return the field profiles inside the structure
    ## incident wave properties, at this point, everything is in units of k_0
    n_i =  np.sqrt(e_r*m_r);

    # actually, in the definitions here, kx = k0*sin(theta)*cos(phi), so kx, ky here are normalized
    kx_inc = n_i * np.sin(theta) * np.cos(phi);
    ky_inc = n_i * np.sin(theta) * np.sin(phi);  # constant in ALL LAYERS; ky = 0 for normal incidence
    kz_inc = cmath.sqrt(e_r * 1 - kx_inc ** 2 - ky_inc ** 2);

    #remember, these Kx and Ky come out already normalized
    Kx, Ky = km.K_matrix_cubic_2D(kx_inc, ky_inc, k0, a, a, N, M); #Kx and Ky are diagonal but have a 0 on it
    ## density Kx and Ky (for now)

    ## =============== K Matrices for gap medium =========================
    ## specify gap media (this is an LHI so no eigenvalue problem should be solved
    e_h = 1; m_h = 1;
    Wg, Vg, Kzg = hl.homogeneous_module(Kx, Ky, e_h)

    ### ================= Working on the Reflection Side =========== ##
    Wr, Vr, kzr = hl.homogeneous_module(Kx, Ky, e_r); kz_storage.append(kzr)

    ## calculating A and B matrices for scattering matrix
    # since gap medium and reflection media are the same, this doesn't affect anything
    Ar, Br = sm.A_B_matrices(Wg, Wr, Vg, Vr);

    ## s_ref is a matrix, Sr_dict is a dictionary
    S_ref, Sr_dict = sm.S_R(Ar, Br); #scatter matrix for the reflection region
    S_matrices.append(S_ref);
    Sg = Sr_dict;

    Q_storage = list(); P_storage=  list();
    ## go through the layers
Esempio n. 4
0
    # actually, in the definitions here, kx = k0*sin(theta)*cos(phi), so kx, ky here are normalized
    kx_inc = n_i * np.sin(theta) * np.cos(phi)
    ky_inc = n_i * np.sin(theta) * np.sin(phi)
    # constant in ALL LAYERS; ky = 0 for normal incidence
    kz_inc = cmath.sqrt(e_r * 1 - kx_inc**2 - ky_inc**2)

    #remember, these Kx and Ky come out already normalized
    Kx, Ky = km.K_matrix_cubic_2D(kx_inc, ky_inc, k0, a, a, N, M)
    #Kx and Ky are diagonal but have a 0 on it
    ## density Kx and Ky (for now)

    ## =============== K Matrices for gap medium =========================
    ## specify gap media (this is an LHI so no eigenvalue problem should be solved
    e_h = 1
    m_h = 1
    Wg, Vg, Kzg = hl.homogeneous_module(Kx, Ky, e_h)

    ### ================= Working on the Reflection Side =========== ##
    Wr, Vr, kzr = hl.homogeneous_module(Kx, Ky, e_r)
    kz_storage.append(kzr)

    ## calculating A and B matrices for scattering matrix
    # since gap medium and reflection media are the same, this doesn't affect anything
    Ar, Br = sm.A_B_matrices(Wg, Wr, Vg, Vr)

    ## s_ref is a matrix, Sr_dict is a dictionary
    S_ref, Sr_dict = sm.S_R(Ar, Br)
    #scatter matrix for the reflection region
    S_matrices.append(S_ref)
    Sg = Sr_dict
def fun():
    '''
    run the RCWA simulation...do not use this code...
    :return:
    '''
    meters = 1
    centimeters = 1e-2 * meters
    degrees = np.pi / 180

    # Source parameters
    lam0 = 2 * centimeters
    theta = 0
    phi = 0
    pte = 1
    # te polarized
    ptm = 0
    normal_vector = np.array([0, 0, -1])  # positive z points down;
    ate_vector = np.array([0, 1, 0])
    # vector for the out of plane E-field
    k0 = 2 * np.pi / lam0
    print('k0: ' + str(k0))
    # structure parameters
    # reflection 1 and transmission 2
    ur1 = 1
    er1 = 2
    n_i = np.sqrt(ur1 * er1)
    ur2 = 1
    er2 = 9

    ## second layer
    urd = 1
    erd = 6

    # dimensions of the unit cell
    Lx = 1.75 * centimeters
    Ly = 1.5 * centimeters

    # thickness of layers
    d1 = 0.5 * centimeters
    d2 = 0.3 * centimeters
    w = 0.8 * Ly

    # RCWA parameters
    Nx = 512
    Ny = round(Nx * Ly / Lx)
    PQ = [1, 1]
    # number of spatial harmonics
    NH = (2 * (PQ[0]) + 1) * (2 * (PQ[1]) + 1)

    ## =========================== BUILD DEVICE ON GRID ==================================##
    dx = Lx / Nx
    dy = Ly / Ny
    xa = np.linspace(0, Lx, Nx)
    xa = xa - np.mean(xa)
    ya = np.linspace(0, Ly, Ny)
    ya = ya - np.mean(ya)

    # initialize layers

    UR = np.ones((Nx, Ny, 2))
    # interestin
    ER = erd * np.ones((Nx, Ny, 2))

    L = [d1, d2]

    # Build the triangle
    h = 0.5 * np.sqrt(3) * w
    ny = int(np.round(h / dy))
    # discrete height
    ny1 = np.round((Ny - ny) / 2)
    ny2 = ny1 + ny - 1
    print(str(ny1) + ', ' + str(ny2))

    for ny_ind in np.arange(ny1, ny2 + 1):
        # build the triangle slice wise
        f = (ny_ind - ny1) / (ny2 - ny1)
        # fractional occupation;

        nx = int(round(f * (w / Lx) * Nx))
        # x width
        nx1 = 1 + int(np.floor((Nx - nx) / 2))
        nx2 = int(nx1 + nx)
        # print(str(nx1)+', '+str(nx2))
        ER[nx1:nx2 + 1, int(ny_ind), 0] = er1

    E_conv = (cm.convmat2D(ER[:, :, 0], PQ[0], PQ[1]))
    np.set_printoptions(precision=4)
    print(E_conv)
    mu_conv = (np.identity(NH))

    ## Build the second layer (uniform)
    URC2 = (np.identity(NH))
    ERC2 = erd * (np.identity(NH))

    ## BUILD THE K_MATRIX
    kx_inc = n_i * np.sin(theta) * np.cos(phi)
    ky_inc = n_i * np.sin(theta) * np.sin(phi)
    # constant in ALL LAYERS; ky = 0 for normal incidence
    kz_inc = cmath.sqrt(n_i**2 - kx_inc**2 - ky_inc**2)

    Kx, Ky = km.K_matrix_cubic_2D(kx_inc, ky_inc, k0, Lx, Ly, PQ[0], PQ[1])

    # gap media
    Wg, Vg, Kzg = hl.homogeneous_module(Kx, Ky, 2)

    ## Get Kzr and Kztrans
    Wr, Vr, Kzr = hl.homogeneous_module(Kx, Ky, er1)
    Ar, Br = sm.A_B_matrices_half_space(Wr, Wg, Vr, Vg)
    # make sure this order is right
    Sr, Sr_dict = sm.S_R(Ar, Br)
    Sg = Sr_dict

    ## =================================================================##
    ##               First LAYER (homogeneous)
    ## =======================================================================##
    P, Q, Kzl = pq.P_Q_kz(Kx, Ky, E_conv, mu_conv)
    omega_sq = P @ Q
    ## no gaurantees this is hermitian or symmetric
    W1, lambda_matrix = em.eigen_W(omega_sq)
    V1 = em.eigen_V(Q, W1, lambda_matrix)
    A1, B1 = sm.A_B_matrices(W1, Wg, V1, Vg)
    S1, S1_dict = sm.S_layer(A1, B1, d1, k0, lambda_matrix)
    Sg_matrix, Sg = rs.RedhefferStar(Sg, S1_dict)

    ## =================================================================##
    ##               SECOND LAYER (homogeneous)
    ## =======================================================================##

    ##check with PQ formalism, which is unnecessary
    P2, Q2, Kz2_check = pq.P_Q_kz(Kx, Ky, ERC2, URC2)
    omega_sq_2 = P2 @ Q2
    W2, lambda_matrix_2 = em.eigen_W(
        omega_sq_2)  # somehow lambda_matrix is fine but W is full of errors
    V2 = em.eigen_V(Q2, W2, lambda_matrix_2)
    A2, B2 = sm.A_B_matrices(W2, Wg, V2, Vg)
    S2, S2_dict = sm.S_layer(A2, B2, d2, k0, lambda_matrix_2)
    Sg_matrix, Sg = rs.RedhefferStar(Sg, S2_dict)

    ## TRANSMISSION LAYER
    # #create ST
    Wt, Vt, Kzt = hl.homogeneous_module(Kx, Ky, er2)
    At, Bt = sm.A_B_matrices_half_space(Wt, Wg, Vt, Vg)
    # make sure this order is right
    St, St_dict = sm.S_T(At, Bt)
    ### FUCKKKKKKKKKKKKKKKK
    Sg_matrix, Sg = rs.RedhefferStar(Sg, St_dict)

    print('final Sg')
    print(Sg['S11'])

    ## ================START THE SSCATTERING CALCULATION ==========================##

    K_inc_vector = n_i * np.array([np.sin(theta) * np.cos(phi), \
                                   np.sin(theta) * np.sin(phi), np.cos(theta)])
    E_inc, cinc, Polarization = ic.initial_conditions(K_inc_vector, theta,
                                                      normal_vector, pte, ptm,
                                                      PQ[0], PQ[1])

    ## COMPUTE FIELDS: similar idea but more complex for RCWA since you have individual modes each contributing
    reflected = Wr @ Sg['S11'] @ cinc
    # reflection coefficients for every mode...
    transmitted = Wt @ Sg['S21'] @ cinc

    ## these include only (rx, ry), (tx, ty), which is okay as these are the only components for normal incidence in LHI
    rx = reflected[0:NH, :]
    ry = reflected[NH:, :]
    tx = transmitted[0:NH, :]
    ty = transmitted[NH:, :]

    # longitudinal components; should be 0
    rz = np.linalg.inv(Kzr) @ (Kx @ rx + Ky @ ry)
    tz = np.linalg.inv(Kzt) @ (Kx @ tx + Ky @ ty)

    print('rx')
    print(rx)
    print('ry')
    print(ry)
    print('rz')
    print(rz)

    ## apparently we're not done...now we need to compute 'diffraction efficiency'
    r_sq = np.square(np.abs(rx)) + np.square(np.abs(ry)) + np.square(
        np.abs(rz))
    t_sq = np.square(np.abs(tx)) + np.square(np.abs(ty)) + np.square(
        np.abs(tz))
    R = np.real(Kzr) @ r_sq / np.real(kz_inc)
    T = np.real(Kzt) @ t_sq / (np.real(kz_inc))

    print('final R vector-> matrix')
    print(np.reshape(R, (3, 3)))
    # should be 3x3
    print('final T vector/matrix')
    print(np.reshape(T, (3, 3)))
    print('final reflection: ' + str(np.sum(R)))
    print('final transmission: ' + str(np.sum(T)))
    print('sum of R and T: ' + str(np.sum(R) + np.sum(T)))

    ## if the sum isn't 1, that's a PROBLEM
    t1 = time.time()
    return np.sum(R), np.sum(T)