def rooFit203(): print ">>> setup model..." x = RooRealVar("x", "x", -10, 10) mean = RooRealVar("mean", "mean of gaussian", 0, -10, 10) gauss = RooGaussian("gauss", "gaussian PDF", x, mean, RooConst(1)) # Construct px = 1 (flat in x) px = RooPolynomial("px", "px", x) # Construct model = f*gx + (1-f)px f = RooRealVar("f", "f", 0., 1.) model = RooAddPdf("model", "model", RooArgList(gauss, px), RooArgList(f)) data = model.generate(RooArgSet(x), 10000) # RooDataSet print ">>> fit to full data range..." result_full = model.fitTo(data, Save(kTRUE)) # RooFitResult print "\n>>> fit \"signal\" range..." # Define "signal" range in x as [-3,3] x.setRange("signal", -3, 3) result_sig = model.fitTo(data, Save(kTRUE), Range("signal")) # RooFitResult print "\n>>> plot and print results..." # Make plot frame in x and add data and fitted model frame1 = x.frame(Title("Fitting a sub range")) # RooPlot data.plotOn(frame1, Name("data")) model.plotOn(frame1, Range("Full"), LineColor(kBlue), Name("model")) # Add shape in full ranged dashed model.plotOn(frame1, LineStyle(kDashed), LineColor(kRed), Name("model2")) # By default only fitted range is shown print "\n>>> result of fit on all data:" result_full.Print() print "\n>>> result of fit in in signal region (note increased error on signal fraction):" result_sig.Print() print ">>> draw on canvas..." canvas = TCanvas("canvas", "canvas", 100, 100, 800, 600) legend = TLegend(0.2, 0.85, 0.4, 0.65) legend.SetTextSize(0.032) legend.SetBorderSize(0) legend.SetFillStyle(0) gPad.SetLeftMargin(0.14) gPad.SetRightMargin(0.02) frame1.GetYaxis().SetLabelOffset(0.008) frame1.GetYaxis().SetTitleOffset(1.4) frame1.GetYaxis().SetTitleSize(0.045) frame1.GetXaxis().SetTitleSize(0.045) frame1.Draw() legend.AddEntry("data", "data", 'LEP') legend.AddEntry("model", "fit (full range)", 'L') legend.AddEntry("model2", "fit (signal range)", 'L') legend.Draw() canvas.SaveAs("rooFit203.png")
def PlotSignalShapes(Selection): f__ = TFile.Open( "datacards/22June/2dPlots.root") signal_fname_1 = ("signals/22June/out_{sample:s}_syst.root", "cms_hgg_13TeV" ) signal_fname_2 = ("signals/22June/out_ctcv_{sample:s}_syst.root" , "ctcv" ) samples = {"thw":signal_fname_2, "thq":signal_fname_2, "tth":signal_fname_1 , "vh":signal_fname_1 } purity_h_name = "{sample:s}/"+Selection+"/h{sample:s}_"+Selection+"_purity_CtCv" purities = RooArgList() signalshapes = RooArgList() ctOverCvs = [] mVar = None ctovercv_vals = None for sample in samples : purity = CtCvCpInfo("purity_" + sample) ctovercv_vals = sorted(purity.AllCtOverCVs.keys()) purity.FillFrom2DHisto( f__.Get( purity_h_name.format( sample=sample ) ) ) purity.GetCtOverCv() purities.add( purity.CtOverCvDataHistFunc ) objsToKeep.append( purity ) sFile = TFile.Open( samples[sample][0].format( sample=sample ) ) ws = sFile.Get( samples[sample][1] ) pdf = ws.pdf("RV{sample:s}_mh125".format( sample=sample) ) objsToKeep.append(sFile) objsToKeep.append(ws) objsToKeep.append(pdf) signalshapes.add( pdf ) ctOverCvs.append( ws.var( "CtOverCv" ) ) mVar = ws.var("CMS_hgg_mass") ret = RooAddPdf("signal" , "signal" , signalshapes , purities ) objsToKeep.append( ret ) plot = mVar.frame() options = "" for ctovercv in ctovercv_vals : for var in ctOverCvs: var.setVal( ctovercv ) name = "name%g" % ctovercv ret.plotOn( plot , RooFit.DrawOption(options) , RooFit.Name(name) ) c = TCanvas() plot.Draw() c.SaveAs("a.gif+") if not "same" in options : options += " same" return c
def test_plottable(): # construct pdf and toy data following example at # http://root.cern.ch/drupal/content/roofit # Observable mes = RooRealVar("mes", "m_{ES} (GeV)", 5.20, 5.30) # Parameters sigmean = RooRealVar("sigmean", "B^{#pm} mass", 5.28, 5.20, 5.30) sigwidth = RooRealVar("sigwidth", "B^{#pm} width", 0.0027, 0.001, 1.) # Build Gaussian PDF signal = RooGaussian("signal", "signal PDF", mes, sigmean, sigwidth) # Build Argus background PDF argpar = RooRealVar("argpar", "argus shape parameter", -20.0, -100., -1.) background = RooArgusBG("background", "Argus PDF", mes, RooFit.RooConst(5.291), argpar) # Construct signal+background PDF nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000) nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000) model = RooAddPdf("model", "g+a", RooArgList(signal, background), RooArgList(nsig, nbkg)) # Generate a toyMC sample from composite PDF data = model.generate(RooArgSet(mes), 2000) # Perform extended ML fit of composite PDF to toy data fitresult = model.fitTo(data, RooFit.Save(), RooFit.PrintLevel(-1)) # Plot toy data and composite PDF overlaid mesframe = asrootpy(mes.frame()) data.plotOn(mesframe) model.plotOn(mesframe) for obj in mesframe.objects: assert_true(obj) for curve in mesframe.curves: assert_true(curve) for hist in mesframe.data_hists: assert_true(hist) assert_true(mesframe.plotvar) with TemporaryFile(): mesframe.Write()
def fitNSig(ibdt, fulldata, isample): mean = RooRealVar("mass", "mean", B0Mass_, 3, 7, "GeV") sigma = RooRealVar("#sigma_{1}", "sigma", 0.028, 0, 10, "GeV") signalGauss = RooGaussian("signalGauss", "signal gauss", theBMass, mean, sigma) sigma2 = RooRealVar("#sigma_{2}", "sigma2", 0.048, 0, 0.09, "GeV") signalGauss2 = RooGaussian("signalGauss2", "signal gauss2", theBMass, mean, sigma2) f1 = RooRealVar("f1", "f1", 0.8, 0., 1.) gaus = RooAddPdf("gaus", "gaus1+gaus2", RooArgList(signalGauss, signalGauss2), RooArgList(f1)) pol_c1 = RooRealVar("p1", "coeff x^0 term", 0.5, -10, 10) pol_c2 = RooRealVar("p2", "coeff x^1 term", 0.5, -10, 10) # pol_c3 = RooRealVar ("p3" , "coeff x^2 term", 0.5, -10, 10); # slope = RooRealVar ("slope" , "slope" , 0.5, -10, 10); # bkg_exp = RooExponential("bkg_exp" , "exponential" , slope, theBMass ); bkg_pol = RooChebychev("bkg_pol", "2nd order pol", theBMass, RooArgList(pol_c1)) nsig = RooRealVar("Yield", "signal frac", 40000, 0, 1000000) nbkg = RooRealVar("nbkg", "bkg fraction", 1000, 0, 550000) cut = cut_base + '&& bdt_prob > %s' % (ibdt) data = fulldata.reduce(RooArgSet(theBMass, mumuMass, mumuMassE), cut) fitFunction = RooAddPdf("fitfunction", "fit function", RooArgList(gaus, bkg_pol), RooArgList(nsig, nbkg)) r = fitFunction.fitTo(data, RooFit.Extended(True), RooFit.Save(), RooFit.Range(4.9, 5.6), RooFit.PrintLevel(-1)) frame = theBMass.frame() data.plotOn(frame, RooFit.Binning(70), RooFit.MarkerSize(.7)) fitFunction.plotOn(frame, ) fitFunction.plotOn(frame, RooFit.Components("bkg_pol"), RooFit.LineStyle(ROOT.kDashed)) fitFunction.plotOn(frame, RooFit.Components("signalGauss"), RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kGreen + 1)) fitFunction.plotOn(frame, RooFit.Components("signalGauss2"), RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kOrange + 1)) parList = RooArgSet(nsig, sigma, sigma2, mean) ###### fitFunction.plotOn(frame, RooFit.Components("signalGauss2"), RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kGreen+2)); fitFunction.paramOn(frame, RooFit.Parameters(parList), RooFit.Layout(0.62, 0.86, 0.88)) canv = ROOT.TCanvas() frame.Draw() # canv.SaveAs('sig_fit_bdt%f_sample%i.pdf'%(ibdt,isample)) dict_s_v1[ibdt] = [nsig.getVal(), nsig.getError()] dict_sigma[ibdt] = math.sqrt(f1.getVal() * (sigma.getVal()**2) + (1 - f1.getVal()) * (sigma2.getVal()**2))
def bw_fit(ecm, infile, outdir, reconstruction): """Breit-Wigner fit of the Mw distribution""" file_ = TFile(infile, "r") file_.cd() mass_ = 'h_mW2' h_mass = gDirectory.Get(mass_) scale = h_mass.GetXaxis().GetBinWidth(1) / (h_mass.Integral("width")) h_mass.Scale(scale) mass_min = 40 mass_max = 120 mass = RooRealVar("Dijet mass", "Dijet mass", mass_min, mass_max, "GeV") # parameters for gaussian function gaus_sig = RooRealVar("#sigma_{G}", "Core Width", 1., 0.5, 10., "GeV") # gaus_sig.setConstant() # parameters for Crystall Ball distribution m_ = RooRealVar("#Delta m", "Bias", 0., -3., 3., "GeV") sigma = RooRealVar("#sigma", "Width", 1.7, 0., 10., "GeV") alpha = RooRealVar("#alpha", "Cut", -0.15, -5., 0.) n = RooRealVar("n", "Power", 2.4, 0.5, 10.) alpha.setConstant() n.setConstant() # Parameters for Breit-Wigner distribution m_res = RooRealVar("M_{W}", "W boson mass", 80.385, 80.0, 81.0, "GeV") width = RooRealVar("#Gamma", "W width", 2.085, 1.5, 2.5, "GeV") m_res.setConstant() width.setConstant() # Cristall-Ball lineshape resG = RooGaussian("resG", "Gaussian distribution", mass, m_, gaus_sig) resCB = RooCBShape("resCB", "Crystal Ball distribution", mass, m_, sigma, alpha, n) fracG = RooRealVar("f_{G}", "Gaussian Fraction", 0., 0., 1.) res = RooAddPdf("res", "Resolution Model", resG, resCB, fracG) # Breit-wigner lineshape bw = RooBreitWigner("bw", "Breit-Wigner distribution", mass, m_res, width) # Convolution bw_CB_conv = RooFFTConvPdf("bw_CB_conv", "Convolution", mass, bw, res) # Background p.d.f bgtau = RooRealVar("a_{BG}", "Backgroung Shape", -0.15, -1.0, 0.0, "1/GeV/c^{2}") bg = RooExponential("bg", "Background distribution", mass, bgtau) # Fit model nentries = h_mass.GetEntries() nsigmin = 0.5 * nentries nsigmean = 1.0 * nentries nsigmax = 1.05 * nentries nbkgmean = 0.01 * nentries nbkgmax = 0.1 * nentries nsig = RooRealVar("N_S", "#signal events", nsigmean, nsigmin, nsigmax) nbkg = RooRealVar("N_B", "#background events", nbkgmean, 0, nbkgmax) model = RooAddPdf("model", "W mass fit", RooArgList(bw_CB_conv, bg), RooArgList(nsig, nbkg)) ###### FIT c_name = "c_ " + mass_ + "_" + str(ecm) + "_" + reconstruction + "_fit" c_mass_fit = TCanvas( c_name, 'Fit of the reconstructed mass distribution with a convolution of Breit-Wigner and Crystal-Ball', 700, 500) c_mass_fit.cd() data = RooDataHist("data", "data", RooArgList(mass), h_mass) frame = mass.frame() data.plotOn(frame) model.fitTo(data, RooFit.Optimize(0)) model.plotOn(frame) model.paramOn(frame, RooFit.Layout(0.6, 0.90, 0.85)) frame.Draw() # norm = h_mass.Integral()/bw_CB_conv.createIntegral(RooArgSet(mass)).getValV() # m = m_.getValV()*norm # s = sigma.getValV()*norm m = m_.getVal() s = sigma.getVal() print("\n\n----------------------------------------------") print(" Fit results :") print(" Bias to apply on mW : {} GeV".format(m)) print(" Mw = {} +/- {} GeV".format((m + 80.385), s)) print("--------------------------------------------------") raw_input("") c_mass_fit.Print("{}fit/fit_{}_{}_{}.pdf".format(outdir, mass_, ecm, reconstruction)) # write into an output file and close the file outfilename = "{}fit/fit_{}_{}.root".format(outdir, mass_, ecm) outfile = TFile(outfilename, "UPDATE") c_mass_fit.Write("", TObject.kOverwrite) outfile.Write() outfile.Close()
# --- Construct signal+background PDF --- nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000) nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000) model = RooAddPdf("model", "g+a", RooArgList(signal, background), RooArgList(nsig, nbkg)) # --- Generate a toyMC sample from composite PDF --- data = model.generate(RooArgSet(mes), 2000) # --- Perform extended ML fit of composite PDF to toy data --- model.fitTo(data) # --- Plot toy data and composite PDF overlaid --- mesframe = mes.frame() data.plotOn(mesframe) model.plotOn(mesframe) model.plotOn(mesframe, RooFit.Components('background'), RooFit.LineStyle(kDashed)) mesframe.Draw() print 'nsig:',nsig.getValV(), '+-', nsig.getError() print 'nbkg:', nbkg.getValV(), '+-', nbkg.getError() print 'mes:', mes.getValV(), '+-', mes.getError() print 'mean:', sigmean.getValV(), '+-', sigmean.getError() print 'width:', sigwidth.getValV(), '+-', sigwidth.getError() print 'argpar:', argpar.getValV(), '+-', argpar.getError() from time import sleep sleep(10)
#rPhifit = tot.fitTo(splotData,Range(phimin,phimax),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False)) #nfits = nfits + 1 mean.setConstant(False) gamma.setConstant(False) sigma_1.setConstant(False) sigma_2.setConstant(False) rPhifit = tot.fitTo(splotData,Range(phimin,phimax),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False)) nfits = nfits + 1 c = TCanvas("canvas","canvas",1200,900) phiFrame = masskk.frame(Range(phimin,phimax),Normalization((nSig.getValV() + nBkg.getValV())), Title("#phi Mass")) splotData.plotOn(phiFrame) ratio = 1.0/float(nfits) tot.plotOn(phiFrame,Normalization(ratio)) bFrac = (nBkg.getValV())/(nSig.getValV() + nBkg.getValV()) bkg.plotOn(phiFrame,LineColor(kRed),Normalization(bFrac),LineStyle(kDashed)) signal.plotOn(phiFrame,LineColor(kGreen),Normalization(1.0-bFrac)) a0.setConstant(True) a1.setConstant(True) a2.setConstant(True) a3.setConstant(True) a4.setConstant(True) nBkg.setConstant(True) tot.paramOn(phiFrame,RooFit.Layout(0.57,0.99,0.65)) phiFrame.Draw()
class BaseFitter(object): def __init__(self, plot): assert (isinstance(plot, DataMCPlot)) self.plot = plot self._make_underlying_model() self._make_dataset() self._make_fit_model() self._fit() def _make_underlying_model(self): self.pdfs = {} self.yields = {} # yields are plain floats self.ryields = {} # keep track of roofit objects for memory management nbins, xmin, xmax = self.plot.histos[0].GetBinning() self.xvar = RooRealVar("x", "x", xmin, xmax) self.xvar.setBins(nbins) self.pdfs = {} self.hists = [] pdfs = RooArgList() yields = RooArgList() for compname, comp in self.plot.histosDict.iteritems(): print compname assert (isinstance(comp, Histogram)) hist = RooDataHist(compname, compname, RooArgList(self.xvar), comp.weighted) SetOwnership(hist, False) # self.hists.append(hist) pdf = RooHistPdf(compname, compname, RooArgSet(self.xvar), hist) self.pdfs[compname] = pdf self.pdfs[compname].Print() pdfs.add(pdf) nevts = comp.Integral(xmin=xmin, xmax=xmax) theyield = RooRealVar('n{}'.format(compname), 'n{}'.format(compname), nevts, 0, 50000) self.ryields[compname] = theyield self.yields[compname] = nevts yields.add(theyield) self.underlying_model = RooAddPdf('model', 'model', pdfs, yields) def _make_fit_model(self): pass def _make_dataset(self): nevents = sum(self.yields.values()) self.data = self.underlying_model.generate(RooArgSet(self.xvar), nevents) def _fit(self): self.tresult = self.underlying_model.fitTo(self.data, RooFit.Extended(), RooFit.Save()) self.tresult.Print() def draw_pdfs(self): self.pframe = self.xvar.frame() for pdf in self.pdfs.values(): pdf.plotOn(self.pframe) self.pframe.Draw() def draw_data(self): self.canvas_data = TCanvas() self.mframe = self.xvar.frame() self.data.plotOn(self.mframe) self.underlying_model.plotOn(self.mframe) for icomp, compname in enumerate(self.pdfs): self.underlying_model.plotOn(self.mframe, RooFit.Components(compname), RooFit.LineColor(icomp + 1)) self.mframe.Draw()
def fitChicSpectrum(dataset, binname): """ Fit chic spectrum""" x = RooRealVar('Qvalue', 'Q', 9.7, 10.1) x.setBins(80) mean_1 = RooRealVar("mean_1", "mean ChiB1", 9.892, 9, 10, "GeV") sigma_1 = RooRealVar("sigma_1", "sigma ChiB1", 0.0058, 'GeV') a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748) n1_1 = RooRealVar('n1_1', 'n1_1', 2.8) a2_1 = RooRealVar('#alpha2_1', '#alpha2_1', 1.739) n2_1 = RooRealVar('n2_1', 'n2_1', 3.0) deltam = RooRealVar('deltam', 'deltam', 0.01943) mean_2 = RooFormulaVar("mean_2", "@0+@1", RooArgList(mean_1, deltam)) sigma_2 = RooRealVar("sigma_2", "sigma ChiB2", 0.0059, 'GeV') a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738) n1_2 = RooRealVar('n1_2', 'n1_2', 2.8) a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699) n2_2 = RooRealVar('n2_2', 'n2_2', 3.0) parameters = RooArgSet() parameters.add(RooArgSet(sigma_1, sigma_2)) parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1) parameters.add(RooArgSet(a1_2, a2_2, n1_2, n2_2)) chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1) chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2) #background q01S_Start = 9.5 alpha = RooRealVar("#alpha", "#alpha", 1.5, -1, 3.5) #0.2 anziche' 1 beta = RooRealVar("#beta", "#beta", -2.5, -7., 0.) q0 = RooRealVar("q0", "q0", q01S_Start) #,9.5,9.7) delta = RooFormulaVar("delta", "TMath::Abs(@0-@1)", RooArgList(x, q0)) b1 = RooFormulaVar("b1", "@0*(@1-@2)", RooArgList(beta, x, q0)) signum1 = RooFormulaVar("signum1", "( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x, q0)) background = RooGenericPdf("background", "Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1, delta, alpha, b1)) parameters.add(RooArgSet(alpha, beta, q0)) #together chibs = RooArgList(chib1_pdf, chib2_pdf, background) n_chib = RooRealVar("n_chib", "n_chib", 2075, 0, 100000) ratio_21 = RooRealVar("ratio_21", "ratio_21", 0.5, 0, 1) n_chib1 = RooFormulaVar("n_chib1", "@0/(1+@1)", RooArgList(n_chib, ratio_21)) n_chib2 = RooFormulaVar("n_chib2", "@0/(1+1/@1)", RooArgList(n_chib, ratio_21)) n_background = RooRealVar('n_background', 'n_background', 4550, 0, 50000) ratio_list = RooArgList(n_chib1, n_chib2, n_background) modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list) frame = x.frame(RooFit.Title('m')) range = x.setRange('range', 9.7, 10.1) result = modelPdf.fitTo(dataset, RooFit.Save(), RooFit.Range('range')) dataset.plotOn(frame, RooFit.MarkerSize(0.7)) modelPdf.plotOn(frame, RooFit.LineWidth(2)) #plotting canvas = TCanvas('fit', "", 1400, 700) canvas.Divide(1) canvas.cd(1) gPad.SetRightMargin(0.3) gPad.SetFillColor(10) modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9)) frame.Draw() canvas.SaveAs('out-' + binname + '.png')
sig = RooAddPdf("sig", "g+g", sig_1, sig_2, gFrac) #sig_1 = RooGaussian("sig_1","sig_1",mass,mean,sigma) nSig = RooRealVar("nSig", "nSig", 100, 100, len(data["mass"].values)) nBkg = RooRealVar("nBkg", "nBkg", 1000, 100, len(data["mass"].values)) #tot = RooAddPdf("tot","g+cheb",RooArgList(sig,sig_3,bkg),RooArgList(sFrac,bumpFrac)) tot = RooAddPdf("tot", "g+cheb", RooArgList(sig_1, bkg), RooArgList(nSig, nBkg)) h1 = TH1F("hist", "hist", 200, 4.05, 5.75) map(h1.Fill, data["mass"].values) masslist = RooArgList(mass) dh = RooDataHist("dh", "dh", masslist, h1) tot.fitTo(dh) canvas = TCanvas("c", "c", 1200, 1000) kkFrame = mass.frame() dh.plotOn(kkFrame) tot.plotOn(kkFrame) #,RooFit.Normalization(1.0/float(nfit))) dh.plotOn(kkFrame) #tot.paramOn(kkFrame,RooFit.Layout(0.57,0.99,0.65)) kkFrame.Draw() canvas.Draw() canvas.SaveAs("test.png")
def rooFit202(): print ">>> setup model component: gaussian signals and Chebychev polynomial background..." x = RooRealVar("x", "x", 0, 10) mean = RooRealVar("mean", "mean of gaussian", 5) sigma1 = RooRealVar("sigma1", "width of gaussian", 0.5) sigma2 = RooRealVar("sigma2", "width of gaussian", 1.0) sig1 = RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = RooGaussian("sig2", "Signal component 2", x, mean, sigma2) a0 = RooRealVar("a0", "a0", 0.5, 0., 1.) a1 = RooRealVar("a1", "a1", -0.2, 0., 1.) bkg = RooChebychev("bkg", "Background", x, RooArgList(a0, a1)) # Sum the signal components into a composite signal p.d.f. sig1frac = RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.) sig = RooAddPdf("sig", "Signal", RooArgList(sig1, sig2), RooArgList(sig1frac)) print ">>>\n>>> METHOD 1" print ">>> construct extended composite model..." # Sum the composite signal and background into an extended pdf nsig*sig+nbkg*bkg nsig = RooRealVar("nsig", "number of signal events", 500, 0., 10000) nbkg = RooRealVar("nbkg", "number of background events", 500, 0, 10000) model = RooAddPdf("model", "(g1+g2)+a", RooArgList(bkg, sig), RooArgList(nbkg, nsig)) print ">>> sample, fit and plot extended model...\n" # Generate a data sample of expected number events in x from model # nsig + nbkg = model.expectedEvents() # NOTE: since the model predicts a specific number events, one can # omit the requested number of events to be generated # Introduce Poisson fluctuation with Extended(kTRUE) data = model.generate(RooArgSet(x), Extended(kTRUE)) # RooDataSet # Fit model to data, extended ML term automatically included # NOTE: Composite extended pdfs can only be successfully fit if the extended likelihood # term -log(Poisson(Nobs,Nexp)) is included in the minimization because they have # one extra degree of freedom in their parameterization that is constrained by # this extended term. If a pdf is capable of calculating an extended term (i.e. # any extended RooAddPdf), the extended term is AUTOMATICALLY included in the # likelihood calculation. Override this behaviour with Extended(): # Extended(kTRUE) ADD extended likelihood term # Extended(kFALSE) DO NOT ADD extended likelihood #model.fitTo(data,Extended(kTRUE)) model.fitTo(data) print "\n>>> plot data, model and model components..." # Plot data and PDF overlaid, use expected number of events for pdf projection # normalization, rather than observed number of events, data.numEntries() frame1 = x.frame(Title("extended ML fit example")) # RooPlot data.plotOn(frame1, Binning(30), Name("data")) model.plotOn(frame1, Normalization(1.0, RooAbsReal.RelativeExpected), Name("model")) # Overlay the background components of model # NOTE: By default, the pdf is normalized to event count of the last dataset added # to the plot frame. Use "RelativeExpected" to normalize to the expected # event count of the pdf instead argset1 = RooArgSet(bkg) argset2 = RooArgSet(sig1) argset3 = RooArgSet(sig2) argset4 = RooArgSet(bkg, sig2) model.plotOn(frame1, Components(argset1), LineStyle(kDashed), LineColor(kBlue), Normalization(1.0, RooAbsReal.RelativeExpected), Name("bkg")) #model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kBlue), Name("bkg2")) model.plotOn(frame1, Components(argset2), LineStyle(kDotted), LineColor(kMagenta), Normalization(1.0, RooAbsReal.RelativeExpected), Name("sig1")) model.plotOn(frame1, Components(argset3), LineStyle(kDotted), LineColor(kPink), Normalization(1.0, RooAbsReal.RelativeExpected), Name("sig2")) model.plotOn(frame1, Components(argset4), LineStyle(kDashed), LineColor(kAzure - 4), Normalization(1.0, RooAbsReal.RelativeExpected), Name("bkgsig2")) print "\n>>> structure of composite pdf:" model.Print("t") # "tree" mode print "\n>>> parameters:" params = model.getVariables() # RooArgSet params.Print("v") params.Print() print "\n>>> params.find(\"...\").getVal():" print ">>> sigma1 = %.2f" % params.find("sigma1").getVal() print ">>> sigma2 = %.2f" % params.find("sigma2").getVal() print ">>> nsig = %6.2f, sig1frac = %5.2f" % ( params.find("nsig").getVal(), params.find("sig1frac").getVal()) print ">>> nbkg = %6.2f" % params.find("nbkg").getVal() print ">>>\n>>> components:" comps = model.getComponents() # RooArgSet sig = comps.find("sig") # RooAbsArg sigVars = sig.getVariables() # RooArgSet sigVars.Print() print ">>>\n>>> METHOD 2" print ">>> construct extended components first..." # Associated nsig/nbkg as expected number of events with sig/bkg nsig = RooRealVar("nsig", "number of signal events", 500, 0., 10000) nbkg = RooRealVar("nbkg", "number of background events", 500, 0, 10000) esig = RooExtendPdf("esig", "extended signal pdf", sig, nsig) ebkg = RooExtendPdf("ebkg", "extended background pdf", bkg, nbkg) print ">>> sum extended components without coefficients..." # Construct sum of two extended p.d.f. (no coefficients required) model2 = RooAddPdf("model2", "(g1+g2)+a", RooArgList(ebkg, esig)) # METHOD 2 is functionally completely equivalent to METHOD 1. # Its advantage is that the yield parameter is associated to the shape pdf # directly, while in METHOD 1 the association is made after constructing # a RooAddPdf. Also, class RooExtendPdf offers extra functionality to # interpret event counts in a different range. print ">>> plot model..." model2.plotOn(frame1, LineStyle(kDashed), LineColor(kRed), Normalization(1.0, RooAbsReal.RelativeExpected), Name("model2")) print ">>> draw on canvas..." canvas = TCanvas("canvas", "canvas", 100, 100, 800, 600) legend = TLegend(0.2, 0.85, 0.4, 0.65) legend.SetTextSize(0.032) legend.SetBorderSize(0) legend.SetFillStyle(0) gPad.SetLeftMargin(0.14) gPad.SetRightMargin(0.02) frame1.GetYaxis().SetLabelOffset(0.008) frame1.GetYaxis().SetTitleOffset(1.4) frame1.GetYaxis().SetTitleSize(0.045) frame1.GetXaxis().SetTitleSize(0.045) frame1.Draw() legend.AddEntry("data", "data", 'LEP') legend.AddEntry("model", "composite model", 'L') legend.AddEntry("model2", "composite model (method 2)", 'L') legend.AddEntry("bkg", "background only", 'L') #legend.AddEntry("bkg2", "background only (no extended norm)", 'L') legend.AddEntry("sig1", "signal 1", 'L') legend.AddEntry("sig2", "signal 2", 'L') legend.AddEntry("bkgsig2", "background + signal 2", 'L') legend.Draw() canvas.SaveAs("rooFit202.png")
def fitData(fulldata, ibin, w): cut = cut_base + '&& (mumuMass*mumuMass > %s && mumuMass*mumuMass < %s)'%(q2binning[ibin], q2binning[ibin+1]) data = fulldata.reduce(RooArgSet(tagged_mass,mumuMass,mumuMassE), cut) nrt_mc = _getFittedVar("nRT_%s"%ibin, w) nwt_mc = _getFittedVar("nWT_%s"%ibin, w) fraction = nrt_mc / (nrt_mc + nwt_mc) print 'mistag fraction on MC for bin ', ibin , ' : ' , fraction.n , '+/-', fraction.s ### creating RT component w.loadSnapshot("reference_fit_RT_%s"%ibin) mean_rt = w.var("mean^{RT%s}"%ibin) sigma_rt1 = w.var("#sigma_{RT1}^{%s}"%ibin) sigma_rt2 = RooRealVar() alpha_rt1 = RooRealVar() alpha_rt2 = RooRealVar() n_rt1 = RooRealVar() n_rt2 = RooRealVar() f1rt = RooRealVar() ## double cb fast if ibin < 4: alpha_rt1 = w.var("#alpha_{RT1}^{%s}"%ibin) alpha_rt2 = w.var("#alpha_{RT2}^{%s}"%ibin) n_rt1 = w.var("n_{RT1}^{%s}"%ibin) n_rt2 = w.var("n_{RT2}^{%s}"%ibin) ## double cb old else: sigma_rt2 = w.var("#sigma_{RT2}^{%s}"%ibin) alpha_rt1 = w.var("#alpha_{RT1}^{%s}"%ibin) alpha_rt2 = w.var("#alpha_{RT2}^{%s}"%ibin) n_rt1 = w.var("n_{RT1}^{%s}"%ibin) n_rt2 = w.var("n_{RT2}^{%s}"%ibin) f1rt = w.var("f^{RT%s}"%ibin) theRTgauss = w.pdf("doublecb_RT%s"%ibin) ### creating WT component w.loadSnapshot("reference_fit_WT_%s"%ibin) mean_wt = w.var("mean_{WT}^{%s}"%ibin) sigma_wt = w.var("#sigma_{WT1}^{%s}"%ibin) alpha_wt1 = w.var("#alpha_{WT1}^{%s}"%ibin) alpha_wt2 = w.var("#alpha_{WT2}^{%s}"%ibin) n_wt1 = w.var("n_{WT1}^{%s}"%ibin) n_wt2 = w.var("n_{WT2}^{%s}"%ibin) theWTgauss = w.pdf("doublecb_%s"%ibin) ### creating variable for the difference between the two peaks deltaPeaks = RooFormulaVar("deltaPeaks%s"%ibin, "@0 - @1", RooArgList(mean_rt, mean_wt)) frt = RooRealVar ("F_{RT}%s"%ibin , "frt" , fraction.n , 0, 1) signalFunction = RooAddPdf ("sumgaus%s"%ibin , "rt+wt" , RooArgList(theRTgauss,theWTgauss), RooArgList(frt)) ### now create background parametrization slope = RooRealVar ("slope_%s"%ibin , "slope" , 0.5, -10, 10); bkg_exp = RooExponential("bkg_exp%s"%ibin , "exponential" , slope, tagged_mass ); pol_c1 = RooRealVar ("p1_%s"%ibin , "coeff x^0 term" , 0.5, -10, 10); pol_c2 = RooRealVar ("p2_%s"%ibin , "coeff x^1 term" , 0.5, -10, 10); bkg_pol = RooPolynomial ("bkg_pol%s"%ibin , "2nd order pol" , tagged_mass, RooArgList(pol_c1, pol_c2)); fsig = RooRealVar("fsig%s"%ibin , "fsig" , 0.9, 0, 1); # nsig = RooRealVar("Yield%s"%ibin , "signal frac" , 1000, 0, 10000); # nbkg = RooRealVar("nbkg%s"%ibin , "bkg fraction" , 1000, 0, 500000); nsig = RooRealVar("Yield" , "signal frac" , 600000, 0, 5000000); nbkg = RooRealVar("nbkg" , "bkg fraction" , 100000, 0, 2000000); # if ibin==4: # nsig.setRange(500000,1500000) # nsig.setVal(900000) # nbkg.setRange(80000,1000000) # nbkg.setVal(100000) ### creating constraints c_vars = RooArgSet() c_pdfs = RooArgSet() c_sigma_rt1 = _constrainVar(sigma_rt1, 1) c_alpha_rt1 = _constrainVar(alpha_rt1, 1) c_alpha_rt2 = _constrainVar(alpha_rt2, 1) c_n_rt1 = _constrainVar(n_rt1, 1) c_n_rt2 = _constrainVar(n_rt2, 1) c_sigma_wt = _constrainVar(sigma_wt, 1) c_alpha_wt1 = _constrainVar(alpha_wt1, 1) c_alpha_wt2 = _constrainVar(alpha_wt2, 1) c_n_wt1 = _constrainVar(n_wt1, 1) c_n_wt2 = _constrainVar(n_wt2, 1) if ibin < 4: c_pdfs = RooArgSet(c_sigma_rt1, c_alpha_rt1, c_alpha_rt2, c_n_rt1, c_n_rt2) c_vars = RooArgSet(sigma_rt1, alpha_rt1, alpha_rt2, n_rt1, n_rt2) else: c_sigma_rt2 = _constrainVar(sigma_rt2, 1) c_pdfs = RooArgSet(c_sigma_rt1, c_sigma_rt2, c_alpha_rt1, c_alpha_rt2, c_n_rt1, c_n_rt2) c_vars = RooArgSet( sigma_rt1, sigma_rt2, alpha_rt1, alpha_rt2, n_rt1, n_rt2) c_pdfs.add(c_sigma_wt); c_vars.add(sigma_wt) c_pdfs.add(c_alpha_wt1); c_vars.add(alpha_wt1) c_pdfs.add(c_alpha_wt2); c_vars.add(alpha_wt2) c_pdfs.add(c_n_wt1); c_vars.add(n_wt1) c_pdfs.add(c_n_wt2); c_vars.add(n_wt2) c_deltaPeaks = RooGaussian("c_deltaPeaks%s"%ibin , "c_deltaPeaks", deltaPeaks, ROOT.RooFit.RooConst( deltaPeaks.getVal() ), ROOT.RooFit.RooConst( 0.0005 ) ## value to be checked ) c_pdfs.add(c_deltaPeaks) c_vars.add(deltaPeaks) c_frt = RooGaussian("c_frt%s"%ibin , "c_frt" , frt, ROOT.RooFit.RooConst(fraction.n) , ROOT.RooFit.RooConst(frt_sigma[ibin]) ) c_pdfs.add(c_frt) c_vars.add(frt) constr_list = RooArgList(c_pdfs) constr_list.add(signalFunction) c_signalFunction = RooProdPdf ("c_signalFunction", "c_signalFunction", constr_list) # mean = RooRealVar ("mass" , "mean" , B0Mass_, 3, 7, "GeV") # sigma = RooRealVar ("#sigma_{1}" , "sigma" , 0.028, 0, 10, "GeV") # signalGauss = RooGaussian("signalGauss" , "signal gauss" , tagged_mass, mean,sigma) # # sigma2 = RooRealVar ("#sigma_{2}" , "sigma2" , 0.048, 0, 0.07, "GeV") # signalGauss2 = RooGaussian("signalGauss2" , "signal gauss2" , tagged_mass, mean,sigma2) # f1 = RooRealVar ("f1" , "f1" , 0.8 , 0., 1.) # gaus = RooAddPdf ("gaus" , "gaus1+gaus2" , RooArgList(signalGauss,signalGauss2), RooArgList(f1)) # pol_c1 = RooRealVar ("p1" , "coeff x^0 term", 0.5, -10, 10); # pol_c2 = RooRealVar ("p2" , "coeff x^1 term", 0.5, -10, 10); # pol_c3 = RooRealVar ("p3" , "coeff x^2 term", 0.5, -10, 10); # slope = RooRealVar ("slope" , "slope" , 0.5, -10, 10); # bkg_exp = RooExponential("bkg_exp" , "exponential" , slope, tagged_mass ); # bkg_pol = RooChebychev("bkg_pol" , "2nd order pol" , tagged_mass, RooArgList(pol_c1,pol_c2)); fitFunction = RooAddPdf ("fitfunction%s"%ibin , "fit function" , RooArgList(c_signalFunction, bkg_exp), RooArgList(nsig, nbkg)) # r = fitFunction.fitTo(data, # # RooFit.Extended(True), # RooFit.Range("full"), # ROOT.RooFit.Constrain(c_vars), # ROOT.RooFit.Minimizer("Minuit2","migrad"), # ROOT.RooFit.Hesse(True), # ROOT.RooFit.Strategy(2), # ROOT.RooFit.Minos(False), # ) print 'fit with Hesse strategy 2 done, now Minos' r = fitFunction.fitTo(data, RooFit.Extended(True), RooFit.Save(), RooFit.Range("full"), RooFit.Verbose(False), ROOT.RooFit.Constrain(c_vars), # ROOT.RooFit.Minimizer("Minuit2","migrad"), # ROOT.RooFit.Hesse(True), # ROOT.RooFit.Strategy(2), # ROOT.RooFit.Minos(False), ) r.Print() r.correlationMatrix().Print() fitStats['data%s'%(ibin)] = r.status() covStats['data%s'%(ibin)] = r.covQual() frame = tagged_mass.frame( RooFit.Range("full") ) data.plotOn(frame, RooFit.Binning(nbins), RooFit.MarkerSize(.7)) fitFunction.plotOn(frame, RooFit.NormRange("full"), RooFit.Range("full")) ## evaluate sort of chi2 and save number of RT/WT events observables = RooArgSet(tagged_mass) flparams = fitFunction.getParameters(observables) nparam = int(flparams.selectByAttrib("Constant",ROOT.kFALSE).getSize()) pdfstring = "fitfunction%s_Norm[tagged_mass]_Range[full]_NormRange[full]"%ibin chi2s['data%s'%ibin] = frame.chiSquare(pdfstring, "h_fulldata", nparam) frame. addObject(_writeChi2( chi2s['data%s'%ibin] )) drawPdfComponents(fitFunction, frame, ROOT.kAzure, RooFit.NormRange("full"), RooFit.Range("full"), isData = True) # fitFunction.paramOn(frame, RooFit.Layout(0.62,0.86,0.89)) parList = RooArgSet (nsig, mean_rt, sigma_rt, alpha_rt1, alpha_rt2, n_rt1, n_rt2, mean_wt, sigma_wt) # parList.add(alphawt1) # parList.add(alphawt2) # parList.add(nwt1) # parList.add(nwt2) parList.add(frt) fitFunction.paramOn(frame, RooFit.Parameters(parList), RooFit.Layout(0.62,0.86,0.89)) frame.Draw() niceFrame(frame, '') frame. addObject(_writeFitStatus(r)) c1 = ROOT.TCanvas() upperPad = ROOT.TPad('upperPad' , 'upperPad' , 0., 0.35 , 1., 1. ) lowerPad = ROOT.TPad('lowerPad' , 'lowerPad' , 0., 0.0 , 1., 0.345 ) upperPad.SetBottomMargin(0.012) lowerPad.SetTopMargin(0) lowerPad.SetBottomMargin(0.2) upperPad.Draw(); lowerPad.Draw() upperPad.cd() frame.Draw() if not args.year=='test': writeCMS(frame, args.year, [ q2binning[ibin], q2binning[ibin+1] ], 0) frame.Draw() ## add plot of pulls lowerPad.cd() hpull = frame.pullHist("h_fulldata", pdfstring) frame2 = tagged_mass.frame(RooFit.Range("full"), RooFit.Title('')) frame2.addPlotable(hpull,"P") niceFrameLowerPad(frame2, 'pull') frame2.Draw() line = ROOT.TLine(5.0,1,5.6,1) line.SetLineColor(ROOT.kGreen+3) line.Draw() for ilog in [True,False]: upperPad.SetLogy(ilog) c1.SaveAs('fit_results_mass/save_fit_data_%s_%s_LMNR_Update%s_newSigmaFRT_pars_Jpsi.pdf'%(ibin, args.year, '_logScale'*ilog)) out_f.cd() r.Write('results_data_%s'%(ibin)) params = fitFunction.getParameters(RooArgSet(tagged_mass)) out_w.saveSnapshot("reference_fit_data_%s"%(ibin),params,ROOT.kTRUE) getattr(out_w, 'import')(fitFunction)
rrv_number_Total_background_MC.setError(TMath.Sqrt( rrv_number_WJets.getError()* rrv_number_WJets.getError()+ rrv_number_VV.getError()* rrv_number_VV.getError()+ rrv_number_TTbar.getError()* rrv_number_TTbar.getError()+ rrv_number_STop.getError() *rrv_number_STop.getError() )); model_Total_background_MC = RooAddPdf("model_Total_background_MC_xww","model_Total_background_MC_xww",RooArgList(old_workspace.pdf("WJets_xww_%s_%s"%(options.channel,options.category)), old_workspace.pdf("VV_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("TTbar_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("STop_xww_%s_%s"%(options.channel,options.category))),RooArgList(rrv_number_WJets,rrv_number_VV,rrv_number_TTbar,rrv_number_STop)); rrv_number_signal.setVal(rrv_number_signal.getVal()*6.25); #### scale factor in order to scale MC to data in the final plot -> in order to avoid the normalization to data which is done by default in rooFit scale_number_Total_background_MC = rrv_number_Total_background_MC.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries(); scale_number_signal = rrv_number_signal.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries(); model_Total_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC),RooFit.Name("total_MC"),RooFit.Components("WJets_xww_%s_%s,VV_xww_%s_%s,TTbar_xww_%s_%s,STop_xww_%s_%s"%(options.channel,options.category,options.channel,options.category,options.channel,options.category,options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kRed), RooFit.VLines(),RooFit.LineWidth(2)); model_signal_background_MC = RooAddPdf("model_signal_background_MC_xww","model_signal_background_MC_xww",RooArgList(model_pdf,model_Total_background_MC),RooArgList(rrv_number_signal,rrv_number_Total_background_MC)); model_signal_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC+scale_number_signal),RooFit.Name("total_SpB_MC"),RooFit.Components("BulkWW_xww_%s_%s,model_Total_background_MC_xww"%(options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kBlue), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(7)); model_pdf.plotOn(mplot,RooFit.Name("total_S_MC"),RooFit.Normalization(scale_number_signal),RooFit.DrawOption("L"), RooFit.LineColor(kGreen+2), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(kDashed)); os.system("mkdir -p ./plots_signal_width"); name = TString("check_%.3f_%.3f"%(mass[iMass],gammaVal)); name.ReplaceAll("0.","0_"); mplot.GetYaxis().SetRangeUser(1e-3,mplot.GetMaximum()*1.2); draw_canvas(mplot,"plots_signal_width/",name,0,1); new_workspace.writeToFile(new_file.GetName());
def fitChicSpectrum(dataset,binname): """ Fit chic spectrum""" x = RooRealVar('Qvalue','Q',9.7,10.1) x.setBins(80) mean_1 = RooRealVar("mean_1","mean ChiB1",9.892,9,10,"GeV") sigma_1 = RooRealVar("sigma_1","sigma ChiB1",0.0058,'GeV') a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748) n1_1 = RooRealVar('n1_1', 'n1_1',2.8 ) a2_1 = RooRealVar('#alpha2_1', '#alpha2_1',1.739) n2_1 = RooRealVar('n2_1', 'n2_1', 3.0) deltam = RooRealVar('deltam','deltam',0.01943) mean_2 = RooFormulaVar("mean_2","@0+@1", RooArgList(mean_1,deltam)) sigma_2 = RooRealVar("sigma_2","sigma ChiB2",0.0059,'GeV') a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738) n1_2 = RooRealVar('n1_2', 'n1_2', 2.8) a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699) n2_2 = RooRealVar('n2_2', 'n2_2', 3.0) parameters=RooArgSet() parameters.add(RooArgSet(sigma_1, sigma_2)) parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1) parameters.add(RooArgSet( a1_2, a2_2, n1_2, n2_2)) chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1) chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2) #background q01S_Start = 9.5 alpha = RooRealVar("#alpha","#alpha",1.5,-1,3.5)#0.2 anziche' 1 beta = RooRealVar("#beta","#beta",-2.5,-7.,0.) q0 = RooRealVar("q0","q0",q01S_Start)#,9.5,9.7) delta = RooFormulaVar("delta","TMath::Abs(@0-@1)",RooArgList(x,q0)) b1 = RooFormulaVar("b1","@0*(@1-@2)",RooArgList(beta,x,q0)) signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q0) ) background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) ) parameters.add(RooArgSet(alpha, beta, q0)) #together chibs = RooArgList(chib1_pdf,chib2_pdf,background) n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000) ratio_21 = RooRealVar("ratio_21","ratio_21",0.5,0,1) n_chib1 = RooFormulaVar("n_chib1","@0/(1+@1)",RooArgList(n_chib, ratio_21)) n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21)) n_background = RooRealVar('n_background','n_background',4550, 0, 50000) ratio_list = RooArgList(n_chib1, n_chib2, n_background) modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list) frame = x.frame(RooFit.Title('m')) range = x.setRange('range',9.7,10.1) result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range')) dataset.plotOn(frame,RooFit.MarkerSize(0.7)) modelPdf.plotOn(frame, RooFit.LineWidth(2) ) #plotting canvas = TCanvas('fit', "", 1400, 700 ) canvas.Divide(1) canvas.cd(1) gPad.SetRightMargin(0.3) gPad.SetFillColor(10) modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9)) frame.Draw() canvas.SaveAs( 'out-'+binname + '.png' )
def fit_gau2_che(var, dataset, title='', print_pars=False, test=False, mean_=None, sigma_=None, sigma1_=None, sigmaFraction_=None): # define background c0 = RooRealVar('c0', 'constant', 0.1, -1, 1) c1 = RooRealVar('c1', 'linear', 0.6, -1, 1) c2 = RooRealVar('c2', 'quadratic', 0.1, -1, 1) c3 = RooRealVar('c3', 'c3', 0.1, -1, 1) bkg = RooChebychev('bkg', 'background pdf', var, RooArgList(c0, c1, c2, c3)) # define signal val = 5.28 dmean = 0.05 valL = val - dmean valR = val + dmean if mean_ is None: mean = RooRealVar("mean", "mean", val, valL, valR) else: mean = RooRealVar("mean", "mean", mean_) val = 0.05 dmean = 0.02 valL = val - dmean valR = val + dmean if sigma_ is None: sigma = RooRealVar('sigma', 'sigma', val, valL, valR) else: sigma = RooRealVar('sigma', 'sigma', sigma_) if sigma1_ is None: sigma1 = RooRealVar('sigma1', 'sigma1', val, valL, valR) else: sigma1 = RooRealVar('sigma1', 'sigma1', sigma1_) peakGaus = RooGaussian("peakGaus", "peakGaus", var, mean, sigma) peakGaus1 = RooGaussian("peakGaus1", "peakGaus1", var, mean, sigma1) if sigmaFraction_ is None: sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", 0.5, 0., 1.) else: sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", sigmaFraction_) glist = RooArgList(peakGaus, peakGaus1) peakG = RooAddPdf("peakG","peakG", glist, RooArgList(sigmaFraction)) listPeak = RooArgList("listPeak") listPeak.add(peakG) listPeak.add(bkg) fbkg = 0.45 nEntries = dataset.numEntries() val=(1-fbkg)* nEntries listArea = RooArgList("listArea") areaPeak = RooRealVar("areaPeak", "areaPeak", val, 0.,nEntries) listArea.add(areaPeak) nBkg = fbkg*nEntries areaBkg = RooRealVar("areaBkg","areaBkg", nBkg, 0.,nEntries) listArea.add(areaBkg) model = RooAddPdf("model", "fit model", listPeak, listArea) if not test: fitres = model.fitTo(dataset, RooFit.Extended(kTRUE), RooFit.Minos(kTRUE),RooFit.Save(kTRUE)) nbins = 35 frame = var.frame(nbins) frame.GetXaxis().SetTitle("B^{0} mass (GeV/c^{2})") frame.GetXaxis().CenterTitle() frame.GetYaxis().CenterTitle() frame.SetTitle(title) mk_size = RooFit.MarkerSize(0.3) mk_style = RooFit.MarkerStyle(kFullCircle) dataset.plotOn(frame, mk_size, mk_style) model.plotOn(frame) as_bkg = RooArgSet(bkg) cp_bkg = RooFit.Components(as_bkg) line_style = RooFit.LineStyle(kDashed) model.plotOn(frame, cp_bkg, line_style) if print_pars: fmt = RooFit.Format('NEU') lyt = RooFit.Layout(0.65, 0.95, 0.92) param = model.paramOn(frame, fmt, lyt) param.getAttText().SetTextSize(0.02) param.getAttText().SetTextFont(60) frame.Draw() pars = [areaBkg, areaPeak, c0, c1, c2, c3, mean, sigma, sigma1, sigmaFraction] return pars
print numEvts # In[10]: tot.fitTo(dh) # In[11]: massFrame = mass.frame() massFrame.SetTitle("Phi signal") dh.plotOn(massFrame) tot.plotOn(massFrame) gauss.plotOn(massFrame,LineColor(kGreen),LineStyle(kDashed),Normalization((sFrac.getValV()*numEvts)/(numEvts))) cheb.plotOn(massFrame,LineColor(kMagenta),LineStyle(kDotted),Normalization(((1.0-sFrac.getValV())*numEvts)/(numEvts))) tot.paramOn(massFrame,Layout(0.60,0.99,0.75)); massFrame.Draw() # In[12]: plotmax = hist.GetMaximum()*1.05 sidesigma = sigma.getValV() leftlowside = -7.*sidesigma + mean.getValV() leftupside = -5.*sidesigma + mean.getValV() rightlowside = +5.*sidesigma + mean.getValV() rightupside = +7.*sidesigma + mean.getValV()
from ROOT import RooAddPdf phiFrac = RooRealVar( 'phiFrac', 'phiFrac', 0.96, 0., 1. ) phiFrac.setError(0.003) KKMassPdf = RooAddPdf( 'KKMassPdf', 'KKMassPdf', phiMassPdf, KKSWavePdf, phiFrac ) #Fit fitResult = KKMassPdf.fitTo( sigData, SumW2Error = False, Save = True, Minos = False, **fitOpts ) fitResult.PrintSpecial( text = True ) #Plot KKMassPlot = KKMassVar.frame(120) if drawTotalDists : data.plotOn( KKMassPlot, MarkerStyle = kFullCircle, MarkerSize = 0.5, MarkerColor = kRed, LineWidth = 2, LineColor = kRed ) sigData.plotOn( KKMassPlot, MarkerStyle = kFullCircle, MarkerSize = 0.5, LineWidth = 2 ) KKMassPdf.plotOn( KKMassPlot, LineStyle = kSolid, LineWidth = 3, LineColor = kBlue ) #KKMassPdf.plotOn( KKMassPlot, LineStyle = 7, LineWidth = 3, LineColor = kRed, Components = 'phiMassPdf' ) #KKMassPdf.plotOn( KKMassPlot, LineStyle = 5, LineWidth = 3, LineColor = kMagenta + 3, Components = 'KKSWavePdf' ) binWidth = ( KKMassPlot.GetXaxis().GetXmax() - KKMassPlot.GetXaxis().GetXmin() ) / float( KKMassPlot.GetNbinsX() ) KKMassPlot.SetXTitle('m(K^{+}K^{-}) [MeV/c^{2}]') KKMassPlot.SetYTitle('Candidates / (%.2g MeV/c^{2})' % binWidth ) KKMassPlot.SetMinimum(0.) KKMassPlot.SetMaximum( 6200. if not drawTotalDists else 7000. ) KKMassPlot.SetTitleOffset( 1.10, 'x' ) KKMassPlot.SetTitleOffset( 1.15, 'y' ) KKMassPlot.SetMinimum(0.) KKMassCanv = TCanvas('KKMassCanv') KKMassCanv.SetLeftMargin(0.18)
gauss5 = RooGaussian("gauss5","gaussian PDF",x,mean5,sigma5) # add PDF gauss_combine1 = gauss4 + gauss5 frac_combine1 = RooRealVar("frac_combine1", "fraction of gauss4 wrt gauss5", 0.7, 0., 1.) pdf_combine1 = RooAddPdf("pdf_combine1"," gauss4 + gauss5 ", RooArgList(gauss4 , gauss5 ), RooArgList( frac_combine1 )) #pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue)) gauss4.plotOn(xframe3, RooFit.Normalization( frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange)) gauss5.plotOn(xframe3, RooFit.Normalization( 1-frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan)) pdf_combine1.plotOn(xframe3, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue)) # ------------------------------------------- # 4. use combine PDF to generate MC xframe4 = x.frame(RooFit.Title("4. use combine PDF to generate MC")) data2 = pdf_combine1.generate(RooArgSet(x),500) #pdf_combine1.plotOn(xframe4, RooFit.Normalization(500, RooAbsReal.NumEvent) , RooFit.LineColor(RooFit.kOrange)) data2.plotOn(xframe4) pdf_combine1.plotOn(xframe4,RooFit.LineColor(RooFit.kBlue)) # ------------------------------------------- # 5. use combine PDF to fit the toy MC
RooArgList(nSig, nBkg)) mean.setVal(phimean) gamma.setConstant(ROOT.kTRUE) mean.setConstant(ROOT.kTRUE) rfit = tot.fitTo(b0dataNonPrompt, Range(massmin, massmax), RooFit.NumCPU(8)) mean.setConstant(ROOT.kFALSE) rfit = tot.fitTo(b0dataNonPrompt, Range(massmin, massmax), RooFit.NumCPU(8)) gamma.setConstant(ROOT.kFALSE) rfit = tot.fitTo(b0dataNonPrompt, Range(phimean - 0.025, phimean + 0.025), RooFit.NumCPU(8)) masskkFrame = masskk.frame(Range(phimean - 0.025, phimean + 0.025)) b0dataNonPrompt.plotOn(massFrame, RooLinkedList()) tot.plotOn(masskkFrame) massFrame.Draw() c.SaveAs("testmassFit.png") cD = TCanvas("cD", "cD", 750, 600) cD.cd() splot = RooStats.SPlot("sPlot", "sPlot", b0dataNonPrompt, tot, RooArgList(nSig, nBkg)) # In[18]: dstree = b0dataNonPrompt.store().tree() # In[19]:
def fitData(fulldata, ibin, n_bkg, w): cut = cut_base + '&& (mumuMass*mumuMass > %s && mumuMass*mumuMass < %s)' % ( q2binning[ibin], q2binning[ibin + 1]) fulldata_v2 = fulldata.reduce( RooArgSet(tagged_mass, mumuMass, mumuMassE, randVar), cut) ## reduce to data-like statistics nDataEntries = fulldata_v2.sumEntries() nDesired = n_bin[ibin] / nDataEntries cut = 'rand < %f' % nDesired signaldata = fulldata_v2.reduce( RooArgSet(tagged_mass, mumuMass, mumuMassE), cut) n_realsignal = signaldata.sumEntries() nrt_mc = _getFittedVar("nRT_%s" % ibin, w) nwt_mc = _getFittedVar("nWT_%s" % ibin, w) fraction = nrt_mc / (nrt_mc + nwt_mc) ### creating RT component w.loadSnapshot("reference_fit_RT_%s" % ibin) meanrt = w.var("mean^{RT%s}" % ibin) sigmart = RooRealVar() sigmart1 = RooRealVar() sigmart2 = RooRealVar() alphart1 = RooRealVar() alphart2 = RooRealVar() nrt1 = RooRealVar() nrt2 = RooRealVar() ## double cb fast if ibin < 5: sigmart = w.var("#sigma_{CB}^{RT%s}" % ibin) alphart1 = w.var("#alpha_{1}^{RT%s}" % ibin) alphart2 = w.var("#alpha_{2}^{RT%s}" % ibin) nrt1 = w.var("n_{1}^{RT%s}" % ibin) nrt2 = w.var("n_{2}^{RT%s}" % ibin) ## double cb old else: sigmart1 = w.var("#sigma_{CBRT0}^{%s}" % ibin) sigmart2 = w.var("#sigma_{CBRT1}^{%s}" % ibin) alphart1 = w.var("#alpha_{RT0}^{%s}" % ibin) alphart2 = w.var("#alpha_{RT1}^{%s}" % ibin) nrt1 = w.var("n_{RT0}^{%s}" % ibin) nrt2 = w.var("n_{RT1}^{%s}" % ibin) pars_init_vals = {} theRTgauss = w.pdf("doublecb_RT%s" % ibin) if ibin < 5: c_sigma_rt = _constrainVar(sigmart, 1, pars_init_vals) else: c_sigma_rt1 = _constrainVar(sigmart1, 1, pars_init_vals) c_sigma_rt2 = _constrainVar(sigmart2, 1, pars_init_vals) c_alpha_rt1 = _constrainVar(alphart1, 1, pars_init_vals) c_alpha_rt2 = _constrainVar(alphart2, 1, pars_init_vals) c_n_rt1 = _constrainVar(nrt1, 1, pars_init_vals) c_n_rt2 = _constrainVar(nrt2, 1, pars_init_vals) ### creating WT component w.loadSnapshot("reference_fit_WT_%s" % ibin) meanwt = w.var("mean^{WT%s}" % ibin) sigmawt = w.var("#sigma_{CB}^{WT%s}" % ibin) alphawt1 = w.var("#alpha_{1}^{WT%s}" % ibin) alphawt2 = w.var("#alpha_{2}^{WT%s}" % ibin) nwt1 = w.var("n_{1}^{WT%s}" % ibin) nwt2 = w.var("n_{2}^{WT%s}" % ibin) theWTgauss = w.pdf("doublecb_%s" % ibin) c_sigma_wt = _constrainVar(sigmawt, 1, pars_init_vals) c_alpha_wt1 = _constrainVar(alphawt1, 1, pars_init_vals) c_alpha_wt2 = _constrainVar(alphawt2, 1, pars_init_vals) c_n_wt1 = _constrainVar(nwt1, 1, pars_init_vals) c_n_wt2 = _constrainVar(nwt2, 1, pars_init_vals) ### creating constraints for the RT component c_vars = RooArgSet() if ibin < 5: c_RTgauss = RooProdPdf( "c_RTgauss", "c_RTgauss", RooArgList(theRTgauss, c_alpha_rt1, c_n_rt1, c_sigma_rt, c_alpha_rt2, c_n_rt2)) c_vars = RooArgSet(c_sigma_rt, c_alpha_rt1, c_alpha_rt2, c_n_rt1, c_n_rt2) else: c_RTgauss = RooProdPdf( "c_RTgauss", "c_RTgauss", RooArgList(theRTgauss, c_alpha_rt1, c_n_rt1, c_sigma_rt1, c_sigma_rt2, c_alpha_rt2, c_n_rt2)) c_vars = RooArgSet(c_sigma_rt1, c_sigma_rt2, c_alpha_rt1, c_alpha_rt2, c_n_rt1, c_n_rt2) ### creating constraints for the WT component c_WTgauss = RooProdPdf( "c_WTgauss", "c_WTgauss", RooArgList(theWTgauss, c_alpha_wt1, c_n_wt1, c_sigma_wt, c_alpha_wt2, c_n_wt2)) c_vars.add(c_sigma_wt) c_vars.add(c_alpha_wt1) c_vars.add(c_alpha_wt2) c_vars.add(c_n_wt1) c_vars.add(c_n_wt2) frt = RooRealVar("F_{RT}", "frt", fraction.n, 0, 1) signalFunction = RooAddPdf("sumgaus", "rt+wt", RooArgList(c_RTgauss, c_WTgauss), RooArgList(frt)) c_frt = RooGaussian("c_frt", "c_frt", frt, ROOT.RooFit.RooConst(fraction.n), ROOT.RooFit.RooConst(fraction.s)) ### creating constraints for the difference between the two peaks deltaPeaks = RooFormulaVar("deltaPeaks", "@0 - @1", RooArgList(meanrt, meanwt)) c_deltaPeaks = RooGaussian( "c_deltaPeaks", "c_deltaPeaks", deltaPeaks, ROOT.RooFit.RooConst(deltaPeaks.getVal()), ROOT.RooFit.RooConst(0.0005) ## value to be checked ) c_signalFunction = RooProdPdf( "c_signalFunction", "c_signalFunction", RooArgList(signalFunction, c_frt, c_deltaPeaks)) c_vars.add(frt) c_vars.add(deltaPeaks) ### now create background parametrization slope = RooRealVar("slope", "slope", 0.5, -10, 10) bkg_exp = RooExponential("bkg_exp", "exponential", slope, tagged_mass) pol_c1 = RooRealVar("p1", "coeff x^0 term", 0.5, -10, 10) pol_c2 = RooRealVar("p2", "coeff x^1 term", 0.5, -10, 10) bkg_pol = RooChebychev("bkg_pol", "2nd order pol", tagged_mass, RooArgList(pol_c1, pol_c2)) nsig = RooRealVar("Yield", "signal frac", nrt_mc.n + nwt_mc.n, 0, 1000000) nbkg = RooRealVar("nbkg", "bkg fraction", 1000, 0, 550000) print nsig.getVal() fitFunction = RooAddPdf("fitfunction", "fit function", RooArgList(c_signalFunction, bkg_pol), RooArgList(nsig, nbkg)) pars_to_tune = [ sigmawt, alphawt1, alphawt2, nwt1, nwt2, alphart1, alphart2, nrt1, nrt2 ] if ibin < 5: pars_to_tune.append(sigmart) else: pars_to_tune.append(sigmart1) pars_to_tune.append(sigmart2) ## add toy bkg for itoy in range(args.ntoys): data = deepcopy(signaldata) toy_bkg = generateBkg(tagged_mass, ibin, n_bkg) data.append(toy_bkg) print 'toy number', itoy for ipar in pars_to_tune: ipar.setVal(pars_init_vals[ipar.GetName()]) # r = fitFunction.fitTo(data, # RooFit.Extended(True), # RooFit.Range("full"), # ROOT.RooFit.Constrain(c_vars), # # ROOT.RooFit.Minimizer("Minuit2","migrad"), # ROOT.RooFit.Hesse(True), # ROOT.RooFit.Strategy(2), # ROOT.RooFit.Minos(False), # ) # # print 'fit with Hesse strategy 2 done, now Minos' r = fitFunction.fitTo( data, RooFit.Extended(True), RooFit.Save(), RooFit.Range("full"), RooFit.Verbose(False), ROOT.RooFit.Constrain(c_vars), # ROOT.RooFit.Minimizer("Minuit2","migrad"), # ROOT.RooFit.Hesse(True), ROOT.RooFit.Strategy(2), ROOT.RooFit.Minos(True), ) # # r.Print() # # r.correlationMatrix().Print() fitStats['data%s_itoy%s' % (ibin, itoy)] = r.status() covStats['data%s_itoy%s' % (ibin, itoy)] = r.covQual() frame = tagged_mass.frame(RooFit.Range("full")) data.plotOn(frame, RooFit.Binning(nbins), RooFit.MarkerSize(.7)) fitFunction.plotOn(frame, RooFit.NormRange("full"), RooFit.Range("full")) ## evaluate sort of chi2 and save number of RT/WT events observables = RooArgSet(tagged_mass) flparams = fitFunction.getParameters(observables) nparam = int( flparams.selectByAttrib("Constant", ROOT.kFALSE).getSize()) pdfstring = "fitfunction_Norm[tagged_mass]_Range[full]_NormRange[full]" chi2s['data%s_itoy%s' % (ibin, itoy)] = frame.chiSquare( pdfstring, "h_fulldata", nparam) frame.addObject(_writeChi2(chi2s['data%s_itoy%s' % (ibin, itoy)])) ## save plot only if 1 toy is run if args.ntoys == 1: drawPdfComponents(fitFunction, frame, ROOT.kAzure, RooFit.NormRange("full"), RooFit.Range("full"), isData=True) fitFunction.paramOn(frame, RooFit.Layout(0.62, 0.86, 0.89)) # parList = RooArgSet (nsig, nbkg, meanrt, meanwt, alphart1, alphart2, meanwt, sigmawt) # if ibin < 5 : # parList.add(sigmart) # else: # parList.add(sigmart1) # parList.add(sigmart2) # parList.add(alphawt1) # parList.add(alphawt2) # parList.add(nwt1) # parList.add(nwt2) # parList.add(frt) # fitFunction.paramOn(frame, RooFit.Parameters(parList), RooFit.Layout(0.62,0.86,0.89)) frame.Draw() niceFrame(frame, '') frame.addObject(_writeFitStatus(r)) c1 = ROOT.TCanvas() upperPad = ROOT.TPad('upperPad', 'upperPad', 0., 0.35, 1., 1.) lowerPad = ROOT.TPad('lowerPad', 'lowerPad', 0., 0.0, 1., 0.345) upperPad.SetBottomMargin(0.012) lowerPad.SetTopMargin(0) lowerPad.SetBottomMargin(0.2) upperPad.Draw() lowerPad.Draw() upperPad.cd() frame.Draw() if not args.year == 'test': writeCMS(frame, args.year, [q2binning[ibin], q2binning[ibin + 1]], 1) frame.Draw() ## add plot of pulls lowerPad.cd() hpull = frame.pullHist("h_fulldata", pdfstring) frame2 = tagged_mass.frame(RooFit.Range("full"), RooFit.Title('')) frame2.addPlotable(hpull, "P") niceFrameLowerPad(frame2, 'pull') frame2.Draw() line = ROOT.TLine(5.0, 1, 5.6, 1) line.SetLineColor(ROOT.kGreen + 3) line.Draw() for ilog in [True, False]: upperPad.SetLogy(ilog) c1.SaveAs( 'fit_results_mass_checkOnMC/toybkg/save_fit_data_%s_%s_nbkg%s_LMNR_Final%s_%s_update_pol2bkg.pdf' % (ibin, args.year, n_bkg, '_logScale' * ilog, itoy)) out_f.cd() # r.Write('results_data_%s_ntoy%s'%(ibin,itoy)) ## compare nkbg fitted w/ original value nbkgs['data%s_itoy%s' % (ibin, itoy)] = (toy_bkg.sumEntries() - nbkg.getVal()) / toy_bkg.sumEntries() nsigs['data%s_itoy%s' % (ibin, itoy)] = (n_realsignal - nsig.getVal()) / n_realsignal
def fitMass(rangem=[0.4, 2.0], iflag=1, iopt_bkgshape=0, CBpar=[0., 0., 0.]): global myc, fitres m0 = sum(rangem) / 2 #w0=(rangem[1]-rangem[0])/10 w0 = 0.004 mass = RooRealVar("ee_ivm", "ee_ivm", rangem[0], rangem[1]) if iflag == 1: ###Construct signal pdf with gaus mean = RooRealVar("mean", "mean", m0) sigma = RooRealVar("sigma", "sigma", w0) signal = RooGaussian("signal", "signal", mass, mean, sigma) elif iflag == 2 or iflag == 3: ## Construct signal pdf with CB function ##print "outinfo",x,CBpar[0],CBpar[1],CBpar[2],CBpar[3] cbmean = RooRealVar("cbmean", "cbmean", m0) cbsigma = RooRealVar("cbsigma", "cbsigma", CBpar[0]) n1 = RooRealVar("n1", "", CBpar[1]) alpha = RooRealVar("alpha", "", CBpar[2]) cbsigma.setConstant(ROOT.kTRUE) n1.setConstant(ROOT.kTRUE) alpha.setConstant(ROOT.kTRUE) signal = RooCBShape("cball", "crystal ball1", mass, cbmean, cbsigma, alpha, n1) # elif iflag ==3: # pass else: print "ERROR, please specify signal shape for fitting!!" sys.exit() # Construct background pdf a0 = RooRealVar("a0", "a0", 0.1, -1, 1) a1 = RooRealVar("a1", "a1", 0.004, -1, 1) a2 = RooRealVar("a2", "a2", 0.001, -1, 1) if iopt_bkgshape == 0: background = RooChebychev("background", "background", mass, RooArgList(a0, a1)) else: background = RooChebychev("background", "background", mass, RooArgList(a0, a1, a2)) # Construct composite pdf if iflag == 1: up_nsig = 40 else: up_nsig = 60 nsig = RooRealVar("nsig", "nsig", 5, 0.0, up_nsig) nbkg = RooRealVar("nbkg", "nbkg", 800, 0, 3000) #frac = RooRealVar("frac", "frac", 0.001, 0.0001, 0.1) model = RooAddPdf("model", "model", RooArgList(signal, background), RooArgList(nsig, nbkg)) #model = RooAddPdf("model", "model", RooArgList(signal, background), RooArgList(frac)) mcdata = RooDataSet( "ds", "ds", RooArgSet(mass), RooFit.Import(data), RooFit.Cut("ee_ivm<" + str(rangem[1]) + "&&ee_ivm>" + str(rangem[0]))) if optp == 1: ipr = 1 verbose = 0 elif optp == 2: ipr = 1 verbose = 1 else: ipr = -1 verbose = 0 fitres=model.fitTo(mcdata,RooFit.Save(),RooFit.Minos(1), RooFit.Strategy(2),\ RooFit.PrintLevel(ipr), RooFit.Verbose(verbose)) nll = RooNLLVar("nll", "nll", model, mcdata, RooFit.Range(rangem[0], rangem[1])) pll = nll.createProfile(RooArgSet(nsig)) Profile = RooProfileLL("Profile", "Profile", nll, RooArgSet(nsig)) llhoodP = RooFormulaVar("llhoodP", "exp(-0.5*Profile)", RooArgList(Profile)) xframe2 = nsig.frame(RooFit.Title("number of signal")) nllplot = nll.plotOn(xframe2, RooFit.ShiftToZero()) themin = RooConstVar("themin", "themin", nllplot.GetMinimum()) llhood = RooFormulaVar("llhood", "exp(-0.5*(nll-themin*0.95))", RooArgList(nll, themin)) if optp: xframe = mass.frame(RooFit.Title("mass of ee pair")) xframe3 = nsig.frame(RooFit.Title("number of signal")) xframe3.SetYTitle("Likelihood") mcdata.plotOn(xframe) model.plotOn(xframe) model.plotOn(xframe, RooFit.Components("background"), RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kRed)) model.plotOn(xframe, RooFit.Components("cball"), RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kGreen)) myc.cd(1) xframe.Draw() #pll.plotOn(xframe2,RooFit.LineColor(ROOT.kRed)) if optp: print "***** archmin ", themin.Print() #llhoodP.plotOn(xframe3, RooFit.LineColor(ROOT.kRed)) llhood.plotOn(xframe3) myc.cd(2) xframe2.SetMinimum(0) xframe2.Draw() myc.cd(3) xframe3.Draw() myc.Update() raw_input() nsig.setRange("IntRange1", 0, 1000.) Int1 = llhood.createIntegral(RooArgSet(nsig), ROOT.RooFit.Range('IntRange1')) Int1Val = Int1.getVal() i = 0 hit = False while not (hit): i = i + 1 nsig.setRange("IntRange2", 0, float(i)) Int2 = llhood.createIntegral(RooArgSet(nsig), ROOT.RooFit.Range('IntRange2')) if Int2.getVal() >= Int1Val * 0.9: if optp: print "&&& ", i hit = True return i
def fitMC(fulldata, correctTag, ibin): print 'now fitting: ', ibin, ' for ', correctTag * 'correctTag ', ( 1 - correctTag) * 'wrongTag' cut = cut_base + '&& (mumuMass*mumuMass > %s && mumuMass*mumuMass < %s)' % ( q2binning[ibin], q2binning[ibin + 1]) data = fulldata.reduce(RooArgSet(thevarsMC), cut) pol_c1 = RooRealVar("p1", "coeff x^0 term", -0.5, -10, 10) bkg_pol = RooChebychev("bkg_pol", "bkg_pol", tagged_mass, RooArgList(pol_c1)) signalFunction = bkg_pol ### just a placeholder nsig = RooRealVar("Yield", "nsig", 10000, 0, 1000000) nbkg = RooRealVar("nbkg", "nbkg", 10, 0, 100000) doextended = False fitrange = "mcrange" nbins = 70 if correctTag: doubleG(B0Mass_, initial_sigma1, initial_sigma2, 0.8, tagged_mass, w, "RT%s" % ibin) ## (mean_ , sigma1_, sigma2_, f1_) signalFunction = w.pdf("doublegaus_RT%s" % ibin) fitFunction = RooAddPdf("fitfunction", "fit function", RooArgList(signalFunction, bkg_pol), RooArgList(nsig, nbkg)) doextended = True fitrange = "full" nbins = 60 else: mean = RooRealVar("mean^{WT%s}" % ibin, "massWT", B0Mass_, 5, 6, "GeV") sigmaCB = RooRealVar("#sigma_{CB}^{WT%s}" % ibin, "sigmaCB", 0.03, 0, 1) alpha1 = RooRealVar("#alpha_{1}^{WT%s}" % ibin, "#alpha_{1}", 0.5, 0, 10) alpha2 = RooRealVar("#alpha_{2}^{WT%s}" % ibin, "#alpha_{2}", 0.5, 0, 10) n1 = RooRealVar("n_{1}^{WT%s}" % ibin, "n_1", 2, 0, 90) n2 = RooRealVar("n_{2}^{WT%s}" % ibin, "n_2", 1, 0, 90) doublecb = ROOT.RooDoubleCBFast("doublecb_%s" % ibin, "doublecb", tagged_mass, mean, sigmaCB, alpha1, n1, alpha2, n2) # getattr(w, 'import')(doublecb) signalFunction = doublecb fitFunction = doublecb getattr(w, "import")(signalFunction) r = fitFunction.fitTo(data, RooFit.Extended(doextended), RooFit.Save(), RooFit.Range(fitrange)) print 'fit status: ', r.status(), r.covQual() if not _goodFit(r): r = fitFunction.fitTo(data, RooFit.Extended(doextended), RooFit.Save(), RooFit.Range(fitrange)) print 'fit status (redo): ', r.status(), r.covQual() if not _goodFit(r) and correctTag: r = fitFunction.fitTo(data, RooFit.Extended(doextended), RooFit.Save(), RooFit.Range(fitrange)) print 'fit status (redo2): ', r.status(), r.covQual() params = signalFunction.getParameters(RooArgSet(tagged_mass)) w.saveSnapshot( "reference_fit_%s_%s" % ('RT' * correctTag + 'WT' * (1 - correctTag), ibin), params, ROOT.kTRUE) frame = tagged_mass.frame(RooFit.Range(fitrange)) data.plotOn(frame, RooFit.Binning(nbins), RooFit.MarkerSize(.7)) drawPdfComponents(fitFunction, frame, ROOT.kGreen if correctTag else ROOT.kViolet, RooFit.NormRange(fitrange), RooFit.Range(fitrange), isData=False) fitFunction.plotOn(frame, RooFit.NormRange(fitrange), RooFit.Range(fitrange)) fitFunction.paramOn(frame, RooFit.Layout(0.62, 0.86, 0.88)) frame.Draw() niceFrame(frame, '') frame.addObject(_writeFitStatus(r)) ## evaluate sort of chi2 and save number of RT/WT events observables = RooArgSet(tagged_mass) flparams = fitFunction.getParameters(observables) nparam = int(flparams.selectByAttrib("Constant", ROOT.kFALSE).getSize()) if correctTag: frame.addObject( _writeChi2( frame.chiSquare( "fitfunction_Norm[tagged_mass]_Range[full]_NormRange[full]", "h_fullmc", nparam))) dict_s_rt[ibin] = _getFittedVar(nsig) nRT = RooRealVar("nRT_%s" % ibin, "yield of RT signal", 0, 1.E6) nRT.setVal(dict_s_rt[ibin].n) nRT.setError(dict_s_rt[ibin].s) getattr(w, "import")(nRT) else: frame.addObject( _writeChi2( frame.chiSquare( "doublecb_%s_Norm[tagged_mass]_Comp[doublecb_%s]_Range[mcrange]_NormRange[mcrange]" % (ibin, ibin), "h_fullmc", nparam))) dict_s_wt[ibin] = ufloat(data.sumEntries(), math.sqrt(data.sumEntries())) nWT = RooRealVar("nWT_%s" % ibin, "yield of WT signal", 0, 1.E6) nWT.setVal(dict_s_wt[ibin].n) nWT.setError(dict_s_wt[ibin].s) getattr(w, "import")(nWT) # chi2 = frame.chiSquare("doublecb_%s_Norm[tagged_mass]_Comp[doublecb_%s]_Range[mcrange]_NormRange[mcrange]"%(ibin,ibin), "h_fullmc", nparam) # if chi2 == -1: # chi2 = frame.chiSquare("gauscb_%s_Norm[tagged_mass]_Comp[gauscb_%s]_Range[mcrange]_NormRange[mcrange]"%(ibin,ibin), "h_fullmc", nparam) # frame. addObject(_writeChi2( chi2 ) ) frame.Draw() frame.SetTitle('correctly' * correctTag + 'wrongly' * (1 - correctTag) + ' tagged events') # c1.SetLogy() c1.SaveAs('fit_results_mass/save_fit_mc_%s_%s_%sT_newCB.pdf' % (ibin, args.year, "R" * correctTag + "W" * (1 - correctTag))) out_f.cd() r.Write('results_%s_%s' % (correctTag * 'RT' + (1 - correctTag) * 'WT', ibin))
print(signaldata.numEntries()) print(rigthsidedata.numEntries()) leftsidehist.Scale(theRatio) rightsidehist.Scale(theRatio) sidehist = leftsidehist.Clone() sidehist.Add(rightsidehist) plotpad.cd() kkFrame = tt_mass.frame(Range(fitphimin, fitphimax), Title("#phi mass")) # kkbins = RooBinning(-15,15) # kkbins.addUniform(30,fitphimin,fitphimax) traKFitData.plotOn(kkFrame, Name("Data")) kkTot.plotOn(kkFrame, RooFit.Normalization(1.0 / float(nfit)), Name("Pdf")) traKFitData.plotOn(kkFrame) kkTot.paramOn(kkFrame, RooFit.Layout(0.57, 0.99, 0.65)) kkFrame.Draw() pullpad.cd() hpull = kkFrame.pullHist("Data", "Pdf") pullframe = mmtt_mass.frame(Title("Pull Distribution"), Range(fitphimin, fitphimax)) pullframe.SetAxisRange(-5.0, 5.0, "Y") #pullframe.GetXaxis().SetTitleSize(0.04) #pullframe.GetYaxis().SetTitleSize(0.03) gStyle.SetTitleFontSize(0.07) pullframe.addPlotable(hpull, "P") pullframe.Draw()
def fitData(fulldata, ibin): cut = cut_base + '&& (mumuMass*mumuMass > %s && mumuMass*mumuMass < %s)' % ( q2binning[ibin], q2binning[ibin + 1]) data = fulldata.reduce(RooArgSet(tagged_mass, mumuMass, mumuMassE), cut) fraction = dict_s_rt[ibin] / (dict_s_rt[ibin] + dict_s_wt[ibin]) print 'mistag fraction on MC for bin ', ibin, ' : ', fraction.n, '+/-', fraction.s ### creating RT component w.loadSnapshot("reference_fit_RT_%s" % ibin) sigmart1 = w.var("#sigma_{1}^{RT%s}" % ibin) sigmart2 = w.var("#sigma_{2}^{RT%s}" % ibin) massrt = w.var("mean^{RT%s}" % ibin) f1rt = w.var("f^{RT%s}" % ibin) theRTgauss = w.pdf("doublegaus_RT%s" % ibin) c_sigma_rt1 = _constrainVar(sigmart1) c_sigma_rt2 = _constrainVar(sigmart2) c_mean_rt = _constrainVar(massrt) c_f1rt = _constrainVar(f1rt) ### creating WT component w.loadSnapshot("reference_fit_WT_%s" % ibin) meanwt = w.var("mean^{WT%s}" % ibin) sigmawt = w.var("#sigma_{CB}^{WT%s}" % ibin) alphawt1 = w.var("#alpha_{1}^{WT%s}" % ibin) alphawt2 = w.var("#alpha_{2}^{WT%s}" % ibin) nwt1 = w.var("n_{1}^{WT%s}" % ibin) nwt2 = w.var("n_{2}^{WT%s}" % ibin) theWTgauss = w.pdf("doublecb_%s" % ibin) c_mean_wt = _constrainVar(meanwt) c_sigma_wt = _constrainVar(sigmawt) c_alpha_wt1 = _constrainVar(alphawt1) c_alpha_wt2 = _constrainVar(alphawt2) c_n_wt1 = _constrainVar(nwt1) c_n_wt2 = _constrainVar(nwt2) ### creating constraints for the RT component c_RTgauss = RooProdPdf( "c_RTgauss", "c_RTgauss", RooArgList(theRTgauss, c_sigma_rt1, c_sigma_rt2, c_mean_rt, c_f1rt)) c_vars = RooArgSet(c_sigma_rt1, c_sigma_rt2, c_f1rt, c_mean_rt) c_vars.add(c_sigma_wt) c_vars.add(c_mean_wt) c_vars.add(c_alpha_wt1) c_vars.add(c_alpha_wt2) c_vars.add(c_n_wt1) c_vars.add(c_n_wt2) ### creating constraints for the WT component c_WTgauss = RooProdPdf( "c_WTgauss", "c_WTgauss", RooArgList(theWTgauss, c_alpha_wt1, c_n_wt1, c_sigma_wt, c_mean_wt, c_alpha_wt2, c_n_wt2)) frt = RooRealVar("F_{RT}", "frt", fraction.n, 0, 1) signalFunction = RooAddPdf("sumgaus", "rt+wt", RooArgList(c_RTgauss, c_WTgauss), RooArgList(frt)) c_frt = RooGaussian("c_frt", "c_frt", frt, ROOT.RooFit.RooConst(fraction.n), ROOT.RooFit.RooConst(fraction.s)) c_signalFunction = RooProdPdf("c_signalFunction", "c_signalFunction", RooArgList(signalFunction, c_frt)) c_vars.add(frt) ### now create background parametrization slope = RooRealVar("slope", "slope", 0.5, -10, 10) bkg_exp = RooExponential("bkg_exp", "exponential", slope, tagged_mass) pol_c1 = RooRealVar("p1", "coeff x^0 term", 0.5, -10, 10) pol_c2 = RooRealVar("p2", "coeff x^1 term", 0.5, -10, 10) bkg_pol = RooChebychev("bkg_pol", "2nd order pol", tagged_mass, RooArgList(pol_c1, pol_c2)) nsig = RooRealVar("Yield", "signal frac", 4000, 0, 1000000) nbkg = RooRealVar("nbkg", "bkg fraction", 1000, 0, 550000) # fitFunction = RooAddPdf ("fitfunction" , "fit function" , RooArgList(c_signalFunction, bkg_pol), RooArgList(nsig, nbkg)) fitFunction = RooAddPdf("fitfunction", "fit function", RooArgList(c_signalFunction, bkg_exp), RooArgList(nsig, nbkg)) r = fitFunction.fitTo(data, RooFit.Extended(True), RooFit.Save(), RooFit.Range("full"), RooFit.Verbose(False), ROOT.RooFit.Constrain(c_vars)) frame = tagged_mass.frame(RooFit.Range("full")) data.plotOn(frame, RooFit.Binning(35), RooFit.MarkerSize(.7)) fitFunction.plotOn(frame) drawPdfComponents(fitFunction, frame, ROOT.kAzure, RooFit.NormRange("full"), RooFit.Range("full"), isData=True) parList = RooArgSet(nsig, massrt, sigmart1, sigmart2, f1rt, meanwt, sigmawt, alphawt1) parList.add(alphawt2) parList.add(nwt1) parList.add(nwt2) parList.add(frt) fitFunction.paramOn(frame, RooFit.Parameters(parList), RooFit.Layout(0.62, 0.86, 0.89)) frame.Draw() niceFrame(frame, '') frame.addObject(_writeFitStatus(r)) if not args.year == 'test': writeCMS(frame, args.year, [q2binning[ibin], q2binning[ibin + 1]]) frame.Draw() c1.SaveAs('fit_results_mass/save_fit_data_%s_%s_LMNR.pdf' % (ibin, args.year))
print "Bin "+str(i) print "Background yiled in signal region: "+str(inSignal_Bck)+"+/-"+str(inSignal_Bck_Err) print "Total Yield in signal region: "+str(inSignal_Tot)+"+/-"+str(inSignal_Tot_Err) print "Fraction: "+str(inSignal_Frac)+"+/-"+str(inSignal_Frac_Err) print "_-^-"*100+"_" LOG_D0_IPCHI2_OWNPV.setRange("All", -10, 10) #Now, some plots: ipframe_1 = LOG_D0_IPCHI2_OWNPV.frame(RooFit.Title("Bin "+str(i))) ipframe_2 = LOG_D0_IPCHI2_OWNPV.frame(RooFit.Title("D^{*}#mu, bin "+str(i))) ipframe_3 = DTF_D0sPi_M.frame(RooFit.Title("Signal D* mass, bin "+str(i))) ipframe_4 = DTF_D0sPi_M.frame(RooFit.Title("D*_{from B} mass, bin"+str(i))) dataset_RS_dtb.plotOn(ipframe_1) Two_hists.plotOn(ipframe_1, RooFit.Components("key_COMB"), RooFit.LineColor(2),RooFit.LineWidth(4)) Two_hists.plotOn(ipframe_1, RooFit.Components("shape_COMB"), RooFit.LineColor(2),RooFit.LineWidth(2)) Two_hists.plotOn(ipframe_1, RooFit.Components("shape_RS_0"), RooFit.LineColor(3),RooFit.LineWidth(2)) Two_hists.plotOn(ipframe_1, RooFit.Components("s_fage"), RooFit.LineColor(3),RooFit.LineWidth(2)) Two_hists.plotOn(ipframe_1, RooFit.LineColor(4),RooFit.LineWidth(2)) dataset_COMB_CORR_dtb.plotOn(ipframe_2) shape_COMB.plotOn(ipframe_2, RooFit.LineColor(2),RooFit.LineWidth(4)) dataset_RS_dtb.plotOn(ipframe_3) dataset_COMB_CORR_dtb.plotOn(ipframe_4) c_IP = TCanvas("c_IP","c_IP",900,900) c_IP.Divide(2,2) c_IP.cd(1)
nfits = nfits + 1 mean.setConstant(False) gamma.setConstant(False) rPhifit = tot.fitTo(splotData, Range(phimin, phimax), RooFit.NumCPU(args.ncpu), RooFit.Verbose(False)) nfits = nfits + 1 c = TCanvas("canvas", "canvas", 1200, 800) phiFrame = masskk.frame(Range(phimin, phimax), Normalization((nSig.getValV() + nBkg.getValV())), Title("#Phi Mass")) splotData.plotOn(phiFrame) ratio = 1.0 / float(nfits) tot.plotOn(phiFrame, Normalization(ratio)) bFrac = (nBkg.getValV()) / (nSig.getValV() + nBkg.getValV()) bkg.plotOn(phiFrame, LineColor(kRed), Normalization(bFrac), LineStyle(kDashed)) signal.plotOn(phiFrame, LineColor(kGreen), Normalization(1.0 - bFrac)) tot.paramOn(phiFrame, RooFit.Layout(0.57, 0.99, 0.65)) phiFrame.Draw() sidesigma = np.sqrt(gamma.getValV()**2 + sigma.getValV()**2) plotmax = 1.5 * float(nentries / binning) lowside = -3. * sidesigma + mean.getValV() upside = +3. * sidesigma + mean.getValV() linelow = TLine(lowside, 0.0, lowside, plotmax) lineup = TLine(upside, 0.0, upside, plotmax)
def fitChicSpectrum(dataset, binname): """ Fit chic spectrum""" x = RooRealVar('s', 's', -2, 2) x.setBins(200) #signal model q_chi1 = RooRealVar('qchi1', 'q_{#chi 1}', 0.414, 0.2, 0.6) q_chi2 = RooRealVar('qchi2', 'q_{#chi 2}', 0.430, 0.2, 0.6) delta_chi10 = RooRealVar('delta_chi10', 'delta_chi10', 0.09591) q_chi0 = RooFormulaVar('q_chi0', '@0 - @1', RooArgList(q_chi1, delta_chi10)) alphacb_chi1 = RooRealVar('alphacb_chi1', '#alpha^{CB}_{#chi 1}', 0.6, 0, 2) alphacb_chi2 = RooRealVar('alphacb_chi2', '#alpha^{CB}_{#chi 2}', 0.4, 0, 2) sigmacb_chi1 = RooRealVar('sigmacb_chi1', '#sigma^{CB}_{#chi 1}', 0.005, 0, 1) sigmacb_chi2 = RooRealVar('sigmacb_chi2', '#sigma^{CB}_{#chi 2}', 0.005, 0, 1) n_cb = RooRealVar('ncb', 'n^{CB}', 3.0, 0., 5.) gamma_chi0 = RooRealVar('gamma_chi0', 'gamma_chi0', 0.0104) sigmacb_chi0 = RooRealVar('sigmacb_chi0', '#sigma^{CB}_{#chi 0}', 0.005) chi0_sig = RooVoigtian('chi0sig', 'chi0sig,', x, q_chi0, sigmacb_chi0, gamma_chi0) chi1_sig = RooCBShape('chi1sig', 'chi1sig', x, q_chi1, sigmacb_chi1, alphacb_chi1, n_cb) chi2_sig = RooCBShape('chi2sig', 'chi2sig', x, q_chi2, sigmacb_chi2, alphacb_chi2, n_cb) fchi0 = RooRealVar('fchi0', 'f_{#chi 0}', 0.01, 0, 1) fchi1 = RooRealVar('fchi1', 'f_{#chi 1}', 0.5, 0, 1) fchi2 = RooFormulaVar('fchi2', '1-@0-@1', RooArgList(fchi0, fchi1)) fbck = RooRealVar('fbck', 'f_{bck}', 0.2, 0, 1) sigmodel = RooAddPdf('sigm', 'sigm', RooArgList(chi0_sig, chi1_sig, chi2_sig), RooArgList(fchi0, fchi1, fchi2)) #background model q0Start = 0.0 a_bck = RooRealVar('a_bck', 'a_{bck}', 0.5, -5, 5) b_bck = RooRealVar('b_bck', 'b_{bck}', -2.5, -7., 0.) q0 = RooRealVar('q0', 'q0', q0Start) delta = RooFormulaVar('delta', 'TMath::Abs(@0-@1)', RooArgList(x, q0)) bfun = RooFormulaVar('bfun', '@0*(@1-@2)', RooArgList(b_bck, x, q0)) signum = RooFormulaVar('signum', '( TMath::Sign( -1.,@0-@1 )+1 )/2.', RooArgList(x, q0)) background = RooGenericPdf('background', 'Background', 'signum*pow(delta,a_bck)*exp(bfun)', RooArgList(signum, delta, a_bck, bfun)) modelPdf = RooAddPdf('chicmodel', 'chicmodel', RooArgList(sigmodel, background), RooArgList(fbck)) frame = x.frame(RooFit.Title('Q')) range = x.setRange('range', 0, 2) # result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range')) dataset.plotOn(frame, RooFit.MarkerSize(0.7)) modelPdf.plotOn(frame, RooFit.LineWidth(2)) #plotting canvas = TCanvas('fit', "", 1400, 700) canvas.Divide(1) canvas.cd(1) gPad.SetRightMargin(0.3) gPad.SetFillColor(10) modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9)) frame.Draw() canvas.SaveAs('out-' + binname + '.png') canvas.SaveAs('out-' + binname + '.root')
def main(): # usage description usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2" # input parameters parser = ArgumentParser( description= 'Script that creates combine datacards and corresponding RooFit workspaces', epilog=usage) parser.add_argument("--inputData", dest="inputData", required=True, help="Input data spectrum", metavar="INPUT_DATA") parser.add_argument("--dataHistname", dest="dataHistname", required=True, help="Data histogram name", metavar="DATA_HISTNAME") parser.add_argument("--inputSig", dest="inputSig", required=True, help="Input signal shapes", metavar="INPUT_SIGNAL") parser.add_argument("-f", "--final_state", dest="final_state", required=True, help="Final state (e.g. qq, qg, gg)", metavar="FINAL_STATE") parser.add_argument("-f2", "--type", dest="atype", required=True, help="Type (e.g. hG, lG, hR, lR)") parser.add_argument( "-o", "--output_path", dest="output_path", required=True, help="Output path where datacards and workspaces will be stored", metavar="OUTPUT_PATH") parser.add_argument( "-l", "--lumi", dest="lumi", required=True, default=1000., type=float, help="Integrated luminosity in pb-1 (default: %(default).1f)", metavar="LUMI") parser.add_argument( "--massMin", dest="massMin", default=500, type=int, help= "Lower bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MIN") parser.add_argument( "--massMax", dest="massMax", default=1200, type=int, help= "Upper bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MAX") parser.add_argument( "--p1", dest="p1", default=5.0000e-03, type=float, help="Fit function p1 parameter (default: %(default)e)", metavar="P1") parser.add_argument( "--p2", dest="p2", default=9.1000e+00, type=float, help="Fit function p2 parameter (default: %(default)e)", metavar="P2") parser.add_argument( "--p3", dest="p3", default=5.0000e-01, type=float, help="Fit function p3 parameter (default: %(default)e)", metavar="P3") parser.add_argument( "--lumiUnc", dest="lumiUnc", required=True, type=float, help="Relative uncertainty in the integrated luminosity", metavar="LUMI_UNC") parser.add_argument("--jesUnc", dest="jesUnc", type=float, help="Relative uncertainty in the jet energy scale", metavar="JES_UNC") parser.add_argument( "--jerUnc", dest="jerUnc", type=float, help="Relative uncertainty in the jet energy resolution", metavar="JER_UNC") parser.add_argument( "--sqrtS", dest="sqrtS", default=13000., type=float, help="Collision center-of-mass energy (default: %(default).1f)", metavar="SQRTS") parser.add_argument("--fixP3", dest="fixP3", default=False, action="store_true", help="Fix the fit function p3 parameter") parser.add_argument("--runFit", dest="runFit", default=False, action="store_true", help="Run the fit") parser.add_argument("--fitBonly", dest="fitBonly", default=False, action="store_true", help="Run B-only fit") parser.add_argument("--fixBkg", dest="fixBkg", default=False, action="store_true", help="Fix all background parameters") parser.add_argument("--decoBkg", dest="decoBkg", default=False, action="store_true", help="Decorrelate background parameters") parser.add_argument("--fitStrategy", dest="fitStrategy", type=int, default=1, help="Fit strategy (default: %(default).1f)") parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug printout") parser.add_argument( "--postfix", dest="postfix", default='', help="Postfix for the output file names (default: %(default)s)") parser.add_argument("--pyes", dest="pyes", default=False, action="store_true", help="Make files for plots") parser.add_argument("--jyes", dest="jyes", default=False, action="store_true", help="Make files for JES/JER plots") parser.add_argument( "--pdir", dest="pdir", default='testarea', help="Name a directory for the plots (default: %(default)s)") parser.add_argument("--chi2", dest="chi2", default=False, action="store_true", help="Compute chi squared") parser.add_argument("--widefit", dest="widefit", default=False, action="store_true", help="Fit with wide bin hist") mass_group = parser.add_mutually_exclusive_group(required=True) mass_group.add_argument( "--mass", type=int, nargs='*', default=1000, help= "Mass can be specified as a single value or a whitespace separated list (default: %(default)i)" ) mass_group.add_argument( "--massrange", type=int, nargs=3, help="Define a range of masses to be produced. Format: min max step", metavar=('MIN', 'MAX', 'STEP')) mass_group.add_argument("--masslist", help="List containing mass information") args = parser.parse_args() if args.atype == 'hG': fstr = "bbhGGBB" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'hR': fstr = "bbhRS" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'lG': fstr = "bblGGBB" in2 = 'bcorrbin/binmodl.root' else: fstr = "bblRS" in2 = 'bcorrbin/binmodl.root' # check if the output directory exists if not os.path.isdir(os.path.join(os.getcwd(), args.output_path)): os.mkdir(os.path.join(os.getcwd(), args.output_path)) # mass points for which resonance shapes will be produced masses = [] if args.massrange != None: MIN, MAX, STEP = args.massrange masses = range(MIN, MAX + STEP, STEP) elif args.masslist != None: # A mass list was provided print "Will create mass list according to", args.masslist masslist = __import__(args.masslist.replace(".py", "")) masses = masslist.masses else: masses = args.mass # sort masses masses.sort() # import ROOT stuff from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf, RooExtendPdf if not args.debug: RooMsgService.instance().setSilentMode(kTRUE) RooMsgService.instance().setStreamStatus(0, kFALSE) RooMsgService.instance().setStreamStatus(1, kFALSE) # input data file inputData = TFile(args.inputData) # input data histogram hData = inputData.Get(args.dataHistname) inData2 = TFile(in2) hData2 = inData2.Get('h_data') # input sig file inputSig = TFile(args.inputSig) sqrtS = args.sqrtS # mass variable mjj = RooRealVar('mjj', 'mjj', float(args.massMin), float(args.massMax)) # integrated luminosity and signal cross section lumi = args.lumi signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section for mass in masses: print ">> Creating datacard and workspace for %s resonance with m = %i GeV..." % ( args.final_state, int(mass)) # get signal shape hSig = inputSig.Get("h_" + args.final_state + "_" + str(int(mass))) # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity) hSig.Scale( signalCrossSection * lumi / hSig.Integral() ) # divide by a number that provides roughly an r value of 1-10 rooSigHist = RooDataHist('rooSigHist', 'rooSigHist', RooArgList(mjj), hSig) print 'Signal acceptance:', (rooSigHist.sumEntries() / hSig.Integral()) signal = RooHistPdf('signal', 'signal', RooArgSet(mjj), rooSigHist) signal_norm = RooRealVar('signal_norm', 'signal_norm', 0, -1e+05, 1e+05) signal_norm2 = RooRealVar('signal_norm2', 'signal_norm2', 0, -1e+05, 1e+05) signal_norm3 = RooRealVar('signal_norm3', 'signal_norm3', 0, -1e+05, 1e+05) signal_norm4 = RooRealVar('signal_norm4', 'signal_norm4', 0, -1e+05, 1e+05) signal_norm5 = RooRealVar('signal_norm5', 'signal_norm5', 0, -1e+05, 1e+05) if args.fitBonly: signal_norm.setConstant() signal_norm2.setConstant() signal_norm3.setConstant() signal_norm4.setConstant() signal_norm5.setConstant() p1 = RooRealVar('p1', 'p1', args.p1, 0., 100.) p2 = RooRealVar('p2', 'p2', args.p2, 0., 60.) p3 = RooRealVar('p3', 'p3', args.p3, -10., 10.) p4 = RooRealVar('p4', 'p4', 5.6, -50., 50.) p5 = RooRealVar('p5', 'p5', 10., -50., 50.) p6 = RooRealVar('p6', 'p6', .016, -50., 50.) p7 = RooRealVar('p7', 'p7', 8., -50., 50.) p8 = RooRealVar('p8', 'p8', .22, -50., 50.) p9 = RooRealVar('p9', 'p9', 14.1, -50., 50.) p10 = RooRealVar('p10', 'p10', 8., -50., 50.) p11 = RooRealVar('p11', 'p11', 4.8, -50., 50.) p12 = RooRealVar('p12', 'p12', 7., -50., 50.) p13 = RooRealVar('p13', 'p13', 7., -50., 50.) p14 = RooRealVar('p14', 'p14', 7., -50., 50.) p15 = RooRealVar('p15', 'p15', 1., -50., 50.) p16 = RooRealVar('p16', 'p16', 9., -50., 50.) p17 = RooRealVar('p17', 'p17', 0.6, -50., 50.) if args.fixP3: p3.setConstant() background = RooGenericPdf( 'background', '(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))' % (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p1, p2, p3)) dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm = RooRealVar('background_norm', 'background_norm', dataInt, 0., 1e+08) background2 = RooGenericPdf( 'background2', '(pow(@0/%.1f,-@1)*pow(1-@0/%.1f,@2))' % (sqrtS, sqrtS), RooArgList(mjj, p4, p5)) dataInt2 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background2_norm = RooRealVar('background2_norm', 'background2_norm', dataInt2, 0., 1e+08) background3 = RooGenericPdf('background3', '(1/pow(@1+@0/%.1f,@2))' % (sqrtS), RooArgList(mjj, p6, p7)) dataInt3 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background3_norm = RooRealVar('background3_norm', 'background3_norm', dataInt3, 0., 1e+08) background4 = RooGenericPdf( 'background4', '(1/pow(@1+@2*@0/%.1f+pow(@0/%.1f,2),@3))' % (sqrtS, sqrtS), RooArgList(mjj, p8, p9, p10)) dataInt4 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background4_norm = RooRealVar('background4_norm', 'background4_norm', dataInt4, 0., 1e+08) background5 = RooGenericPdf( 'background5', '(pow(@0/%.1f,-@1)*pow(1-pow(@0/%.1f,1/3),@2))' % (sqrtS, sqrtS), RooArgList(mjj, p11, p12)) dataInt5 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background5_norm = RooRealVar('background5_norm', 'background5_norm', dataInt5, 0., 1e+08) background6 = RooGenericPdf( 'background6', '(pow(@0/%.1f,2)+@1*@0/%.1f+@2)' % (sqrtS, sqrtS), RooArgList(mjj, p13, p14)) dataInt6 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm6 = RooRealVar('background_norm6', 'background_norm6', dataInt6, 0., 1e+08) background7 = RooGenericPdf( 'background7', '((-1+@1*@0/%.1f)*pow(@0/%.1f,@2+@3*log(@0/%.1f)))' % (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p15, p16, p17)) dataInt7 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm7 = RooRealVar('background_norm7', 'background_norm7', dataInt7, 0., 1e+08) #Extend PDFs exts = RooExtendPdf('extsignal', 'Extended Signal Pdf', signal, signal_norm) extb = RooExtendPdf('extbackground', 'Extended Background Pdf', background, background_norm) exts2 = RooExtendPdf('extsignal2', 'Extended Signal Pdf2', signal, signal_norm2) extb2 = RooExtendPdf('extbackground2', 'Extended Background Pdf2', background2, background2_norm) exts3 = RooExtendPdf('extsignal3', 'Extended Signal Pdf3', signal, signal_norm3) extb3 = RooExtendPdf('extbackground3', 'Extended Background Pdf3', background3, background3_norm) exts4 = RooExtendPdf('extsignal4', 'Extended Signal Pdf4', signal, signal_norm4) extb4 = RooExtendPdf('extbackground4', 'Extended Background Pdf4', background4, background4_norm) exts5 = RooExtendPdf('extsignal5', 'Extended Signal Pdf5', signal, signal_norm5) extb5 = RooExtendPdf('extbackground5', 'Extended Background Pdf5', background5, background5_norm) # S+B model model = RooAddPdf("model", "s+b", RooArgList(extb, exts)) model2 = RooAddPdf("model2", "s+b2", RooArgList(extb2, exts2)) model3 = RooAddPdf("model3", "s+b3", RooArgList(extb3, exts3)) model4 = RooAddPdf("model4", "s+b4", RooArgList(extb4, exts4)) model5 = RooAddPdf("model5", "s+b5", RooArgList(extb5, exts5)) #model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm)) #model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm)) rooDataHist = RooDataHist('rooDatahist', 'rooDathist', RooArgList(mjj), hData) if args.runFit: mframe = mjj.frame() rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata")) res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframe, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) # res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink)) # res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure)) rooDataHist2 = RooDataHist('rooDatahist2', 'rooDathist2', RooArgList(mjj), hData2) # rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data")) if args.pyes: c = TCanvas("c", "c", 800, 800) mframe.SetAxisRange(300., 1300.) c.SetLogy() # mframe.SetMaximum(10) # mframe.SetMinimum(1) mframe.Draw() fitname = args.pdir + '/5funcfit_m' + str(mass) + fstr + '.pdf' c.SaveAs(fitname) # cpull = TCanvas("cpull","cpull",800,800) # pulls = mframe.pullHist("data","model1") # pulls.Draw("ABX") # pullname = args.pdir+'/pull_m'+str(mass)+fstr+'.pdf' # cpull.SaveAs(pullname) # cpull2 = TCanvas("cpull2","cpull2",800,800) # pulls2 = mframe.pullHist("setonedata","model1") # pulls2.Draw("ABX") # pull2name = args.pdir+'/pull2_m'+str(mass)+fstr+'.pdf' # cpull2.SaveAs(pull2name) if args.widefit: mframew = mjj.frame() rooDataHist2.plotOn(mframew, ROOT.RooFit.Name("data")) res6 = model.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframew, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res7 = model2.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model2.plotOn(mframew, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res8 = model3.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model3.plotOn(mframew, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res9 = model4.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model4.plotOn(mframew, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res10 = model5.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model5.plotOn(mframew, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) if args.pyes: c = TCanvas("c", "c", 800, 800) mframew.SetAxisRange(300., 1300.) c.SetLogy() # mframew.SetMaximum(10) # mframew.SetMinimum(1) mframew.Draw() fitname = args.pdir + '/5funcfittowide_m' + str( mass) + fstr + '.pdf' c.SaveAs(fitname) cpull = TCanvas("cpull", "cpull", 800, 800) pulls = mframew.pullHist("data", "model1") pulls.Draw("ABX") pullname = args.pdir + '/pullwidefit_m' + str( mass) + fstr + '.pdf' cpull.SaveAs(pullname) if args.chi2: fullInt = model.createIntegral(RooArgSet(mjj)) norm = dataInt / fullInt.getVal() chi1 = 0. fullInt2 = model2.createIntegral(RooArgSet(mjj)) norm2 = dataInt2 / fullInt2.getVal() chi2 = 0. fullInt3 = model3.createIntegral(RooArgSet(mjj)) norm3 = dataInt3 / fullInt3.getVal() chi3 = 0. fullInt4 = model4.createIntegral(RooArgSet(mjj)) norm4 = dataInt4 / fullInt4.getVal() chi4 = 0. fullInt5 = model5.createIntegral(RooArgSet(mjj)) norm5 = dataInt5 / fullInt5.getVal() chi5 = 0. for i in range(args.massMin, args.massMax): new = 0 new2 = 0 new3 = 0 new4 = 0 new5 = 0 height = hData.GetBinContent(i) xLow = hData.GetXaxis().GetBinLowEdge(i) xUp = hData.GetXaxis().GetBinLowEdge(i + 1) obs = height * (xUp - xLow) mjj.setRange("intrange", xLow, xUp) integ = model.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp = integ.getVal() * norm new = pow(exp - obs, 2) / exp chi1 = chi1 + new integ2 = model2.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp2 = integ2.getVal() * norm2 new2 = pow(exp2 - obs, 2) / exp2 chi2 = chi2 + new2 integ3 = model3.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp3 = integ3.getVal() * norm3 new3 = pow(exp3 - obs, 2) / exp3 chi3 = chi3 + new3 integ4 = model4.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp4 = integ4.getVal() * norm4 if exp4 != 0: new4 = pow(exp4 - obs, 2) / exp4 else: new4 = 0 chi4 = chi4 + new4 integ5 = model5.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp5 = integ5.getVal() * norm5 new5 = pow(exp5 - obs, 2) / exp5 chi5 = chi5 + new5 print "chi1 %d " % (chi1) print "chi2 %d " % (chi2) print "chi3 %d " % (chi3) print "chi4 %d " % (chi4) print "chi5 %d " % (chi5) if not args.decoBkg: print " " res.Print() res2.Print() res3.Print() res4.Print() res5.Print() # res6.Print() # res7.Print() # decorrelated background parameters for Bayesian limits if args.decoBkg: signal_norm.setConstant() res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) res.Print() ## temp workspace for the PDF diagonalizer w_tmp = RooWorkspace("w_tmp") deco = PdfDiagonalizer("deco", w_tmp, res) # here diagonalizing only the shape parameters since the overall normalization is already decorrelated background_deco = deco.diagonalize(background) print "##################### workspace for decorrelation" w_tmp.Print("v") print "##################### original parameters" background.getParameters(rooDataHist).Print("v") print "##################### decorrelated parameters" # needed if want to evaluate limits without background systematics if args.fixBkg: w_tmp.var("deco_eig1").setConstant() w_tmp.var("deco_eig2").setConstant() if not args.fixP3: w_tmp.var("deco_eig3").setConstant() background_deco.getParameters(rooDataHist).Print("v") print "##################### original pdf" background.Print() print "##################### decorrelated pdf" background_deco.Print() # release signal normalization signal_norm.setConstant(kFALSE) # set the background normalization range to +/- 5 sigma bkg_val = background_norm.getVal() bkg_error = background_norm.getError() background_norm.setMin(bkg_val - 5 * bkg_error) background_norm.setMax(bkg_val + 5 * bkg_error) background_norm.Print() # change background PDF names background.SetName("background_old") background_deco.SetName("background") # needed if want to evaluate limits without background systematics if args.fixBkg: background_norm.setConstant() p1.setConstant() p2.setConstant() p3.setConstant() # ----------------------------------------- # dictionaries holding systematic variations of the signal shape hSig_Syst = {} hSig_Syst_DataHist = {} sigCDF = TGraph(hSig.GetNbinsX() + 1) # JES and JER uncertainties if args.jesUnc != None or args.jerUnc != None: sigCDF.SetPoint(0, 0., 0.) integral = 0. for i in range(1, hSig.GetNbinsX() + 1): x = hSig.GetXaxis().GetBinLowEdge(i + 1) integral = integral + hSig.GetBinContent(i) sigCDF.SetPoint(i, x, integral) if args.jesUnc != None: hSig_Syst['JESUp'] = copy.deepcopy(hSig) hSig_Syst['JESDown'] = copy.deepcopy(hSig) if args.jerUnc != None: hSig_Syst['JERUp'] = copy.deepcopy(hSig) hSig_Syst['JERDown'] = copy.deepcopy(hSig) # reset signal histograms for key in hSig_Syst.keys(): hSig_Syst[key].Reset() hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key) # produce JES signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jes = 1. - args.jesUnc xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jes = 1. + args.jesUnc xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JESUp'] = RooDataHist('hSig_JESUp', 'hSig_JESUp', RooArgList(mjj), hSig_Syst['JESUp']) hSig_Syst_DataHist['JESDown'] = RooDataHist( 'hSig_JESDown', 'hSig_JESDown', RooArgList(mjj), hSig_Syst['JESDown']) if args.jyes: c2 = TCanvas("c2", "c2", 800, 800) mframe2 = mjj.frame(ROOT.RooFit.Title("JES One Sigma Shifts")) mframe2.SetAxisRange(args.massMin, args.massMax) hSig_Syst_DataHist['JESUp'].plotOn( mframe2, ROOT.RooFit.Name("JESUP"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JESDown'].plotOn( mframe2, ROOT.RooFit.Name("JESDOWN"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe2, ROOT.RooFit.DataError(2), ROOT.RooFit.Name("SIG"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe2.Draw() mframe2.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7, 0.8, 0.9, 0.9) leg.SetFillColor(0) leg.AddEntry(mframe2.findObject("SIG"), "Signal Model", "l") leg.AddEntry(mframe2.findObject("JESUP"), "+1 Sigma", "l") leg.AddEntry(mframe2.findObject("JESDOWN"), "-1 Sigma", "l") leg.Draw() jesname = args.pdir + '/jes_m' + str(mass) + fstr + '.pdf' c2.SaveAs(jesname) # produce JER signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jer = 1. - args.jerUnc xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jer = 1. + args.jerUnc xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JERUp'] = RooDataHist('hSig_JERUp', 'hSig_JERUp', RooArgList(mjj), hSig_Syst['JERUp']) hSig_Syst_DataHist['JERDown'] = RooDataHist( 'hSig_JERDown', 'hSig_JERDown', RooArgList(mjj), hSig_Syst['JERDown']) if args.jyes: c3 = TCanvas("c3", "c3", 800, 800) mframe3 = mjj.frame(ROOT.RooFit.Title("JER One Sigma Shifts")) mframe3.SetAxisRange(args.massMin, args.massMax) hSig_Syst_DataHist['JERUp'].plotOn( mframe3, ROOT.RooFit.Name("JERUP"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JERDown'].plotOn( mframe3, ROOT.RooFit.Name("JERDOWN"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe3, ROOT.RooFit.DrawOption("L"), ROOT.RooFit.Name("SIG"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe3.Draw() mframe3.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7, 0.8, 0.9, 0.9) leg.SetFillColor(0) leg.AddEntry(mframe3.findObject("SIG"), "Signal Model", "l") leg.AddEntry(mframe3.findObject("JERUP"), "+1 Sigma", "l") leg.AddEntry(mframe3.findObject("JERDOWN"), "-1 Sigma", "l") leg.Draw() jername = args.pdir + '/jer_m' + str(mass) + fstr + '.pdf' c3.SaveAs(jername) # ----------------------------------------- # create a datacard and corresponding workspace postfix = (('_' + args.postfix) if args.postfix != '' else '') dcName = 'datacard_' + args.final_state + '_m' + str( mass) + postfix + '.txt' wsName = 'workspace_' + args.final_state + '_m' + str( mass) + postfix + '.root' w = RooWorkspace('w', 'workspace') getattr(w, 'import')(rooSigHist, RooFit.Rename("signal")) if args.jesUnc != None: getattr(w, 'import')(hSig_Syst_DataHist['JESUp'], RooFit.Rename("signal__JESUp")) getattr(w, 'import')(hSig_Syst_DataHist['JESDown'], RooFit.Rename("signal__JESDown")) if args.jerUnc != None: getattr(w, 'import')(hSig_Syst_DataHist['JERUp'], RooFit.Rename("signal__JERUp")) getattr(w, 'import')(hSig_Syst_DataHist['JERDown'], RooFit.Rename("signal__JERDown")) if args.decoBkg: getattr(w, 'import')(background_deco, ROOT.RooCmdArg()) else: getattr(w, 'import')(background, ROOT.RooCmdArg(), RooFit.Rename("background")) getattr(w, 'import')(background2, ROOT.RooCmdArg(), RooFit.Rename("background2")) getattr(w, 'import')(background3, ROOT.RooCmdArg(), RooFit.Rename("background3")) getattr(w, 'import')(background4, ROOT.RooCmdArg(), RooFit.Rename("background4")) getattr(w, 'import')(background5, ROOT.RooCmdArg(), RooFit.Rename("background5")) getattr(w, 'import')(background_norm, ROOT.RooCmdArg(), RooFit.Rename("background_norm")) getattr(w, 'import')(background2_norm, ROOT.RooCmdArg(), RooFit.Rename("background2_norm")) getattr(w, 'import')(background3_norm, ROOT.RooCmdArg(), RooFit.Rename("background3_norm")) getattr(w, 'import')(background4_norm, ROOT.RooCmdArg(), RooFit.Rename("background4_norm")) getattr(w, 'import')(background5_norm, ROOT.RooCmdArg(), RooFit.Rename("background5_norm")) getattr(w, 'import')(res) getattr(w, 'import')(res2) getattr(w, 'import')(res3) getattr(w, 'import')(res4) getattr(w, 'import')(res5) getattr(w, 'import')(background_norm, ROOT.RooCmdArg()) getattr(w, 'import')(signal_norm, ROOT.RooCmdArg()) getattr(w, 'import')(rooDataHist, RooFit.Rename("data_obs")) w.Print() w.writeToFile(os.path.join(args.output_path, wsName)) beffUnc = 0.3 boffUnc = 0.06 datacard = open(os.path.join(args.output_path, dcName), 'w') datacard.write('imax 1\n') datacard.write('jmax 1\n') datacard.write('kmax *\n') datacard.write('---------------\n') if args.jesUnc != None or args.jerUnc != None: datacard.write('shapes * * ' + wsName + ' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n') else: datacard.write('shapes * * ' + wsName + ' w:$PROCESS\n') datacard.write('---------------\n') datacard.write('bin 1\n') datacard.write('observation -1\n') datacard.write('------------------------------\n') datacard.write('bin 1 1\n') datacard.write('process signal background\n') datacard.write('process 0 1\n') datacard.write('rate -1 1\n') datacard.write('------------------------------\n') datacard.write('lumi lnN %f -\n' % (1. + args.lumiUnc)) datacard.write('beff lnN %f -\n' % (1. + beffUnc)) datacard.write('boff lnN %f -\n' % (1. + boffUnc)) datacard.write('bkg lnN - 1.03\n') if args.jesUnc != None: datacard.write('JES shape 1 -\n') if args.jerUnc != None: datacard.write('JER shape 1 -\n') # flat parameters --- flat prior datacard.write('background_norm flatParam\n') if args.decoBkg: datacard.write('deco_eig1 flatParam\n') datacard.write('deco_eig2 flatParam\n') if not args.fixP3: datacard.write('deco_eig3 flatParam\n') else: datacard.write('p1 flatParam\n') datacard.write('p2 flatParam\n') if not args.fixP3: datacard.write('p3 flatParam\n') datacard.close() print '>> Datacards and workspaces created and stored in %s/' % ( os.path.join(os.getcwd(), args.output_path))
def main(): parser = OptionParser() parser.add_option("-d", "--dir", type="string", dest="outDir", metavar="DIR", default="./", help="output directory for .png") (options, args) = parser.parse_args() if os.path.exists(options.outDir) and options.outDir!="./": print "Sorry, file ",options.outDir," already exist, choose another name\n" exit(1) else: os.system("mkdir -p "+options.outDir) """ Set the style ... """ myNewStyle = TStyle("myNewStyle","A better style for my plots") setStyle(myNewStyle) TH1F.SetDefaultSumw2(True) # Histogram range xlow = 70. xup = 110. # Mass range for fit minM_fit = 75. maxM_fit = 105. # Ratio plot range minR = 0.8 maxR = 1.2 # TLines for ratio plot line = TLine(minM_fit,1,maxM_fit,1) line.SetLineWidth(2) line.SetLineColor(2) # Canvas spectrum_height = 0.75 ratio_correction = 1.4 ratio_height = (1-spectrum_height)*ratio_correction xOffset = 0.08 yOffset = 0.04 cTest = TCanvas("cTest","cTest") c2 = TCanvas("c2","c2") c2.SetFillColor(0) c2.Divide(1,2) c3 = TCanvas("c3","c3") c3.SetFillColor(0) c3.Divide(1,2) # Files MuScleFit fDataBefore = TFile("h3_Z_data_beforeCorrection.root") fDataAfter = TFile("h3_Z_data_afterCorrection.root") fMcBefore = TFile("h3_Z_mc_beforeCorrection.root") fMcAfter = TFile("h3_Z_mc_afterCorrection.root") # Retrieve histograms and fit hDataBefore = fDataBefore.Get("h1_Z_data") hDataAfter = fDataAfter.Get("h1_Z_data") hMcBefore = fMcBefore.Get("h1_Z_mc") hMcAfter = fMcAfter.Get("h1_Z_mc") # Identifiers ids = ["data_before","data_after","mc_before","mc_after"] # Create histograms dictionary histos = {} histos["data_before"] = hDataBefore histos["data_after"] = hDataAfter histos["mc_before"] = hMcBefore histos["mc_after"] = hMcAfter histosSubtr = {} # Create parameters dictionary expPars = {} signalPars = {} for i in ids: # RooFit definitions ## RooRealVars x = RooRealVar("x","M_{#mu#mu} (GeV)",minM_fit,maxM_fit) mean = RooRealVar("mean","mean",91.19,87.,94.) meanCB = RooRealVar("meanCB","meanCB",0.,-10.,10.) meanCB.setConstant(True) width = RooRealVar("width","width",2.4952,2.3,2.6) width.setConstant(True) sigma = RooRealVar("sigma","sigma",1.3,0.001,3.) # sigma.setConstant(True) slope = RooRealVar("slope","slope",-0.1,-1.0,0.) # slope.setConstant(True) alpha = RooRealVar("alpha","alpha",1.,0.,30.) # alpha.setConstant(True) N = RooRealVar("N","N",2.,0.,100.) # N.setConstant(True) fsig = RooRealVar("fsig","fsig",0.9,0.,1.0) ## PDFs relBW = RooGenericPdf("relBW","relBW","@0/(pow(@0*@0-@1*@1,2) + @2*@2*@0*@0*@0*@0/(@1*@1))",RooArgList(x,mean,width)) CB = RooCBShape("CB","CB",x,meanCB,sigma,alpha,N) expo = RooExponential("expo","expo",x,slope) relBWTimesCB = RooFFTConvPdf("relBWTimesCB","relBWTimesCB",x,relBW,CB) relBWTimesCBPlusExp = RooAddPdf("relBWTimesCBPlusExp","relBWTimesCBPlusExp",relBWTimesCB,expo,fsig) # Fit frame = x.frame() h = histos[i] # h.Rebin(10) h.Sumw2() nbin = h.GetNbinsX() dh = RooDataHist("dh","dh",RooArgList(x),h) dh.plotOn(frame) relBWTimesCBPlusExp.fitTo(dh) relBWTimesCBPlusExp.plotOn(frame) relBWTimesCBPlusExp.paramOn(frame) # Plot c = TCanvas("c_"+i,"c_"+i) c.SetFillColor(0) c.cd() frame.Draw() c.SaveAs(options.outDir+"/DimuonWithFit_"+i+".png") # Extract the result of the fit expParams = [] expCoef = slope.getValV() fSig = fsig.getValV() binLow = h.GetXaxis().FindBin(minM_fit) binHigh = h.GetXaxis().FindBin(maxM_fit) nEntries = h.Integral(binLow,binHigh) expParams = [expCoef,fSig,nEntries,binLow,binHigh] expPars[i] = expParams signalParams = [mean.getVal(),width.getVal(),meanCB.getVal(),sigma.getVal(),alpha.getVal(),N.getVal()] signalPars[i] = signalParams # Subtract the bkg from the histograms h_woBkg = h.Clone() h_bkg = TH1F("h_bkg_"+i,"Histogram of bkg events",nbin,xlow,xup) h_bkg.Sumw2() expNorm = (math.fabs(expCoef)*(1-fSig)*nEntries)/(math.exp(expCoef*minM_fit)-math.exp(expCoef*maxM_fit)) for ibin in range(binLow,binHigh): w = integrateExp(expNorm,expCoef,h_bkg.GetBinLowEdge(ibin),h_bkg.GetBinLowEdge(ibin+1)) h_bkg.SetBinContent(ibin,w) h_woBkg.Add(h_bkg,-1) nEvts_woBkg = h_woBkg.Integral(binLow,binHigh) h_woBkg.Scale(1/nEvts_woBkg) histosSubtr[i] = h_woBkg del expParams, c del relBWTimesCBPlusExp, relBW, CB, relBWTimesCB, expo del x, mean, width, sigma, fsig, N, alpha, slope, meanCB del frame, dh, h, h_woBkg, h_bkg # BEFORE CORRECTIONS # # RooFit definitions (again, sorry) # ## RooRealVars # x = RooRealVar("x","M_{#mu#mu} (GeV)",minM_fit,maxM_fit) # mean = RooRealVar("mean","mean",91.19) # meanCB = RooRealVar("meanCB","meanCB",0.) # width = RooRealVar("width","width",2.4952) # sigma = RooRealVar("sigma","sigma",1.3) # alpha = RooRealVar("alpha","alpha",1.) # N = RooRealVar("N","N",2.) # ## PDFs (again, sorry) # relBW = RooGenericPdf("relBW","relBW","@0/(pow(@0*@0-@1*@1,2) + @2*@2*@0*@0*@0*@0/(@1*@1))",RooArgList(x,mean,width)) # CB = RooCBShape("CB","CB",x,meanCB,sigma,alpha,N) # relBWTimesCB = RooFFTConvPdf("relBWTimesCB","relBWTimesCB",x,relBW,CB) # Ratio plot after background subtraction histosSubtr["data_before"].GetXaxis().SetRangeUser(minM_fit,maxM_fit) histosSubtr["data_before"].GetYaxis().SetRangeUser(0.,histosSubtr["data_before"].GetMaximum()+0.1*histosSubtr["data_before"].GetMaximum()) histosSubtr["data_before"].SetLineColor(1) histosSubtr["mc_before"].GetXaxis().SetRangeUser(minM_fit,maxM_fit) if histosSubtr["mc_before"].GetMaximum()>histosSubtr["data_before"].GetMaximum(): histosSubtr["data_before"].GetYaxis().SetRangeUser(0.,histosSubtr["mc_before"].GetMaximum()+0.1*histosSubtr["mc_before"].GetMaximum()) histosSubtr["mc_before"].SetLineColor(2) ## This is the simple overlay of the normalized spectra # c2.cd(1) r.SetOwnership(c2, False) c2_spectrum = c2.GetListOfPrimitives().FindObject("c2_1") c2_ratio = c2.GetListOfPrimitives().FindObject("c2_2") c2_spectrum.SetPad(0.+xOffset, (1 - spectrum_height)+yOffset, 1.+xOffset, 1.+yOffset) c2_ratio.SetPad(0.+xOffset, 0.+yOffset, 1.+xOffset, ratio_height+yOffset) c2_ratio.SetTopMargin(0) c2_ratio.SetBottomMargin(0.2) c2_spectrum.SetLeftMargin(0.12) c2_spectrum.SetRightMargin(0.15) c2_ratio.SetLeftMargin(0.12) c2_ratio.SetRightMargin(0.15) leg=0 leg = TLegend(0.10,0.75,0.40,0.90) leg.SetHeader("Before corrections") leg.SetFillColor(0) leg.SetTextSize(0.06) leg.AddEntry(histosSubtr["data_before"],"DATA") leg.AddEntry(histosSubtr["mc_before"],"MC") setHistoStyle(histosSubtr["data_before"]) setHistoStyle(histosSubtr["mc_before"]) histosSubtr["data_before"].SetTitle("Dimuon mass spectrum (after background subtraction) data vs. MC") histosSubtr["data_before"].GetXaxis().SetTitle("M_{#mu#mu} (GeV)") histosSubtr["data_before"].GetYaxis().SetTitle("Arbitrary units") histosSubtr["mc_before"].GetXaxis().SetTitle("M_{#mu#mu} (GeV)") histosSubtr["mc_before"].GetYaxis().SetTitle("Arbitrary units") c2_spectrum.cd() # c2_spectrum.SetLogy() histosSubtr["data_before"].Draw("HIST") histosSubtr["mc_before"].Draw("HISTsame") tpt_pars_data = TPaveText(0.13, 0.45, 0.4, 0.59, "NDC") tpt_pars_data.SetTextSize(0.045) tpt_pars_data.SetTextFont(42) tpt_pars_data.SetFillColor(0) tpt_pars_data.SetBorderSize(0) tpt_pars_data.SetMargin(0.01) tpt_pars_data.SetTextAlign(12) tpt_pars_data.AddText(0.0,0.9,"M^{fit}_{Z,data} = "+str(round(signalPars["data_before"][0],2))+" GeV") tpt_pars_data.AddText(0.0,0.4,"#sigma_{CB,data} = "+str(round(signalPars["data_before"][3],2))+" GeV") tpt_pars_data.Draw("same") tpt_pars_mc = TPaveText(0.13, 0.30, 0.4, 0.44, "NDC") tpt_pars_mc.SetTextSize(0.045) tpt_pars_mc.SetTextFont(42) tpt_pars_mc.SetFillColor(0) tpt_pars_mc.SetBorderSize(0) tpt_pars_mc.SetMargin(0.01) tpt_pars_mc.SetTextAlign(12) tpt_pars_mc.SetTextColor(2) tpt_pars_mc.AddText(0.0,0.9,"M^{fit}_{Z,MC} = "+str(round(signalPars["mc_before"][0],2))+" GeV") tpt_pars_mc.AddText(0.0,0.4,"#sigma_{CB,MC} = "+str(round(signalPars["mc_before"][3],2))+" GeV") tpt_pars_mc.Draw("same") leg.Draw("same") # mean.setVal(signalPars["data_before"][0]) # sigma.setVal(signalPars["data_before"][3]) # alpha.setVal(signalPars["data_before"][4]) # N.setVal(signalPars["data_before"][5]) # dh_data = RooDataHist("dh_data","dh_data",RooArgList(x),histosSubtr["data_before"]) # frame_data = x.frame() # dh_data.plotOn(frame_data,RooFit.LineColor(1),RooFit.DrawOption("B")) # # relBWTimesCB.plotOn(frame_data,RooFit.LineColor(1)) # frame_data.Draw() # mean.setVal(signalPars["mc_before"][0]) # # mean.setVal(97) # sigma.setVal(signalPars["mc_before"][3]) # alpha.setVal(signalPars["mc_before"][4]) # N.setVal(signalPars["mc_before"][5]) # dh_mc = RooDataHist("dh_mc","dh_mc",RooArgList(x),histosSubtr["mc_before"]) # frame_mc = x.frame() # # dh_mc.plotOn(frame_mc,RooFit.LineColor(2),RooFit.MarkerColor(2),RooFit.MarkerSize(0.4),RooFit.DrawOption("HIST")) # # relBWTimesCB.plotOn(frame_mc,RooFit.LineColor(2)) # # frame_mc.Draw("same") ## Ratio histogram h_Num_woBkg = histosSubtr["data_before"].Clone() h_Den_woBkg = histosSubtr["mc_before"].Clone() # h_Num_woBkg.Rebin(10) # h_Den_woBkg.Rebin(10) h_Num_woBkg.Divide(h_Den_woBkg) h_Num_woBkg.GetXaxis().SetRangeUser(minM_fit,maxM_fit) h_Num_woBkg.GetYaxis().SetRangeUser(minR,maxR) h_Num_woBkg.GetXaxis().SetTitleSize(0.09) h_Num_woBkg.GetYaxis().SetTitleSize(0.09) h_Num_woBkg.GetXaxis().SetLabelSize(0.08) h_Num_woBkg.GetYaxis().SetLabelSize(0.08) h_Num_woBkg.GetYaxis().SetTitleOffset(0.45) ## This is the DATA/MC ratio c2_ratio.cd() h_Num_woBkg.GetYaxis().SetTitle("DATA/MC Ratio") h_Num_woBkg.SetTitle("") # setHistoStyle(h_Num_woBkg) h_Num_woBkg.SetMarkerStyle(20) h_Num_woBkg.SetMarkerSize(0.85) h_Num_woBkg.Draw("E") line.Draw("same") c2.SaveAs(options.outDir+"/DimuonAfterBkgSub_beforeCorrections.png") c2.SaveAs(options.outDir+"/DimuonAfterBkgSub_beforeCorrections.pdf") c2.SaveAs(options.outDir+"/DimuonAfterBkgSub_beforeCorrections.eps") del tpt_pars_data, tpt_pars_mc, h_Num_woBkg # AFTER CORRECTIONS # # RooFit definitions (again, sorry) # ## RooRealVars # x = RooRealVar("x","M_{#mu#mu} (GeV)",minM_fit,maxM_fit) # mean = RooRealVar("mean","mean",91.19) # meanCB = RooRealVar("meanCB","meanCB",0.) # width = RooRealVar("width","width",2.4952) # sigma = RooRealVar("sigma","sigma",1.3) # alpha = RooRealVar("alpha","alpha",1.) # N = RooRealVar("N","N",2.) # ## PDFs (again, sorry) # relBW = RooGenericPdf("relBW","relBW","@0/(pow(@0*@0-@1*@1,2) + @2*@2*@0*@0*@0*@0/(@1*@1))",RooArgList(x,mean,width)) # CB = RooCBShape("CB","CB",x,meanCB,sigma,alpha,N) # relBWTimesCB = RooFFTConvPdf("relBWTimesCB","relBWTimesCB",x,relBW,CB) # Ratio plot after background subtraction histosSubtr["data_after"].GetXaxis().SetRangeUser(minM_fit,maxM_fit) histosSubtr["data_after"].GetYaxis().SetRangeUser(0.,histosSubtr["data_after"].GetMaximum()+0.1*histosSubtr["data_after"].GetMaximum()) histosSubtr["data_after"].SetLineColor(1) histosSubtr["mc_after"].GetXaxis().SetRangeUser(minM_fit,maxM_fit) if histosSubtr["mc_after"].GetMaximum()>histosSubtr["data_after"].GetMaximum(): histosSubtr["data_after"].GetYaxis().SetRangeUser(0.,histosSubtr["mc_after"].GetMaximum()+0.1*histosSubtr["mc_after"].GetMaximum()) histosSubtr["mc_after"].SetLineColor(2) ## This is the simple overlay of the normalized spectra # c3.cd(1) r.SetOwnership(c3, False) c3_spectrum = c3.GetListOfPrimitives().FindObject("c3_1") c3_ratio = c3.GetListOfPrimitives().FindObject("c3_2") c3_spectrum.SetPad(0.+xOffset, (1 - spectrum_height)+yOffset, 1.+xOffset, 1.+yOffset) c3_ratio.SetPad(0.+xOffset, 0.+yOffset, 1.+xOffset, ratio_height+yOffset) c3_ratio.SetTopMargin(0) c3_ratio.SetBottomMargin(0.2) c3_spectrum.SetLeftMargin(0.12) c3_spectrum.SetRightMargin(0.15) c3_ratio.SetLeftMargin(0.12) c3_ratio.SetRightMargin(0.15) leg=0 leg = TLegend(0.10,0.75,0.40,0.90) leg.SetHeader("After corrections") leg.SetFillColor(0) leg.SetTextSize(0.06) leg.AddEntry(histosSubtr["data_after"],"DATA") leg.AddEntry(histosSubtr["mc_after"],"MC") setHistoStyle(histosSubtr["data_after"]) setHistoStyle(histosSubtr["mc_after"]) histosSubtr["data_after"].SetTitle("Dimuon mass spectrum (after background subtraction) data vs. MC") histosSubtr["data_after"].GetXaxis().SetTitle("M_{#mu#mu} (GeV)") histosSubtr["data_after"].GetYaxis().SetTitle("Arbitrary units") histosSubtr["mc_after"].GetXaxis().SetTitle("M_{#mu#mu} (GeV)") histosSubtr["mc_after"].GetYaxis().SetTitle("Arbitrary units") c3_spectrum.cd() # c3_spectrum.SetLogy() histosSubtr["data_after"].Draw("HIST") histosSubtr["mc_after"].Draw("HISTsame") tpt_pars_data = 0 tpt_pars_data = TPaveText(0.13, 0.45, 0.4, 0.59, "NDC") tpt_pars_data.SetTextSize(0.045) tpt_pars_data.SetTextFont(42) tpt_pars_data.SetFillColor(0) tpt_pars_data.SetBorderSize(0) tpt_pars_data.SetMargin(0.01) tpt_pars_data.SetTextAlign(12) tpt_pars_data.AddText(0.0,0.9,"M^{fit}_{Z,data} = "+str(round(signalPars["data_after"][0],2))+" GeV") tpt_pars_data.AddText(0.0,0.4,"#sigma_{CB,data} = "+str(round(signalPars["data_after"][3],2))+" GeV") tpt_pars_data.Draw("same") tpt_pars_mc = 0 tpt_pars_mc = TPaveText(0.13, 0.30, 0.4, 0.44, "NDC") tpt_pars_mc.SetTextSize(0.045) tpt_pars_mc.SetTextFont(42) tpt_pars_mc.SetFillColor(0) tpt_pars_mc.SetBorderSize(0) tpt_pars_mc.SetMargin(0.01) tpt_pars_mc.SetTextAlign(12) tpt_pars_mc.SetTextColor(2) tpt_pars_mc.AddText(0.0,0.9,"M^{fit}_{Z,MC} = "+str(round(signalPars["mc_after"][0],2))+" GeV") tpt_pars_mc.AddText(0.0,0.4,"#sigma_{CB,MC} = "+str(round(signalPars["mc_after"][3],2))+" GeV") tpt_pars_mc.Draw("same") leg.Draw("same") # mean.setVal(signalPars["data_after"][0]) # sigma.setVal(signalPars["data_after"][3]) # alpha.setVal(signalPars["data_after"][4]) # N.setVal(signalPars["data_after"][5]) # dh_data = RooDataHist("dh_data","dh_data",RooArgList(x),histosSubtr["data_after"]) # frame_data = x.frame() # dh_data.plotOn(frame_data,RooFit.LineColor(1),RooFit.DrawOption("B")) # # relBWTimesCB.plotOn(frame_data,RooFit.LineColor(1)) # frame_data.Draw() # mean.setVal(signalPars["mc_after"][0]) # # mean.setVal(97) # sigma.setVal(signalPars["mc_after"][3]) # alpha.setVal(signalPars["mc_after"][4]) # N.setVal(signalPars["mc_after"][5]) # dh_mc = RooDataHist("dh_mc","dh_mc",RooArgList(x),histosSubtr["mc_after"]) # frame_mc = x.frame() # # dh_mc.plotOn(frame_mc,RooFit.LineColor(2),RooFit.MarkerColor(2),RooFit.MarkerSize(0.4),RooFit.DrawOption("HIST")) # # relBWTimesCB.plotOn(frame_mc,RooFit.LineColor(2)) # # frame_mc.Draw("same") ## Ratio histogram h_Num_woBkg = histosSubtr["data_after"].Clone() h_Den_woBkg = histosSubtr["mc_after"].Clone() # h_Num_woBkg.Rebin(10) # h_Den_woBkg.Rebin(10) h_Num_woBkg.Divide(h_Den_woBkg) h_Num_woBkg.GetXaxis().SetRangeUser(minM_fit,maxM_fit) h_Num_woBkg.GetYaxis().SetRangeUser(minR,maxR) h_Num_woBkg.GetXaxis().SetTitleSize(0.09) h_Num_woBkg.GetYaxis().SetTitleSize(0.09) h_Num_woBkg.GetXaxis().SetLabelSize(0.08) h_Num_woBkg.GetYaxis().SetLabelSize(0.08) h_Num_woBkg.GetYaxis().SetTitleOffset(0.45) ## This is the DATA/MC ratio c3_ratio.cd() h_Num_woBkg.GetYaxis().SetTitle("DATA/MC Ratio") h_Num_woBkg.SetTitle("") # setHistoStyle(h_Num_woBkg) h_Num_woBkg.SetMarkerStyle(20) h_Num_woBkg.SetMarkerSize(0.85) h_Num_woBkg.Draw("E") line.Draw("same") c3.SaveAs(options.outDir+"/DimuonAfterBkgSub_afterCorrections.png") c3.SaveAs(options.outDir+"/DimuonAfterBkgSub_afterCorrections.pdf") c3.SaveAs(options.outDir+"/DimuonAfterBkgSub_afterCorrections.eps")
nbins=data.numEntries() nfree=sigmodel.getParameters(data).selectByAttrib("Constant",False).getSize() s0.setConstant(True) s1.setConstant(True) if cut>=1: fullintegral=sumsighist.Integral() else: fullintegral=sighist.Integral() print "SIGNAL FRACTION",nsigref.getValV()/(nsigref.getValV()+nbkg.getValV()) if nsigref.getValV()==0: continue if fit=="data": xframe=mass.frame(RooFit.Title("signal fraction in peak ="+str(int(nsigref.getValV()/(nsigref.getValV()+nbkg.getValV())*1000.)/1000.)+"+-"+str(int(nsigref.getError()/(nsigref.getValV()+nbkg.getValV())*1000.)/1000.)+", #chi^{2}/DOF = "+str(int((chi2.getVal()/(nbins-nfree))*10.)/10.))) signal.plotOn(xframe,RooFit.DataError(RooAbsData.SumW2)) sigmodel.plotOn(xframe,RooFit.Normalization(1.0,RooAbsReal.RelativeExpected)) sigmodel.plotOn(xframe,RooFit.Components("sigbkg"+str(cut)),RooFit.LineStyle(kDashed),RooFit.Normalization(1.0,RooAbsReal.RelativeExpected)) sigmodel.plotOn(xframe,RooFit.Components("sig"),RooFit.LineStyle(kDotted),RooFit.Normalization(1.0,RooAbsReal.RelativeExpected)) canvas=TCanvas("c3","c3",0,0,600,600) xframe.Draw() canvas.SaveAs(prefix+"_"+plot[0]+str(cut)+"_sigfit.pdf") a0=RooRealVar("a0"+str(cut),"a0",100.,0.,1000.) a1=RooRealVar("a1"+str(cut),"a1",100.,0.,1000.) a2=RooRealVar("a2"+str(cut),"a2",50.,0.,1000.) a3=RooRealVar("a3"+str(cut),"a3",0.1,0.,1000.) b0=RooRealVar("b0"+str(cut),"b0",120.,0.,100.) b1=RooRealVar("b1"+str(cut),"b1",50.,0.,100.) b2=RooRealVar("b2"+str(cut),"b2",50.,0.,100.) c0=RooRealVar("c0"+str(cut),"c0",100.,-1000.,1000.) c1=RooRealVar("c1"+str(cut),"c1",100.,-1000.,1000.)
def Subtract_Distribution(dataset, DTF_D0sPi_M, LOG_D0_IPCHI2_OWNPV, bin = "undefined", silent = False): dataset_sig = RooDataSet("dataset_sig", "Signal region",dataset, RooArgSet(DTF_D0sPi_M, LOG_D0_IPCHI2_OWNPV) ," ( DTF_D0sPi_M < 2015 ) ") dataset_bckg = RooDataSet("dataset_bckg", "Background region",dataset, RooArgSet(DTF_D0sPi_M, LOG_D0_IPCHI2_OWNPV) ," ( DTF_D0sPi_M > 2015 ) && ( DTF_D0sPi_M < 2020 ) ") #Introduce fit variables ## Johnson parameters J_mu = RooRealVar("J_mu","J_mu", 2011, 2000, 2020) J_sigma = RooRealVar("J_sigma","J_sigma", 0.045, 0.01, 0.1) J_delta = RooRealVar("J_delta","J_delta", 0., -1, 1) J_gamma = RooRealVar("J_gamma","J_gamma", 0., -1, 1) ## Gaussian parameters G1_mu = RooRealVar("G1_mu","G1_mu", 2010, 2008, 2012) G1_sigma = RooRealVar("G1_sigma","G1_sigma", 1.0, 0.01, 5) G2_mu = RooRealVar("G2_mu","G2_mu", 2010, 2008, 2012) G2_sigma = RooRealVar("G2_sigma","G2_sigma", 0.4, 0.01, 5) G3_mu = RooRealVar("G3_mu","G3_mu", 2010, 2008, 2012) G3_sigma = RooRealVar("G3_sigma","G3_sigma", 0.2, 0.01, 5) ## Signal yields ratios fJ = RooRealVar("fJ","fJ", 0.5, 0., 1) fG1 = RooRealVar("fG1","fG1", 0.5, 0., 1) fG2 = RooRealVar("fG2","fG2", 0.5, 0., 1) ##Background parameters B_b = RooRealVar("B_b","B_b", 1.09, 0.9, 1.5) B_c = RooRealVar("B_c","B_c", 0.0837, 0.01, 0.2) ##Total yield N_S = RooRealVar("N_S","N_S", 0.6*dataset.numEntries(), 0, 1.1*dataset.numEntries()) N_B = RooRealVar("N_B","N_B", 0.3*dataset.numEntries(), 0, 1.1*dataset.numEntries()) #Define shapes s_Johnson = ROOT.Johnson("s_Johnson", "s_Johnson", DTF_D0sPi_M, J_mu, J_sigma, J_delta, J_gamma) s_Gauss1 = ROOT.RooGaussian("s_Gauss1","s_Gauss1", DTF_D0sPi_M, G1_mu, G1_sigma) s_Gauss2 = ROOT.RooGaussian("s_Gauss2","s_Gauss2", DTF_D0sPi_M, G2_mu, G2_sigma) s_Gauss3 = ROOT.RooGaussian("s_Gauss3","s_Gauss3", DTF_D0sPi_M, G3_mu, G3_sigma) s_Background = ROOT.Background("s_Background", "s_Background", DTF_D0sPi_M, B_b, B_c) s_Signal = RooAddPdf("s_Signal", "s_Signal", RooArgList(s_Gauss1, s_Gauss2, s_Gauss3), RooArgList(fG1, fG2), True) s_Total = RooAddPdf("s_Total", "s_Total", RooArgList(s_Signal, s_Background), RooArgList(N_S, N_B)) dataset_binned = RooDataHist("dataset_binned","Binned data", RooArgSet(DTF_D0sPi_M), dataset) #Fit shapes fit_hists = s_Total.fitTo(dataset_binned,RooFit.SumW2Error(True),RooFit.Save()) if not silent: ipframe_1 = DTF_D0sPi_M.frame(RooFit.Title("Fit example")) dataset_binned.plotOn(ipframe_1) s_Total.plotOn(ipframe_1, RooFit.Components("s_Signal"), RooFit.LineColor(2),RooFit.LineWidth(4)) s_Total.plotOn(ipframe_1, RooFit.Components("s_Johnson"), RooFit.LineColor(5),RooFit.LineWidth(2), RooFit.LineStyle(3)) s_Total.plotOn(ipframe_1, RooFit.Components("s_Gauss1"), RooFit.LineColor(6),RooFit.LineWidth(2), RooFit.LineStyle(3)) s_Total.plotOn(ipframe_1, RooFit.Components("s_Gauss2"), RooFit.LineColor(7),RooFit.LineWidth(2), RooFit.LineStyle(3)) s_Total.plotOn(ipframe_1, RooFit.Components("s_Gauss3"), RooFit.LineColor(8),RooFit.LineWidth(2), RooFit.LineStyle(3)) s_Total.plotOn(ipframe_1, RooFit.Components("s_Background"), RooFit.LineColor(4),RooFit.LineWidth(4)) s_Total.plotOn(ipframe_1, RooFit.LineColor(1), RooFit.LineWidth(4)) DTF_D0sPi_M.setRange("Background_region", 2015, 2020) DTF_D0sPi_M.setRange("Signal_region", 2002, 2015) Bckg_int = s_Background.createIntegral(RooArgSet(DTF_D0sPi_M), RooArgSet(DTF_D0sPi_M), "Background_region") Sig_int = s_Background.createIntegral(RooArgSet(DTF_D0sPi_M), RooArgSet(DTF_D0sPi_M), "Signal_region") w = RooRealVar("w","w",-1,1) w.setVal(1) dataset_sig.addColumn(w, False) w.setVal(-float(Sig_int.getVal())/float(Bckg_int.getVal())) dataset_bckg.addColumn(w, False) dataset_all = RooDataSet("dataset_all", "dataset_all",dataset_bckg, RooArgSet(DTF_D0sPi_M, LOG_D0_IPCHI2_OWNPV, w), "1>0", "w") dataset_all.append(dataset_sig) if not silent: ipframe_2 = LOG_D0_IPCHI2_OWNPV.frame(RooFit.Title("IPChi2 distribution")) dataset_bckg.plotOn(ipframe_2, RooFit.LineColor(4), RooFit.MarkerColor(4)) dataset_all.plotOn(ipframe_2, RooFit.LineColor(3), RooFit.MarkerColor(3)) dataset_sig.plotOn(ipframe_2, RooFit.LineColor(2), RooFit.MarkerColor(2)) c1 = TCanvas("c1","c1",900,900) ipframe_1.Draw() c1.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_frame1.pdf") c1.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_frame1_C.C") c2 = TCanvas("c2","c2",900,900) ipframe_2.Draw() c2.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_frame2.pdf") c2.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_frame2_C.C") ipframe_1.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_ipframe1.C") ipframe_2.SaveAs("plots/Subtraction_Control/Bin_"+str(bin)+"_ipframe2.C") return dataset_all
# fit #pdf_ext_combine5.fitTo(data4, RooFit.Range("whole_range") ) pdf_ext_combine5.fitTo(data4_SB, RooFit.Range("left_side_band_region,right_side_band_region") ) print "" print "after fit" print "nGauss14: ", nGauss14.getVal() print "nGauss15: ", nGauss15.getVal() print "nGauss14 + nGauss15: ", nGauss14.getVal() + nGauss15.getVal() print "" # plot #gauss12.plotOn(xframe8, RooFit.Normalization( n_generate * frac_combine4.getVal() ,RooAbsReal.NumEvent),RooFit.LineColor(RooFit.kOrange)) #gauss13.plotOn(xframe8, RooFit.Normalization( n_generate*(1-frac_combine4.getVal() ) ,RooAbsReal.NumEvent),RooFit.LineColor(RooFit.kCyan)) pdf_combine4.plotOn(xframe8, RooFit.Normalization(n_generate ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kBlue)) #data4.plotOn(xframe8) data4_SB.plotOn(xframe8) #pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(nGauss14.getVal() + nGauss15.getVal() ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kRed)) pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(data4_SB.sumEntries() ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kRed)) #pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(1.0,RooAbsReal.RelativeExpected) ,RooFit.LineColor(RooFit.kRed)) print "" print "n_generate * frac_combine4.getVal(): ", n_generate * frac_combine4.getVal() print "n_generate*(1-frac_combine4.getVal() ): ", n_generate*(1-frac_combine4.getVal() ) print "data4_SB: ", data4_SB.sumEntries() print "" # -------------------------------------------
def fit_gau2_che(var, dataset, title='', print_pars=False, test=False, mean_=None, sigma_=None, sigma1_=None, sigmaFraction_=None): # define background c0 = RooRealVar('c0', 'constant', 0.1, -1, 1) c1 = RooRealVar('c1', 'linear', 0.6, -1, 1) c2 = RooRealVar('c2', 'quadratic', 0.1, -1, 1) c3 = RooRealVar('c3', 'c3', 0.1, -1, 1) bkg = RooChebychev('bkg', 'background pdf', var, RooArgList(c0, c1, c2, c3)) # define signal val = 5.28 dmean = 0.05 valL = val - dmean valR = val + dmean if mean_ is None: mean = RooRealVar("mean", "mean", val, valL, valR) else: mean = RooRealVar("mean", "mean", mean_) val = 0.05 dmean = 0.02 valL = val - dmean valR = val + dmean if sigma_ is None: sigma = RooRealVar('sigma', 'sigma', val, valL, valR) else: sigma = RooRealVar('sigma', 'sigma', sigma_) if sigma1_ is None: sigma1 = RooRealVar('sigma1', 'sigma1', val, valL, valR) else: sigma1 = RooRealVar('sigma1', 'sigma1', sigma1_) peakGaus = RooGaussian("peakGaus", "peakGaus", var, mean, sigma) peakGaus1 = RooGaussian("peakGaus1", "peakGaus1", var, mean, sigma1) if sigmaFraction_ is None: sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", 0.5, 0., 1.) else: sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", sigmaFraction_) glist = RooArgList(peakGaus, peakGaus1) peakG = RooAddPdf("peakG", "peakG", glist, RooArgList(sigmaFraction)) listPeak = RooArgList("listPeak") listPeak.add(peakG) listPeak.add(bkg) fbkg = 0.45 nEntries = dataset.numEntries() val = (1 - fbkg) * nEntries listArea = RooArgList("listArea") areaPeak = RooRealVar("areaPeak", "areaPeak", val, 0., nEntries) listArea.add(areaPeak) nBkg = fbkg * nEntries areaBkg = RooRealVar("areaBkg", "areaBkg", nBkg, 0., nEntries) listArea.add(areaBkg) model = RooAddPdf("model", "fit model", listPeak, listArea) if not test: fitres = model.fitTo(dataset, RooFit.Extended(kTRUE), RooFit.Minos(kTRUE), RooFit.Save(kTRUE)) nbins = 35 frame = var.frame(nbins) frame.GetXaxis().SetTitle("B^{0} mass (GeV/c^{2})") frame.GetXaxis().CenterTitle() frame.GetYaxis().CenterTitle() frame.SetTitle(title) mk_size = RooFit.MarkerSize(0.3) mk_style = RooFit.MarkerStyle(kFullCircle) dataset.plotOn(frame, mk_size, mk_style) model.plotOn(frame) as_bkg = RooArgSet(bkg) cp_bkg = RooFit.Components(as_bkg) line_style = RooFit.LineStyle(kDashed) model.plotOn(frame, cp_bkg, line_style) if print_pars: fmt = RooFit.Format('NEU') lyt = RooFit.Layout(0.65, 0.95, 0.92) param = model.paramOn(frame, fmt, lyt) param.getAttText().SetTextSize(0.02) param.getAttText().SetTextFont(60) frame.Draw() pars = [ areaBkg, areaPeak, c0, c1, c2, c3, mean, sigma, sigma1, sigmaFraction ] return pars
#RooMinuit(nk1).migrad() #Rk1 = k2.frame() #nk1.plotOn(Rk1,RooFit.ShiftToZero()) #cRcc = TCanvas("Rcc", "Rcc", 500, 500) #Rk1.SetMaximum(4.);Rk1.SetMinimum(0) #Rk1.GetXaxis().SetTitle("nttbar/nmc") #Rk1.SetTitle("") #Rk1.Draw() cR11 = TCanvas("R11", "R", 500, 500) xframe = x.frame() data.plotOn(xframe, RooFit.DataError(RooAbsData.SumW2)) model3.paramOn(xframe, RooFit.Layout(0.65, 0.9, 0.9)) model3.plotOn(xframe) chi2 = xframe.chiSquare(2) ndof = xframe.GetNbinsX() print "chi2 = " + str(chi2) print "ndof = " + str(ndof) xframe.Draw() print "k1:" + str(k1.getVal()) + ", err:" + str( k1.getError()) + ", init:" + str(rttbar) print "k2:" + str(k2.getVal()) + ", err:" + str(k2.getError()) n_mctotal = n_ttbar + n_background print "####################" print "ttbar = " + str(n_ttbar) print "wjets = " + str(n_wjets) print "singletop_t = " + str(n_singletop_t)
ws.pdf('ped').plotOn( xf, RooFit.LineColor(kRed), RooFit.LineStyle(kDashed), RooFit.Normalization(sig_hist.GetEntries() / 3, RooAbsReal.Raw)) fitter = lxgplus else: fitter = lxg fmip.setVal(1.0) fmip.setConstant(True) xf.Draw() # fitter.Print('v') # raise 'Stop here' fr = fitter.fitTo(sigDS, RooFit.Minos(False), RooFit.Save(True)) fitter.plotOn(xf) if (fmip.getVal() < 0.9): lxgplus.plotOn(xf, RooFit.LineColor(kRed + 2), RooFit.LineStyle(kDashed), RooFit.Components('ped*')) lxgplus.plotOn(xf, RooFit.LineColor(myBlue), RooFit.LineStyle(kDashed), RooFit.Components('lxg')) #lxgplus.paramOn(xf) ## c2 = TCanvas('c2', 'signal') xf.Draw() c2.Modified() c2.Update() ## fpar[0] = width.getVal() ## fpar[1] = mpv.getVal() ## fpar[2] = sig_hist.GetEntries()*(1-fped.getVal()) ## fpar[3] = sigma.getVal() ## fpar[4] = sig_hist.GetEntries()*fped.getVal() ## fpar[5] = ws.var('pedMean').getVal()
class BaseFitter(object): def __init__(self, histos, uncertainty): self._histos = histos self._uncertainty = uncertainty self._make_underlying_model() self._make_dataset() self._make_fit_model() self._fit() def _make_underlying_model(self): self.pdfs = {} self.yields = {} # yields are plain floats self.ryields = {} # keep track of roofit objects for memory management h = self._histos[0] nbins = h.GetXaxis().GetNbins() xmin = h.GetXaxis().GetXmin() xmax = h.GetXaxis().GetXmax() self.xvar = RooRealVar("x", "x", xmin, xmax) self.xvar.setBins(nbins) self.pdfs = {} self.hists = [] pdfs = RooArgList() yields = RooArgList() for histo in self._histos: if histo.Integral() == 0: continue compname = histo.GetName() hist = RooDataHist(compname, compname, RooArgList(self.xvar), histo) SetOwnership(hist, False) # self.hists.append(hist) pdf = RooHistPdf(compname, compname, RooArgSet(self.xvar), hist) self.pdfs[compname] = pdf # self.pdfs[compname].Print() pdfs.add(pdf) nevts = histo.Integral() uncertainty = self._uncertainty nmin = min(0, nevts * (1 - uncertainty)) nmax = nevts * (1 + uncertainty) theyield = RooRealVar('n{}'.format(compname), 'n{}'.format(compname), nevts, nmin, nmax) self.ryields[compname] = theyield self.yields[compname] = nevts yields.add(theyield) self.underlying_model = RooAddPdf('model', 'model', pdfs, yields) def _make_fit_model(self): pass def _make_dataset(self): nevents = sum(self.yields.values()) self.data = self.underlying_model.generate(RooArgSet(self.xvar), nevents) def _fit(self): self.tresult = self.underlying_model.fitTo(self.data, RooFit.Extended(), RooFit.Save(), RooFit.PrintEvalErrors(-1)) def print_result(self, comps): print 'input background uncertainty:', self._uncertainty self.tresult.Print() signal_percent_unc = None for comp in comps: yzh = self.ryields[comp] zh_val = yzh.getVal() zh_err = yzh.getError() percent_unc = zh_err / zh_val * 100. if signal_percent_unc is None: signal_percent_unc = percent_unc print '{} yield = {:8.2f}'.format(comp, zh_val) print '{} uncert = {:8.2f}%'.format(comp, percent_unc) print '{} abs uncert = {:8.2f}'.format(comp, zh_err) return percent_unc def draw_pdfs(self): self.pframe = self.xvar.frame() for pdf in self.pdfs.values(): pdf.plotOn(self.pframe) self.pframe.Draw() def draw_data(self): self.mframe = self.xvar.frame() self.data.plotOn(self.mframe) self.underlying_model.plotOn(self.mframe) for icomp, compname in enumerate(self.pdfs): self.underlying_model.plotOn(self.mframe, RooFit.Components(compname), RooFit.LineColor(icomp + 1)) self.mframe.Draw() gPad.Modified() gPad.Update()
def fit_mass(data, column, x, sig_pdf=None, bkg_pdf=None, n_sig=None, n_bkg=None, blind=False, nll_profile=False, second_storage=None, log_plot=False, pulls=True, sPlot=False, bkg_in_region=False, importance=3, plot_importance=3): """Fit a given pdf to a variable distribution Parameter --------- data : |hepds_type| The data containing the variable to fit to column : str The name of the column to fit the pdf to sig_pdf : RooFit pdf The signal Probability Density Function. The variable to fit to has to be named 'x'. bkg_pdf : RooFit pdf The background Probability Density Function. The variable to fit to has to be named 'x'. n_sig : None or numeric The number of signals in the data. If it should be fitted, use None. n_bkg : None or numeric The number of background events in the data. If it should be fitted, use None. blind : boolean or tuple(numberic, numberic) If False, the data is fitted. If a tuple is provided, the values are used as the lower (the first value) and the upper (the second value) limit of a blinding region, which will be omitted in plots. Additionally, no true number of signal will be returned but only fake. nll_profile : boolean If True, a Negative Log-Likelihood Profile will be generated. Does not work with blind fits. second_storage : |hepds_type| A second data-storage that will be concatenated with the first one. importance : |importance_type| |importance_docstring| plot_importance : |plot_importance_type| |plot_importance_docstring| Return ------ tuple(numerical, numerical) Return the number of signals and the number of backgrounds in the signal-region. If a blind fit is performed, the signal will be a fake number. If no number of background events is required, -999 will be returned. """ if not (isinstance(column, str) or len(column) == 1): raise ValueError("Fitting to several columns " + str(column) + " not supported.") if type(sig_pdf) == type(bkg_pdf) == None: raise ValueError("sig_pdf and bkg_pdf are both None-> no fit possible") if blind is not False: lower_blind, upper_blind = blind blind = True n_bkg_below_sig = -999 # create data data_name = data.name data_array, _t1, _t2 = data.make_dataset(second_storage, columns=column) del _t1, _t2 # double crystalball variables min_x, max_x = min(data_array[column]), max(data_array[column]) # x = RooRealVar("x", "x variable", min_x, max_x) # create data data_array = np.array([i[0] for i in data_array.as_matrix()]) data_array.dtype = [('x', np.float64)] tree1 = array2tree(data_array, "x") data = RooDataSet("data", "Data", RooArgSet(x), RooFit.Import(tree1)) # # TODO: export somewhere? does not need to be defined inside... # mean = RooRealVar("mean", "Mean of Double CB PDF", 5280, 5100, 5600)#, 5300, 5500) # sigma = RooRealVar("sigma", "Sigma of Double CB PDF", 40, 0.001, 200) # alpha_0 = RooRealVar("alpha_0", "alpha_0 of one side", 5.715)#, 0, 150) # alpha_1 = RooRealVar("alpha_1", "alpha_1 of other side", -4.019)#, -200, 0.) # lambda_0 = RooRealVar("lambda_0", "Exponent of one side", 3.42)#, 0, 150) # lambda_1 = RooRealVar("lambda_1", "Exponent of other side", 3.7914)#, 0, 500) # # # TODO: export somewhere? pdf construction # frac = RooRealVar("frac", "Fraction of crystal ball pdfs", 0.479, 0.01, 0.99) # # crystalball1 = RooCBShape("crystallball1", "First CrystalBall PDF", x, # mean, sigma, alpha_0, lambda_0) # crystalball2 = RooCBShape("crystallball2", "Second CrystalBall PDF", x, # mean, sigma, alpha_1, lambda_1) # doubleCB = RooAddPdf("doubleCB", "Double CrystalBall PDF", # crystalball1, crystalball2, frac) # n_sig = RooRealVar("n_sig", "Number of signals events", 10000, 0, 1000000) # test input if n_sig == n_bkg == 0: raise ValueError("n_sig as well as n_bkg is 0...") if n_bkg is None: n_bkg = RooRealVar("n_bkg", "Number of background events", 10000, 0, 500000) elif n_bkg >= 0: n_bkg = RooRealVar("n_bkg", "Number of background events", int(n_bkg)) else: raise ValueError("n_bkg is not >= 0 or None") if n_sig is None: n_sig = RooRealVar("n_sig", "Number of signal events", 1050, 0, 200000) # START BLINDING blind_cat = RooCategory("blind_cat", "blind state category") blind_cat.defineType("unblind", 0) blind_cat.defineType("blind", 1) if blind: blind_cat.setLabel("blind") blind_n_sig = RooUnblindPrecision("blind_n_sig", "blind number of signals", "wasistdas", n_sig.getVal(), 10000, n_sig, blind_cat) else: # blind_cat.setLabel("unblind") blind_n_sig = n_sig print "n_sig value " + str(n_sig.getVal()) # raw_input("blind value " + str(blind_n_sig.getVal())) # n_sig = blind_n_sig # END BLINDING elif n_sig >= 0: n_sig = RooRealVar("n_sig", "Number of signal events", int(n_sig)) else: raise ValueError("n_sig is not >= 0") # if not blind: # blind_n_sig = n_sig # # create bkg-pdf # lambda_exp = RooRealVar("lambda_exp", "lambda exp pdf bkg", -0.00025, -1., 1.) # bkg_pdf = RooExponential("bkg_pdf", "Background PDF exp", x, lambda_exp) if blind: comb_pdf = RooAddPdf("comb_pdf", "Combined DoubleCB and bkg PDF", RooArgList(sig_pdf, bkg_pdf), RooArgList(blind_n_sig, n_bkg)) else: comb_pdf = RooAddPdf("comb_pdf", "Combined DoubleCB and bkg PDF", RooArgList(sig_pdf, bkg_pdf), RooArgList(n_sig, n_bkg)) # create test dataset # mean_gauss = RooRealVar("mean_gauss", "Mean of Gaussian", 5553, -10000, 10000) # sigma_gauss = RooRealVar("sigma_gauss", "Width of Gaussian", 20, 0.0001, 300) # gauss1 = RooGaussian("gauss1", "Gaussian test dist", x, mean_gauss, sigma_gauss) # lambda_data = RooRealVar("lambda_data", "lambda exp data", -.002) # exp_data = RooExponential("exp_data", "data example exp", x, lambda_data) # frac_data = RooRealVar("frac_data", "Fraction PDF of data", 0.15) # # data_pdf = RooAddPdf("data_pdf", "Data PDF", gauss1, exp_data, frac_data) # data = data_pdf.generate(RooArgSet(x), 30000) # data.printValue() # xframe = x.frame() # data_pdf.plotOn(xframe) # print "n_cpu:", meta_config.get_n_cpu() # input("test") # comb_pdf.fitTo(data, RooFit.Extended(ROOT.kTRUE), RooFit.NumCPU(meta_config.get_n_cpu())) # HACK to get 8 cores in testing c5 = TCanvas("c5", "RooFit pdf not fit vs " + data_name) c5.cd() x_frame1 = x.frame() # data.plotOn(x_frame1) # comb_pdf.pdfList()[1].plotOn(x_frame1) if __name__ == "__main__": n_cpu = 8 else: n_cpu = meta_config.get_n_cpu() print "n_cpu = ", n_cpu # HACK # n_cpu = 8 result_fit = comb_pdf.fitTo(data, RooFit.Minos(ROOT.kTRUE), RooFit.Extended(ROOT.kTRUE), RooFit.NumCPU(n_cpu)) # HACK end if bkg_in_region: x.setRange("signal", bkg_in_region[0], bkg_in_region[1]) bkg_pdf_fitted = comb_pdf.pdfList()[1] int_argset = RooArgSet(x) # int_argset = x # int_argset.setRange("signal", bkg_in_region[0], bkg_in_region[1]) integral = bkg_pdf_fitted.createIntegral(int_argset, RooFit.NormSet(int_argset), RooFit.Range("signal")) bkg_cdf = bkg_pdf_fitted.createCdf(int_argset, RooFit.Range("signal")) bkg_cdf.plotOn(x_frame1) # integral.plotOn(x_frame1) n_bkg_below_sig = integral.getVal(int_argset) * n_bkg.getVal() x_frame1.Draw() if plot_importance >= 3: c2 = TCanvas("c2", "RooFit pdf fit vs " + data_name) c2.cd() x_frame = x.frame() # if log_plot: # c2.SetLogy() # x_frame.SetTitle("RooFit pdf vs " + data_name) x_frame.SetTitle(data_name) if pulls: pad_data = ROOT.TPad("pad_data", "Pad with data and fit", 0, 0.33, 1, 1) pad_pulls = ROOT.TPad("pad_pulls", "Pad with data and fit", 0, 0, 1, 0.33) pad_data.SetBottomMargin(0.00001) pad_data.SetBorderMode(0) if log_plot: pad_data.SetLogy() pad_pulls.SetTopMargin(0.00001) pad_pulls.SetBottomMargin(0.2) pad_pulls.SetBorderMode(0) pad_data.Draw() pad_pulls.Draw() pad_data.cd() else: if log_plot: c2.SetLogy() if blind: # HACK column = 'x' # END HACK x.setRange("lower", min_x, lower_blind) x.setRange("upper", upper_blind, max_x) range_str = "lower,upper" lower_cut_str = str( min_x) + "<=" + column + "&&" + column + "<=" + str(lower_blind) upper_cut_str = str( upper_blind) + "<=" + column + "&&" + column + "<=" + str(max_x) sideband_cut_str = "(" + lower_cut_str + ")" + "||" + "(" + upper_cut_str + ")" n_entries = data.reduce( sideband_cut_str).numEntries() / data.numEntries() # raw_input("n_entries: " + str(n_entries)) if plot_importance >= 3: data.plotOn(x_frame, RooFit.CutRange(range_str), RooFit.NormRange(range_str)) comb_pdf.plotOn( x_frame, RooFit.Range(range_str), RooFit.Normalization(n_entries, RooAbsReal.Relative), RooFit.NormRange(range_str)) if pulls: # pull_hist(pull_frame=x_frame, pad_data=pad_data, pad_pulls=pad_pulls) x_frame_pullhist = x_frame.pullHist() else: if plot_importance >= 3: data.plotOn(x_frame) comb_pdf.plotOn(x_frame) if pulls: pad_pulls.cd() x_frame_pullhist = x_frame.pullHist() pad_data.cd() comb_pdf.plotOn(x_frame, RooFit.Components(sig_pdf.namePtr().GetName()), RooFit.LineStyle(ROOT.kDashed)) comb_pdf.plotOn(x_frame, RooFit.Components(bkg_pdf.namePtr().GetName()), RooFit.LineStyle(ROOT.kDotted)) # comb_pdf.plotPull(n_sig) if plot_importance >= 3: x_frame.Draw() if pulls: pad_pulls.cd() x_frame.SetTitleSize(0.05, 'Y') x_frame.SetTitleOffset(0.7, 'Y') x_frame.SetLabelSize(0.04, 'Y') # c11 = TCanvas("c11", "RooFit\ pulls" + data_name) # c11.cd() # frame_tmp = x_frame frame_tmp = x.frame() # frame_tmp.SetTitle("significance") frame_tmp.SetTitle("Roofit\ pulls\ " + data_name) frame_tmp.addObject(x_frame_pullhist) frame_tmp.SetMinimum(-5) frame_tmp.SetMaximum(5) # frame_tmp.GetYaxis().SetTitle("significance") frame_tmp.GetYaxis().SetNdivisions(5) frame_tmp.SetTitleSize(0.1, 'X') frame_tmp.SetTitleOffset(1, 'X') frame_tmp.SetLabelSize(0.1, 'X') frame_tmp.SetTitleSize(0.1, 'Y') frame_tmp.SetTitleOffset(0.5, 'Y') frame_tmp.SetLabelSize(0.1, 'Y') frame_tmp.Draw() # raw_input("") if not blind and nll_profile: # nll_range = RooRealVar("nll_range", "Signal for nLL", n_sig.getVal(), # -10, 2 * n_sig.getVal()) sframe = n_sig.frame(RooFit.Bins(20), RooFit.Range(1, 1000)) # HACK for best n_cpu lnL = comb_pdf.createNLL(data, RooFit.NumCPU(8)) # HACK end lnProfileL = lnL.createProfile(ROOT.RooArgSet(n_sig)) lnProfileL.plotOn(sframe, RooFit.ShiftToZero()) c4 = TCanvas("c4", "NLL Profile") c4.cd() # input("press ENTER to show plot") sframe.Draw() if plot_importance >= 3: pass params = comb_pdf.getVariables() params.Print("v") # print bkg_cdf.getVal() if sPlot: sPlotData = ROOT.RooStats.SPlot( "sPlotData", "sPlotData", data, # variable fitted to, RooDataSet comb_pdf, # fitted pdf ROOT.RooArgList( n_sig, n_bkg, # NSigB0s )) sweights = np.array([ sPlotData.GetSWeight(i, 'n_sig') for i in range(data.numEntries()) ]) return n_sig.getVal(), n_bkg_below_sig, sweights if blind: return blind_n_sig.getVal(), n_bkg_below_sig, comb_pdf else: return n_sig.getVal(), n_bkg_below_sig, comb_pdf
def main(): # usage description usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2" # input parameters parser = ArgumentParser(description='Script that creates combine datacards and corresponding RooFit workspaces',epilog=usage) parser.add_argument("--inputData", dest="inputData", required=True, help="Input data spectrum", metavar="INPUT_DATA") parser.add_argument("--dataHistname", dest="dataHistname", required=True, help="Data histogram name", metavar="DATA_HISTNAME") parser.add_argument("--inputSig", dest="inputSig", required=True, help="Input signal shapes", metavar="INPUT_SIGNAL") parser.add_argument("-f", "--final_state", dest="final_state", required=True, help="Final state (e.g. qq, qg, gg)", metavar="FINAL_STATE") parser.add_argument("-f2", "--type", dest="atype", required=True, help="Type (e.g. hG, lG, hR, lR)") parser.add_argument("-o", "--output_path", dest="output_path", required=True, help="Output path where datacards and workspaces will be stored", metavar="OUTPUT_PATH") parser.add_argument("-l", "--lumi", dest="lumi", required=True, default=1000., type=float, help="Integrated luminosity in pb-1 (default: %(default).1f)", metavar="LUMI") parser.add_argument("--massMin", dest="massMin", default=500, type=int, help="Lower bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MIN") parser.add_argument("--massMax", dest="massMax", default=1200, type=int, help="Upper bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MAX") parser.add_argument("--p1", dest="p1", default=5.0000e-03, type=float, help="Fit function p1 parameter (default: %(default)e)", metavar="P1") parser.add_argument("--p2", dest="p2", default=9.1000e+00, type=float, help="Fit function p2 parameter (default: %(default)e)", metavar="P2") parser.add_argument("--p3", dest="p3", default=5.0000e-01, type=float, help="Fit function p3 parameter (default: %(default)e)", metavar="P3") parser.add_argument("--lumiUnc", dest="lumiUnc", required=True, type=float, help="Relative uncertainty in the integrated luminosity", metavar="LUMI_UNC") parser.add_argument("--jesUnc", dest="jesUnc", type=float, help="Relative uncertainty in the jet energy scale", metavar="JES_UNC") parser.add_argument("--jerUnc", dest="jerUnc", type=float, help="Relative uncertainty in the jet energy resolution", metavar="JER_UNC") parser.add_argument("--sqrtS", dest="sqrtS", default=13000., type=float, help="Collision center-of-mass energy (default: %(default).1f)", metavar="SQRTS") parser.add_argument("--fixP3", dest="fixP3", default=False, action="store_true", help="Fix the fit function p3 parameter") parser.add_argument("--runFit", dest="runFit", default=False, action="store_true", help="Run the fit") parser.add_argument("--fitBonly", dest="fitBonly", default=False, action="store_true", help="Run B-only fit") parser.add_argument("--fixBkg", dest="fixBkg", default=False, action="store_true", help="Fix all background parameters") parser.add_argument("--decoBkg", dest="decoBkg", default=False, action="store_true", help="Decorrelate background parameters") parser.add_argument("--fitStrategy", dest="fitStrategy", type=int, default=1, help="Fit strategy (default: %(default).1f)") parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug printout") parser.add_argument("--postfix", dest="postfix", default='', help="Postfix for the output file names (default: %(default)s)") parser.add_argument("--pyes", dest="pyes", default=False, action="store_true", help="Make files for plots") parser.add_argument("--jyes", dest="jyes", default=False, action="store_true", help="Make files for JES/JER plots") parser.add_argument("--pdir", dest="pdir", default='testarea', help="Name a directory for the plots (default: %(default)s)") parser.add_argument("--chi2", dest="chi2", default=False, action="store_true", help="Compute chi squared") parser.add_argument("--widefit", dest="widefit", default=False, action="store_true", help="Fit with wide bin hist") mass_group = parser.add_mutually_exclusive_group(required=True) mass_group.add_argument("--mass", type=int, nargs = '*', default = 1000, help="Mass can be specified as a single value or a whitespace separated list (default: %(default)i)" ) mass_group.add_argument("--massrange", type=int, nargs = 3, help="Define a range of masses to be produced. Format: min max step", metavar = ('MIN', 'MAX', 'STEP') ) mass_group.add_argument("--masslist", help = "List containing mass information" ) args = parser.parse_args() if args.atype == 'hG': fstr = "bbhGGBB" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'hR': fstr = "bbhRS" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'lG': fstr = "bblGGBB" in2 = 'bcorrbin/binmodl.root' else: fstr = "bblRS" in2 = 'bcorrbin/binmodl.root' # check if the output directory exists if not os.path.isdir( os.path.join(os.getcwd(),args.output_path) ): os.mkdir( os.path.join(os.getcwd(),args.output_path) ) # mass points for which resonance shapes will be produced masses = [] if args.massrange != None: MIN, MAX, STEP = args.massrange masses = range(MIN, MAX+STEP, STEP) elif args.masslist != None: # A mass list was provided print "Will create mass list according to", args.masslist masslist = __import__(args.masslist.replace(".py","")) masses = masslist.masses else: masses = args.mass # sort masses masses.sort() # import ROOT stuff from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf if not args.debug: RooMsgService.instance().setSilentMode(kTRUE) RooMsgService.instance().setStreamStatus(0,kFALSE) RooMsgService.instance().setStreamStatus(1,kFALSE) # input data file inputData = TFile(args.inputData) # input data histogram hData = inputData.Get(args.dataHistname) inData2 = TFile(in2) hData2 = inData2.Get('h_data') # input sig file inputSig = TFile(args.inputSig) sqrtS = args.sqrtS # mass variable mjj = RooRealVar('mjj','mjj',float(args.massMin),float(args.massMax)) # integrated luminosity and signal cross section lumi = args.lumi signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section for mass in masses: print ">> Creating datacard and workspace for %s resonance with m = %i GeV..."%(args.final_state, int(mass)) # get signal shape hSig = inputSig.Get( "h_" + args.final_state + "_" + str(int(mass)) ) # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity) hSig.Scale(signalCrossSection*lumi/hSig.Integral()) # divide by a number that provides roughly an r value of 1-10 rooSigHist = RooDataHist('rooSigHist','rooSigHist',RooArgList(mjj),hSig) print 'Signal acceptance:', (rooSigHist.sumEntries()/hSig.Integral()) signal = RooHistPdf('signal','signal',RooArgSet(mjj),rooSigHist) signal_norm = RooRealVar('signal_norm','signal_norm',0,-1e+05,1e+05) if args.fitBonly: signal_norm.setConstant() p1 = RooRealVar('p1','p1',args.p1,0.,100.) p2 = RooRealVar('p2','p2',args.p2,0.,60.) p3 = RooRealVar('p3','p3',args.p3,-10.,10.) p4 = RooRealVar('p4','p4',5.6,-50.,50.) p5 = RooRealVar('p5','p5',10.,-50.,50.) p6 = RooRealVar('p6','p6',.016,-50.,50.) p7 = RooRealVar('p7','p7',8.,-50.,50.) p8 = RooRealVar('p8','p8',.22,-50.,50.) p9 = RooRealVar('p9','p9',14.1,-50.,50.) p10 = RooRealVar('p10','p10',8.,-50.,50.) p11 = RooRealVar('p11','p11',4.8,-50.,50.) p12 = RooRealVar('p12','p12',7.,-50.,50.) p13 = RooRealVar('p13','p13',7.,-50.,50.) p14 = RooRealVar('p14','p14',7.,-50.,50.) p15 = RooRealVar('p15','p15',1.,-50.,50.) p16 = RooRealVar('p16','p16',9.,-50.,50.) p17 = RooRealVar('p17','p17',0.6,-50.,50.) if args.fixP3: p3.setConstant() background = RooGenericPdf('background','(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p1,p2,p3)) dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm = RooRealVar('background_norm','background_norm',dataInt,0.,1e+08) background2 = RooGenericPdf('background2','(pow(@0/%.1f,-@1)*pow(1-@0/%.1f,@2))'%(sqrtS,sqrtS),RooArgList(mjj,p4,p5)) dataInt2 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm2 = RooRealVar('background_norm2','background_norm2',dataInt2,0.,1e+08) background3 = RooGenericPdf('background3','(1/pow(@1+@0/%.1f,@2))'%(sqrtS),RooArgList(mjj,p6,p7)) dataInt3 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm3 = RooRealVar('background_norm3','background_norm3',dataInt3,0.,1e+08) background4 = RooGenericPdf('background4','(1/pow(@1+@2*@0/%.1f+pow(@0/%.1f,2),@3))'%(sqrtS,sqrtS),RooArgList(mjj,p8,p9,p10)) dataInt4 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm4 = RooRealVar('background_norm4','background_norm4',dataInt4,0.,1e+08) background5 = RooGenericPdf('background5','(pow(@0/%.1f,-@1)*pow(1-pow(@0/%.1f,1/3),@2))'%(sqrtS,sqrtS),RooArgList(mjj,p11,p12)) dataInt5 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm5 = RooRealVar('background_norm5','background_norm5',dataInt5,0.,1e+08) background6 = RooGenericPdf('background6','(pow(@0/%.1f,2)+@1*@0/%.1f+@2)'%(sqrtS,sqrtS),RooArgList(mjj,p13,p14)) dataInt6 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm6 = RooRealVar('background_norm6','background_norm6',dataInt6,0.,1e+08) background7 = RooGenericPdf('background7','((-1+@1*@0/%.1f)*pow(@0/%.1f,@2+@3*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p15,p16,p17)) dataInt7 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax))) background_norm7 = RooRealVar('background_norm7','background_norm7',dataInt7,0.,1e+08) # S+B model model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm)) model2 = RooAddPdf("model2","s+b2",RooArgList(background2,signal),RooArgList(background_norm2,signal_norm)) model3 = RooAddPdf("model3","s+b3",RooArgList(background3,signal),RooArgList(background_norm3,signal_norm)) model4 = RooAddPdf("model4","s+b4",RooArgList(background4,signal),RooArgList(background_norm4,signal_norm)) model5 = RooAddPdf("model5","s+b5",RooArgList(background5,signal),RooArgList(background_norm5,signal_norm)) model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm)) model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm)) rooDataHist = RooDataHist('rooDatahist','rooDathist',RooArgList(mjj),hData) if args.runFit: mframe = mjj.frame() rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata"), ROOT.RooFit.Invisible()) res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframe, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink)) res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure)) rooDataHist2 = RooDataHist('rooDatahist2','rooDathist2',RooArgList(mjj),hData2) rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data")) canvas = TCanvas("cdouble", "cdouble", 800, 1000) gStyle.SetOptStat(0); gStyle.SetOptTitle(0); top = TPad("top", "top", 0., 0.5, 1., 1.) top.SetBottomMargin(0.03) top.Draw() top.SetLogy() bottom = TPad("bottom", "bottom", 0., 0., 1., 0.5) bottom.SetTopMargin(0.02) bottom.SetBottomMargin(0.2) bottom.Draw() top.cd() frame_top = TH1D("frame_top", "frame_top", 100, 526, 1500) frame_top.GetXaxis().SetTitleSize(0) frame_top.GetXaxis().SetLabelSize(0) frame_top.GetYaxis().SetLabelSize(0.04) frame_top.GetYaxis().SetTitleSize(0.04) frame_top.GetYaxis().SetTitle("Events") frame_top.SetMaximum(1000.) frame_top.SetMinimum(0.1) frame_top.Draw("axis") mframe.Draw("p e1 same") bottom.cd() frame_bottom = TH1D("frame_bottom", "frame_bottom", 100, 526, 1500) frame_bottom.GetXaxis().SetTitle("m_{jj} [GeV]") frame_bottom.GetYaxis().SetTitle("Pull") frame_bottom.GetXaxis().SetLabelSize(0.04) frame_bottom.GetXaxis().SetTitleSize(0.06) frame_bottom.GetXaxis().SetLabelOffset(0.01) frame_bottom.GetXaxis().SetTitleOffset(1.1) frame_bottom.GetYaxis().SetLabelSize(0.04) frame_bottom.GetYaxis().SetTitleSize(0.04) frame_bottom.GetYaxis().SetTitleOffset(0.85) frame_bottom.SetMaximum(4.) frame_bottom.SetMinimum(-3.) frame_bottom.Draw("axis") zero = TLine(526., 0., 1500., 0.) zero.SetLineColor(ROOT.EColor.kBlack) zero.SetLineStyle(1) zero.SetLineWidth(2) zero.Draw("same") # Ratio histogram with no errors (not so well defined, since this isn't a well-defined efficiency) newHist = mframe.getHist("data") curve = mframe.getObject(1) hresid = newHist.makePullHist(curve,kTRUE) resframe = mjj.frame() mframe.SetAxisRange(526.,1500.) resframe.addPlotable(hresid,"B X") resframe.Draw("same") canvas.cd() canvas.SaveAs("testdouble.pdf") if args.pyes: c = TCanvas("c","c",800,800) mframe.SetAxisRange(300.,1300.) c.SetLogy() # mframe.SetMaximum(10) # mframe.SetMinimum(1) mframe.Draw() fitname = args.pdir+'/5funcfit_m'+str(mass)+fstr+'.pdf' c.SaveAs(fitname) cpull = TCanvas("cpull","cpull",800,800) pulls = mframe.pullHist("data","model3") pulls.Draw("ABX") pullname = args.pdir+'/pull_m'+str(mass)+fstr+'.pdf' cpull.SaveAs(pullname) cpull2 = TCanvas("cpull2","cpull2",800,800) pulls2 = mframe.pullHist("setonedata","model1") pulls2.Draw("ABX") pull2name = args.pdir+'/pull2_m'+str(mass)+fstr+'.pdf' cpull2.SaveAs(pull2name) if args.widefit: mframew = mjj.frame() rooDataHist2.plotOn(mframew, ROOT.RooFit.Name("data")) res6 = model.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframew, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res7 = model2.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model2.plotOn(mframew, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res8 = model3.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model3.plotOn(mframew, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res9 = model4.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model4.plotOn(mframew, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res10 = model5.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model5.plotOn(mframew, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) if args.pyes: c = TCanvas("c","c",800,800) mframew.SetAxisRange(300.,1300.) c.SetLogy() # mframew.SetMaximum(10) # mframew.SetMinimum(1) mframew.Draw() fitname = args.pdir+'/5funcfittowide_m'+str(mass)+fstr+'.pdf' c.SaveAs(fitname) cpull = TCanvas("cpull","cpull",800,800) pulls = mframew.pullHist("data","model1") pulls.Draw("ABX") pullname = args.pdir+'/pullwidefit_m'+str(mass)+fstr+'.pdf' cpull.SaveAs(pullname) if args.chi2: fullInt = model.createIntegral(RooArgSet(mjj)) norm = dataInt/fullInt.getVal() chi1 = 0. fullInt2 = model2.createIntegral(RooArgSet(mjj)) norm2 = dataInt2/fullInt2.getVal() chi2 = 0. fullInt3 = model3.createIntegral(RooArgSet(mjj)) norm3 = dataInt3/fullInt3.getVal() chi3 = 0. fullInt4 = model4.createIntegral(RooArgSet(mjj)) norm4 = dataInt4/fullInt4.getVal() chi4 = 0. fullInt5 = model5.createIntegral(RooArgSet(mjj)) norm5 = dataInt5/fullInt5.getVal() chi5 = 0. for i in range(args.massMin, args.massMax): new = 0 new2 = 0 new3 = 0 new4 = 0 new5 = 0 height = hData.GetBinContent(i) xLow = hData.GetXaxis().GetBinLowEdge(i) xUp = hData.GetXaxis().GetBinLowEdge(i+1) obs = height*(xUp-xLow) mjj.setRange("intrange",xLow,xUp) integ = model.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange")) exp = integ.getVal()*norm new = pow(exp-obs,2)/exp chi1 = chi1 + new integ2 = model2.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange")) exp2 = integ2.getVal()*norm2 new2 = pow(exp2-obs,2)/exp2 chi2 = chi2 + new2 integ3 = model3.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange")) exp3 = integ3.getVal()*norm3 new3 = pow(exp3-obs,2)/exp3 chi3 = chi3 + new3 integ4 = model4.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange")) exp4 = integ4.getVal()*norm4 if exp4 != 0: new4 = pow(exp4-obs,2)/exp4 else: new4 = 0 chi4 = chi4 + new4 integ5 = model5.createIntegral(RooArgSet(mjj),ROOT.RooFit.NormSet(RooArgSet(mjj)),ROOT.RooFit.Range("intrange")) exp5 = integ5.getVal()*norm5 new5 = pow(exp5-obs,2)/exp5 chi5 = chi5 + new5 print "chi1 %d "%(chi1) print "chi2 %d "%(chi2) print "chi3 %d "%(chi3) print "chi4 %d "%(chi4) print "chi5 %d "%(chi5) if not args.decoBkg: print " " res.Print() # res2.Print() # res3.Print() # res4.Print() # res5.Print() # res6.Print() # res7.Print() # decorrelated background parameters for Bayesian limits if args.decoBkg: signal_norm.setConstant() res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) res.Print() ## temp workspace for the PDF diagonalizer w_tmp = RooWorkspace("w_tmp") deco = PdfDiagonalizer("deco",w_tmp,res) # here diagonalizing only the shape parameters since the overall normalization is already decorrelated background_deco = deco.diagonalize(background) print "##################### workspace for decorrelation" w_tmp.Print("v") print "##################### original parameters" background.getParameters(rooDataHist).Print("v") print "##################### decorrelated parameters" # needed if want to evaluate limits without background systematics if args.fixBkg: w_tmp.var("deco_eig1").setConstant() w_tmp.var("deco_eig2").setConstant() if not args.fixP3: w_tmp.var("deco_eig3").setConstant() background_deco.getParameters(rooDataHist).Print("v") print "##################### original pdf" background.Print() print "##################### decorrelated pdf" background_deco.Print() # release signal normalization signal_norm.setConstant(kFALSE) # set the background normalization range to +/- 5 sigma bkg_val = background_norm.getVal() bkg_error = background_norm.getError() background_norm.setMin(bkg_val-5*bkg_error) background_norm.setMax(bkg_val+5*bkg_error) background_norm.Print() # change background PDF names background.SetName("background_old") background_deco.SetName("background") # needed if want to evaluate limits without background systematics if args.fixBkg: background_norm.setConstant() p1.setConstant() p2.setConstant() p3.setConstant() # ----------------------------------------- # dictionaries holding systematic variations of the signal shape hSig_Syst = {} hSig_Syst_DataHist = {} sigCDF = TGraph(hSig.GetNbinsX()+1) # JES and JER uncertainties if args.jesUnc != None or args.jerUnc != None: sigCDF.SetPoint(0,0.,0.) integral = 0. for i in range(1, hSig.GetNbinsX()+1): x = hSig.GetXaxis().GetBinLowEdge(i+1) integral = integral + hSig.GetBinContent(i) sigCDF.SetPoint(i,x,integral) if args.jesUnc != None: hSig_Syst['JESUp'] = copy.deepcopy(hSig) hSig_Syst['JESDown'] = copy.deepcopy(hSig) if args.jerUnc != None: hSig_Syst['JERUp'] = copy.deepcopy(hSig) hSig_Syst['JERDown'] = copy.deepcopy(hSig) # reset signal histograms for key in hSig_Syst.keys(): hSig_Syst[key].Reset() hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key) # produce JES signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX()+1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i+1) jes = 1. - args.jesUnc xLowPrime = jes*xLow xUpPrime = jes*xUp hSig_Syst['JESUp'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jes = 1. + args.jesUnc xLowPrime = jes*xLow xUpPrime = jes*xUp hSig_Syst['JESDown'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JESUp'] = RooDataHist('hSig_JESUp','hSig_JESUp',RooArgList(mjj),hSig_Syst['JESUp']) hSig_Syst_DataHist['JESDown'] = RooDataHist('hSig_JESDown','hSig_JESDown',RooArgList(mjj),hSig_Syst['JESDown']) if args.jyes: c2 = TCanvas("c2","c2",800,800) mframe2 = mjj.frame(ROOT.RooFit.Title("JES One Sigma Shifts")) mframe2.SetAxisRange(525.,1200.) hSig_Syst_DataHist['JESUp'].plotOn(mframe2, ROOT.RooFit.Name("JESUP"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JESDown'].plotOn(mframe2,ROOT.RooFit.Name("JESDOWN"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe2, ROOT.RooFit.DataError(2),ROOT.RooFit.Name("SIG"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe2.Draw() mframe2.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7,0.8,0.9,0.9) leg.AddEntry(mframe2.findObject("SIG"),"Signal Model","l") leg.AddEntry(mframe2.findObject("JESUP"),"+1 Sigma","l") leg.AddEntry(mframe2.findObject("JESDOWN"),"-1 Sigma","l") leg.Draw() jesname = args.pdir+'/jes_m'+str(mass)+fstr+'.pdf' c2.SaveAs(jesname) # produce JER signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX()+1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i+1) jer = 1. - args.jerUnc xLowPrime = jer*(xLow-float(mass))+float(mass) xUpPrime = jer*(xUp-float(mass))+float(mass) hSig_Syst['JERUp'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jer = 1. + args.jerUnc xLowPrime = jer*(xLow-float(mass))+float(mass) xUpPrime = jer*(xUp-float(mass))+float(mass) hSig_Syst['JERDown'].SetBinContent(i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JERUp'] = RooDataHist('hSig_JERUp','hSig_JERUp',RooArgList(mjj),hSig_Syst['JERUp']) hSig_Syst_DataHist['JERDown'] = RooDataHist('hSig_JERDown','hSig_JERDown',RooArgList(mjj),hSig_Syst['JERDown']) if args.jyes: c3 = TCanvas("c3","c3",800,800) mframe3 = mjj.frame(ROOT.RooFit.Title("JER One Sigma Shifts")) mframe3.SetAxisRange(525.,1200.) hSig_Syst_DataHist['JERUp'].plotOn(mframe3,ROOT.RooFit.Name("JERUP"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JERDown'].plotOn(mframe3,ROOT.RooFit.Name("JERDOWN"),ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe3,ROOT.RooFit.DrawOption("L"),ROOT.RooFit.Name("SIG"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe3.Draw() mframe3.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7,0.8,0.9,0.9) leg.AddEntry(mframe3.findObject("SIG"),"Signal Model","l") leg.AddEntry(mframe3.findObject("JERUP"),"+1 Sigma","l") leg.AddEntry(mframe3.findObject("JERDOWN"),"-1 Sigma","l") leg.Draw() jername = args.pdir+'/jer_m'+str(mass)+fstr+'.pdf' c3.SaveAs(jername) # ----------------------------------------- # create a datacard and corresponding workspace postfix = (('_' + args.postfix) if args.postfix != '' else '') dcName = 'datacard_' + args.final_state + '_m' + str(mass) + postfix + '.txt' wsName = 'workspace_' + args.final_state + '_m' + str(mass) + postfix + '.root' w = RooWorkspace('w','workspace') getattr(w,'import')(rooSigHist,RooFit.Rename("signal")) if args.jesUnc != None: getattr(w,'import')(hSig_Syst_DataHist['JESUp'],RooFit.Rename("signal__JESUp")) getattr(w,'import')(hSig_Syst_DataHist['JESDown'],RooFit.Rename("signal__JESDown")) if args.jerUnc != None: getattr(w,'import')(hSig_Syst_DataHist['JERUp'],RooFit.Rename("signal__JERUp")) getattr(w,'import')(hSig_Syst_DataHist['JERDown'],RooFit.Rename("signal__JERDown")) if args.decoBkg: getattr(w,'import')(background_deco,ROOT.RooCmdArg()) else: getattr(w,'import')(background,ROOT.RooCmdArg(),RooFit.Rename("background")) #if use different fits for shape uncertainties #getattr(w,'import')(,ROOT.RooCmdArg(),RooFit.Rename("background__bkgUp")) #getattr(w,'import')(,ROOT.RooCmdArg(),RooFit.Rename("background__bkgDown")) getattr(w,'import')(background_norm,ROOT.RooCmdArg()) getattr(w,'import')(rooDataHist,RooFit.Rename("data_obs")) w.Print() w.writeToFile(os.path.join(args.output_path,wsName)) beffUnc = 0.3 boffUnc = 0.06 datacard = open(os.path.join(args.output_path,dcName),'w') datacard.write('imax 1\n') datacard.write('jmax 1\n') datacard.write('kmax *\n') datacard.write('---------------\n') if args.jesUnc != None or args.jerUnc != None: datacard.write('shapes * * '+wsName+' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n') else: datacard.write('shapes * * '+wsName+' w:$PROCESS\n') datacard.write('---------------\n') datacard.write('bin 1\n') datacard.write('observation -1\n') datacard.write('------------------------------\n') datacard.write('bin 1 1\n') datacard.write('process signal background\n') datacard.write('process 0 1\n') datacard.write('rate -1 1\n') datacard.write('------------------------------\n') datacard.write('lumi lnN %f -\n'%(1.+args.lumiUnc)) datacard.write('beff lnN %f -\n'%(1.+beffUnc)) datacard.write('boff lnN %f -\n'%(1.+boffUnc)) datacard.write('bkg lnN - 1.03\n') if args.jesUnc != None: datacard.write('JES shape 1 -\n') if args.jerUnc != None: datacard.write('JER shape 1 -\n') # flat parameters --- flat prior datacard.write('background_norm flatParam\n') if args.decoBkg: datacard.write('deco_eig1 flatParam\n') datacard.write('deco_eig2 flatParam\n') if not args.fixP3: datacard.write('deco_eig3 flatParam\n') else: datacard.write('p1 flatParam\n') datacard.write('p2 flatParam\n') if not args.fixP3: datacard.write('p3 flatParam\n') datacard.close() print '>> Datacards and workspaces created and stored in %s/'%( os.path.join(os.getcwd(),args.output_path) )
def rooFit204(): print ">>> setup model signal components: gaussians..." x = RooRealVar("x","x",0,10) mean = RooRealVar("mean","mean of gaussian",5) sigma1 = RooRealVar("sigma1","width of gaussians",0.5) sigma2 = RooRealVar("sigma2","width of gaussians",1) sig1 = RooGaussian("sig1","Signal component 1",x,mean,sigma1) sig2 = RooGaussian("sig2","Signal component 2",x,mean,sigma2) sig1frac = RooRealVar("sig1frac","fraction of component 1 in signal",0.8,0.,1.) sig = RooAddPdf("sig","Signal",RooArgList(sig1,sig2),RooArgList(sig1frac)) print ">>> setup model background components: Chebychev polynomial..." a0 = RooRealVar("a0","a0",0.5,0.,1.) a1 = RooRealVar("a1","a1",-0.2,0.,1.) bkg = RooChebychev("bkg","Background",x,RooArgList(a0,a1)) print ">>> construct extended components with specified range..." # Define signal range in which events counts are to be defined x.setRange("signalRange",5,6) # Associated nsig/nbkg as expected number of events with sig/bkg _in_the_range_ "signalRange" nsig = RooRealVar("nsig","number of signal events in signalRange", 500,0.,10000) nbkg = RooRealVar("nbkg","number of background events in signalRange",500,0,10000) esig = RooExtendPdf("esig","extended signal pdf", sig,nsig,"signalRange") ebkg = RooExtendPdf("ebkg","extended background pdf",bkg,nbkg,"signalRange") print ">>> sum extended components..." # Construct sum of two extended p.d.f. (no coefficients required) model = RooAddPdf("model","(g1+g2)+a",RooArgList(ebkg,esig)) print ">>> sample data, fit model..." data = model.generate(RooArgSet(x),1000) # RooDataSet result = model.fitTo(data,Extended(kTRUE),Save()) # RooFitResult print "\n>>> fit result:" result.Print() print "\n>>> plot everything..." frame1 = x.frame(Title("Fitting a sub range")) # RooPlot data.plotOn(frame1,Binning(50),Name("data")) model.plotOn(frame1,LineColor(kBlue),Name("model")) argset1 = RooArgSet(bkg) model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kBlue),Name("bkg"),Normalization(1.0,RooAbsReal.RelativeExpected)) #model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kRed),Name("bkg2")) print ">>> draw on canvas..." canvas = TCanvas("canvas","canvas",100,100,800,600) legend = TLegend(0.2,0.85,0.4,0.7) legend.SetTextSize(0.032) legend.SetBorderSize(0) legend.SetFillStyle(0) gPad.SetLeftMargin(0.14); gPad.SetRightMargin(0.02) frame1.GetYaxis().SetLabelOffset(0.008) frame1.GetYaxis().SetTitleOffset(1.4) frame1.GetYaxis().SetTitleSize(0.045) frame1.GetXaxis().SetTitleSize(0.045) frame1.Draw() legend.AddEntry("data", "data", 'LEP') legend.AddEntry("model", "fit", 'L') legend.AddEntry("bkg", "background only",'L') #legend.AddEntry("bkg2", "background only (no extended norm)",'L') legend.Draw() canvas.SaveAs("rooFit204.png")
def dofit(roodataset, hname): mass_chib = 10.5103 # from PES uncorrected mass measurement deltaM = 0.0105 # MeV theoretical expectations ratio21 = 0.45 # same as chic2/chic1 and chib2/chib1 # the following numbers are from an old 3P gun simulation # that needs to be re-done sigma1 = 0.003#0.0031 sigma2 = 0.003#0.0035 alpha1 = 0.95 alpha2 = 1.12 n = 2.5 mass1_v = RooRealVar('mchi1','m_{#chi1}',mass_chib) deltaM_v = RooRealVar('deltaM','#Delta_{m}',deltaM,0.005,0.015) mass2_v = RooFormulaVar('mchi2','@0+@1',RooArgList(mass1_v,deltaM_v)) sigma1_v = RooRealVar('sigma1','#sigma_1',sigma1) sigma2_v = RooRealVar('sigma2','#sigma_2',sigma2) alpha1_v = RooRealVar('alpha1','#alpha_1',alpha1) alpha2_v = RooRealVar('alpha2','#alpha_2',alpha2) n_v = RooRealVar('n','n',n) ratio21_v = RooRealVar('ratio21','r_{21}',ratio21) x = RooRealVar("invm3S","#chi_{b} Data",10.4,10.7) # choose here binning of mass plot x.setBins(150) #signal pdf chib1 = RooCBShape('chib1','chib1',x,mass1_v,sigma1_v,alpha1_v,n_v) chib2 = RooCBShape('chib2','chib2',x,mass2_v,sigma2_v,alpha2_v,n_v) # define background q01S_Start = 10.4 alpha = RooRealVar("#alpha","#alpha",1.5,0.2,3.5) beta = RooRealVar("#beta","#beta",-2.5,-7.,0.) #q0 = RooRealVar("q0","q0",q01S_Start,q01S_Start-0.05,q01S_Start+0.05) q0 = RooRealVar("q0","q0",q01S_Start) delta = RooFormulaVar("delta","TMath::Abs(@0-@1)",RooArgList(x,q0)) b1 = RooFormulaVar("b1","@0*(@1-@2)",RooArgList(beta,x,q0)) signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q0) ) background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) ) n_evts_1 = RooRealVar('N_{3P_{1}}','N_{3P_{1}}',50,30,1000) n_evts_2 = RooFormulaVar('N_{3P_{2}}','@0*@1',RooArgList(n_evts_1,ratio21_v)) n_bck = RooRealVar('nbkg','n_{bkg}',500,0,100000) #build final pdf modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', RooArgList(chib1,chib2,background),RooArgList(n_evts_1,n_evts_2,n_bck)) # fit low_cut = x.setRange("low_cut",10.4,10.7) result = modelPdf.fitTo(roodataset, RooFit.Save(), RooFit.Range("low_cut") ) frame = x.frame(RooFit.Title("m(#chi_{b}(3P))")) roodataset.plotOn(frame, RooFit.MarkerSize(0.7)) modelPdf.plotOn(frame, RooFit.LineWidth(1)) modelPdf.plotOn(frame, RooFit.LineWidth(2) ) frame.GetXaxis().SetTitle('m_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon(3S)} [GeV/c^{2}]' ) #frame.GetYaxis().SetTitle( "Events/15.0 MeV " ) frame.GetXaxis().SetTitleSize(0.04) frame.GetYaxis().SetTitleSize(0.04) frame.GetXaxis().SetTitleOffset(1.1) frame.GetXaxis().SetLabelSize(0.04) frame.GetYaxis().SetLabelSize(0.04) frame.SetLineWidth(1) frame.SetName("fit_resonance") chi2 = frame.chiSquare() chi2 = round(chi2,2) leg=TLegend(0.50,0.7,0.60,0.8) leg.AddEntry(0,'#chi^{2} ='+str(chi2),'') leg.SetBorderSize(0) leg.SetFillColor(0) leg.SetTextSize(0.06) gROOT.SetStyle("Plain") frame.SaveAs(str(hname) + '.root') # param_set = RooArgSet(n_evts_Roo4, m_chib[1][3],alpha, beta, q0) canvas = TCanvas('fit', "", 1400, 700 ) canvas.Divide(1) canvas.cd(1) gPad.SetRightMargin(0.3) gPad.SetFillColor(10) # modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9), RooFit.Parameters(param_set)) modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9)) frame.Draw() leg.Draw("same") canvas.SaveAs( str(hname) + '.png' )
def doDataFit(Chib1_parameters,Chib2_parameters, cuts, inputfile_name = None, RooDataSet = None, ptBin_label='', plotTitle = "#chi_{b}",fittedVariable='qValue', printSigReso = False, noPlots = False, useOtherSignalParametrization = False, useOtherBackgroundParametrization = False, massFreeToChange = False, sigmaFreeToChange = False, legendOnPlot=True, drawPulls=False, titleOnPlot=False, cmsOnPlot=True, printLegend=True): if RooDataSet != None: dataSet = RooDataSet elif inputfile_name != None: print "Creating DataSet from file "+str(inputfile_name) dataSet = makeRooDataset(inputfile_name) else: raise ValueError('No dataset and no inputfile passed to function doDataFit') if(fittedVariable == 'refittedMass'): x_var = 'rf1S_chib_mass' output_suffix = '_refit' x_axis_label= 'm_{#mu^{+} #mu^{-} #gamma} [GeV]' else: x_var = 'invm1S' output_suffix = '_qValue' x_axis_label = 'm_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon} [GeV]' cuts_str = str(cuts) #cuts_str = quality_cut + "photon_pt > 0.5 && abs(photon_eta) < 1.0 && ctpv < 0.01 && abs(dimuon_rapidity) < 1.3 && pi0_abs_mass > 0.025 && abs(dz) < 0.5" data = dataSet.reduce( RooFit.Cut(cuts_str) ) print 'Creating pdf' x=RooRealVar(x_var, 'm(#mu #mu #gamma) - m(#mu #mu) + m_{#Upsilon}',9.7,10.1,'GeV') numBins = 80 # define here so that if I change it also the ndof change accordingly x.setBins(numBins) # cristal balls mean_1 = RooRealVar("mean_1","mean ChiB1",Chib1_parameters.mean,"GeV") sigma_1 = RooRealVar("sigma_1","sigma ChiB1",Chib1_parameters.sigma,'GeV') a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', Chib1_parameters.a1) n1_1 = RooRealVar('n1_1', 'n1_1', Chib1_parameters.n1) a2_1 = RooRealVar('#alpha2_1', '#alpha2_1',Chib1_parameters.a2) n2_1 = RooRealVar('n2_1', 'n2_1', Chib1_parameters.n2) parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1) mean_2 = RooRealVar("mean_2","mean ChiB2",Chib2_parameters.mean,"GeV") sigma_2 = RooRealVar("sigma_2","sigma ChiB2",Chib2_parameters.sigma,'GeV') a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', Chib2_parameters.a1) n1_2 = RooRealVar('n1_2', 'n1_2', Chib2_parameters.n1) a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', Chib2_parameters.a2) n2_2 = RooRealVar('n2_2', 'n2_2', Chib2_parameters.n2) parameters.add(RooArgSet( a1_2, a2_2, n1_2, n2_2)) if massFreeToChange: # scale_mean = RooRealVar('scale_mean', 'Scale that multiplies masses found with MC', 0.8,1.2) # mean_1_fixed = RooRealVar("mean_1_fixed","mean ChiB1",Chib1_parameters.mean,"GeV") # mean_2_fixed = RooRealVar("mean_2_fixed","mean ChiB2",Chib2_parameters.mean,"GeV") # mean_1 = RooFormulaVar("mean_1",'@0*@1', RooArgList(scale_mean, mean_1_fixed)) # mean_2 = RooFormulaVar("mean_2",'@0*@1', RooArgList(scale_mean, mean_2_fixed)) variazione_m = 0.05 # 50 MeV diff_m_12 = RooRealVar('diff_m_12', 'Difference between masses chib1 and chib2',0.0194,'GeV') # 19.4 MeV from PDG mean_1=RooRealVar("mean_1","mean ChiB1",Chib1_parameters.mean,Chib1_parameters.mean-variazione_m,Chib1_parameters.mean+variazione_m ,"GeV") mean_2=RooFormulaVar('mean_2', '@0+@1',RooArgList(mean_1, diff_m_12)) # mean_2=RooRealVar("mean_2","mean ChiB2",Chib2_parameters.mean,Chib2_parameters.mean-variazione_m,Chib2_parameters.mean+variazione_m ,"GeV") parameters.add(mean_1) else: parameters.add(RooArgSet(mean_1, mean_2)) chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1) chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2) if sigmaFreeToChange: scale_sigma = RooRealVar('scale_sigma', 'Scale that multiplies sigmases found with MC', 1, 1.1)#1.01 sigma_1_fixed = RooRealVar("sigma_1","sigma ChiB1",Chib1_parameters.sigma,'GeV') sigma_2_fixed = RooRealVar("sigma_2","sigma ChiB2",Chib2_parameters.sigma,'GeV') sigma_1 = RooFormulaVar("sigma_1",'@0*@1', RooArgList(scale_sigma, sigma_1_fixed)) sigma_2 = RooFormulaVar("sigma_2",'@0*@1', RooArgList(scale_sigma, sigma_2_fixed)) parameters.add(scale_sigma) else: parameters.add(RooArgSet(sigma_1, sigma_2)) chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1) chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2) if useOtherSignalParametrization: # In this case I redefine cb_pdf cb1 = RooCBShape('cb1', 'cb1', x, mean_1, sigma_1, a1_1, n1_1) cb2 = RooCBShape('cb2', 'cb2', x, mean_2, sigma_2, a1_2, n1_2) # I use a2 as the sigma of my gaussian gauss1 = RooCBShape('gauss1', 'gauss1',x, mean_1, a2_1, a1_1, n1_1) gauss2 = RooCBShape('gauss2', 'gauss2',x, mean_2, a2_2, a1_2, n1_2) # I use n2 as the ratio of cb with respect to gauss chib1_pdf = RooAddPdf('chib1','chib1',RooArgList(cb1, gauss1),RooArgList(n2_1)) chib2_pdf = RooAddPdf('chib2','chib2',RooArgList(cb2, gauss2),RooArgList(n2_2)) #background q01S_Start = 9.5 alpha = RooRealVar("#alpha","#alpha",1.5,-1,3.5)#0.2 anziche' 1 beta = RooRealVar("#beta","#beta",-2.5,-7.,0.) q0 = RooRealVar("q0","q0",q01S_Start)#,9.5,9.7) delta = RooFormulaVar("delta","TMath::Abs(@0-@1)",RooArgList(x,q0)) b1 = RooFormulaVar("b1","@0*(@1-@2)",RooArgList(beta,x,q0)) signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@0-@1 )+1 )/2.", RooArgList(x,q0) ) background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) ) if useOtherBackgroundParametrization: # in thies case I redefine background a0 = RooRealVar('a0','a0',1.,-1.,1.) #,0.5,0.,1.) a1 = RooRealVar('a1','a1',0.1,-1.,1.) #-0.2,0.,1.) #a2 = RooRealVar('a2','a2',-0.1,1.,-1.) background = RooChebychev('background','Background',x,RooArgList(a0,a1)) parameters.add(RooArgSet(a0, a1)) else: parameters.add(RooArgSet(alpha, beta, q0)) #together chibs = RooArgList(chib1_pdf,chib2_pdf,background) # ndof floatPars = parameters.selectByAttrib("Constant",ROOT.kFALSE) ndof = numBins - floatPars.getSize() - 1 # # Here I have as parameters N1, N2, and N_background # n_chib1 = RooRealVar("n_chib1","n_chib1",1250, 0, 50000) # n_chib2 = RooRealVar("n_chib2","n_chib2",825, 0, 50000) # n_background = RooRealVar('n_background','n_background',4550, 0, 50000) # ratio_list = RooArgList(n_chib1, n_chib2, n_background) # modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list) # Here I have as parameters N_12, ratio_12, N_background n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000) ratio_21 = RooRealVar("ratio_21","ratio_21",0.6, 0, 1) n_chib1 = RooFormulaVar("n_chib1","@0/(1+@1)",RooArgList(n_chib, ratio_21)) n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21)) n_background = RooRealVar('n_background','n_background',4550, 0, 50000) ratio_list = RooArgList(n_chib1, n_chib2, n_background) parameters.add(RooArgSet(n_chib1, n_chib2, n_background)) modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list) print 'Fitting to data' fit_region = x.setRange("fit_region",9.7,10.1) result=modelPdf.fitTo(data,RooFit.Save(), RooFit.Range("fit_region")) # define frame frame = x.frame() frame.SetNameTitle("fit_resonance","Fit Resonanace") frame.GetXaxis().SetTitle(x_axis_label ) frame.GetYaxis().SetTitle( "Events/5 MeV " ) frame.GetXaxis().SetTitleSize(0.04) frame.GetYaxis().SetTitleSize(0.04) frame.GetXaxis().SetTitleOffset(1.1) frame.GetXaxis().SetLabelSize(0.04) frame.GetYaxis().SetLabelSize(0.04) frame.SetLineWidth(1) frame.SetTitle(plotTitle) # plot things on frame data.plotOn(frame, RooFit.MarkerSize(0.7)) chib1P_set = RooArgSet(chib1_pdf) modelPdf.plotOn(frame,RooFit.Components(chib1P_set), RooFit.LineColor(ROOT.kGreen+2), RooFit.LineStyle(2), RooFit.LineWidth(1)) chib2P_set = RooArgSet(chib2_pdf) modelPdf.plotOn(frame, RooFit.Components(chib2P_set),RooFit.LineColor(ROOT.kRed), RooFit.LineStyle(2), RooFit.LineWidth(1)) background_set = RooArgSet(background) modelPdf.plotOn(frame,RooFit.Components(background_set), RooFit.LineColor(ROOT.kBlack), RooFit.LineStyle(2), RooFit.LineWidth(1)) modelPdf.plotOn(frame, RooFit.LineWidth(2)) frame.SetName("fit_resonance") # Make numChib object numChib = NumChib(numChib=n_chib.getVal(), s_numChib=n_chib.getError(), ratio_21=ratio_21.getVal(), s_ratio_21=ratio_21.getError(), numBkg=n_background.getVal(), s_numBkg=n_background.getError(), corr_NB=result.correlation(n_chib, n_background),corr_NR=result.correlation(n_chib, ratio_21) , name='numChib'+output_suffix+ptBin_label,q0=q0.getVal(),s_q0=q0.getError(),alpha=alpha.getVal(),s_alpha=alpha.getError(), beta=beta.getVal(), s_beta=beta.getError(), chiSquare=frame.chiSquare()) #numChib.saveToFile('numChib'+output_suffix+'.txt') if noPlots: chi2 = frame.chiSquare() del frame return numChib, chi2 # Legend parameters_on_legend = RooArgSet()#n_chib, ratio_21, n_background) if massFreeToChange: #parameters_on_legend.add(scale_mean) parameters_on_legend.add(mean_1) #parameters_on_legend.add(mean_2) if sigmaFreeToChange: parameters_on_legend.add(scale_sigma) if massFreeToChange or sigmaFreeToChange: modelPdf.paramOn(frame, RooFit.Layout(0.1,0.6,0.2),RooFit.Parameters(parameters_on_legend)) if printLegend: #chiquadro, prob, numchib... leg = TLegend(0.48,0.75,0.97,0.95) leg.SetBorderSize(0) #leg.SetTextSize(0.04) leg.SetFillStyle(0) chi2 = frame.chiSquare() probChi2 = TMath.Prob(chi2*ndof, ndof) chi2 = round(chi2,2) probChi2 = round(probChi2,2) leg.AddEntry(0,'#chi^{2} = '+str(chi2),'') leg.AddEntry(0,'Prob #chi^{2} = '+str(probChi2),'') N_bkg, s_N_bkg = roundPair(numChib.numBkg, numChib.s_numBkg) leg.AddEntry(0,'N_{bkg} = '+str(N_bkg)+' #pm '+str(s_N_bkg),'') N_chib12, s_N_chib12 = roundPair(numChib.numChib, numChib.s_numChib) leg.AddEntry(0,'N_{#chi_{b}} = '+str(N_chib12)+' #pm '+str(s_N_chib12),'') Ratio = numChib.calcRatio() s_Ratio = numChib.calcRatioError() Ratio, s_Ratio = roundPair(Ratio, s_Ratio) leg.AddEntry(0,'N_{2}/N_{1} = '+str(Ratio)+' #pm '+str(s_Ratio),'') if printSigReso: # Add Significance Sig = numChib.calcSignificance() s_Sig = numChib.calcSignificanceError() Sig, s_Sig = roundPair(Sig, s_Sig) leg.AddEntry(0,'Sig = '+str(Sig)+' #pm '+str(s_Sig),'') if(Chib1_parameters.sigma>Chib2_parameters.sigma): Reso = Chib1_parameters.sigma * 1000 # So it's in MeV and not in GeV s_Reso = Chib1_parameters.s_sigma * 1000 # So it's in MeV and not in GeV else: Reso = Chib2_parameters.sigma * 1000 # So it's in MeV and not in GeV s_Reso = Chib2_parameters.s_sigma * 1000 # So it's in MeV and not in GeV Reso, s_Reso =roundPair(Reso, s_Reso) leg.AddEntry(0,'Reso = '+str(Reso)+' #pm '+str(s_Reso)+' MeV','') #N1 = numChib.numChib1 #s_N1 = numChib.s_numChib1 #N1, s_N1 = roundPair(N1, s_N1) #leg.AddEntry(0,'N_{1} = '+str(N1)+' #pm '+str(s_N1),'') #N2 = numChib.numChib2 #s_N2 = numChib.s_numChib2 #N2, s_N2 = roundPair(N2, s_N2) #leg.AddEntry(0,'N_{2} = '+str(N2)+' #pm '+str(s_N2),'') frame.addObject(leg) if legendOnPlot: # < pT < legend = TLegend(.06,.75,.53,.93) legend.SetFillStyle(0) legend.SetBorderSize(0) #legend.AddEntry(0,'CMS','') legend.AddEntry(0,str(cuts.upsilon_pt_lcut)+' GeV < p_{T}(#Upsilon) < '+str(cuts.upsilon_pt_hcut)+' GeV','') #legend.AddEntry(0,'p_{T}(#Upsilon)<'+str(cuts.upsilon_pt_hcut),'') frame.addObject(legend) if titleOnPlot: titleLegend = TLegend(.06,.4,.55,.73) #titleLegend.SetTextSize(0.03) titleLegend.SetFillStyle(0) titleLegend.SetBorderSize(0) titleLegend.AddEntry(0,plotTitle,'') frame.addObject(titleLegend) if cmsOnPlot: if printLegend: pvtxt = TPaveText(.1,.55,.55,.73,"NDC") else: pvtxt = TPaveText(0.5,0.75,0.97,0.9,"NDC") #(.06,.4,.55,.73) pvtxt.AddText('CMS Preliminary') pvtxt.AddText('pp, #sqrt{s} = 8 TeV') pvtxt.AddText('L = 20.7 fb^{-1}') pvtxt.SetFillStyle(0) pvtxt.SetBorderSize(0) pvtxt.SetTextSize(0.04) frame.addObject(pvtxt) # Canvas c1=TCanvas('Chib12_1P'+output_suffix+ptBin_label,'Chib12_1P'+output_suffix+ptBin_label) frame.Draw() if drawPulls: #c1=TCanvas(output_name+output_suffix,output_name+output_suffix,700, 625) hpull = frame.pullHist() framePulls = x.frame() framePulls.SetTitle(';;Pulls') framePulls.GetYaxis().SetLabelSize(0.18) framePulls.GetYaxis().SetTitle('Pulls') framePulls.GetYaxis().SetTitleSize(0.18) framePulls.GetYaxis().SetTitleOffset(0.15) framePulls.GetYaxis().SetNdivisions(005) framePulls.GetXaxis().SetLabelSize(0.16) framePulls.GetXaxis().SetTitle('') line0 = TLine(9.7, 0, 10.1, 0) line0.SetLineColor(ROOT.kBlue) line0.SetLineWidth(2) framePulls.addObject(line0) framePulls.addPlotable(hpull,"P") framePulls.SetMaximum(5) framePulls.SetMinimum(-5) pad1 = TPad("pad1", "The pad 80% of the height",0.0,0.2,1.0,1.0) pad1.cd() frame.Draw() pad2 = TPad("pad2", "The pad 20% of the height",0.0,0.01,1.0,0.2) pad2.cd() framePulls.Draw() c1.cd() pad1.Draw() pad2.Draw() #c1.SaveAs('Chib12_1P'+output_suffix+'.png') print 'Chi2 = '+str(frame.chiSquare()) # print ratio background/all in the signal refion signal_region = x.setRange("signal_region",9.87,9.92) pdf_integral = modelPdf.createIntegral(RooArgSet(x), RooFit.Range('signal_region')).getVal() * (n_chib.getVal() + n_background.getVal()) bkg_integral = background.createIntegral(RooArgSet(x), RooFit.Range('signal_region')).getVal() * n_background.getVal() print 'Ratio bkg/all in signal region = '+str(bkg_integral/pdf_integral) return numChib, c1
#RooMinuit(nk1).migrad() #Rk1 = k2.frame() #nk1.plotOn(Rk1,RooFit.ShiftToZero()) #cRcc = TCanvas("Rcc", "Rcc", 500, 500) #Rk1.SetMaximum(4.);Rk1.SetMinimum(0) #Rk1.GetXaxis().SetTitle("nttbar/nmc") #Rk1.SetTitle("") #Rk1.Draw() cR11 = TCanvas("R11", "R", 500, 500) xframe = x.frame() data.plotOn(xframe, RooFit.DataError(RooAbsData.SumW2) ) model3.paramOn(xframe, RooFit.Layout(0.65,0.9,0.9) ) model3.plotOn(xframe) chi2 = xframe.chiSquare(2) ndof = xframe.GetNbinsX() print "chi2 = "+ str(chi2) print "ndof = "+ str(ndof) xframe.Draw() print "k1:"+str(k1.getVal())+", err:"+str(k1.getError())+", init:"+str(rttbar) print "k2:"+str(k2.getVal())+", err:"+str(k2.getError()) n_mctotal = n_ttbar+n_background print "####################" print "ttbar = " + str(n_ttbar) print "wjets = " + str(n_wjets)
signal = RooAddPdf('signal', 'signal', sig, bkg, fsig) # ----------------------------------------- # fit signal canSname = 'can_Mjj' + str(mass) canS = TCanvas(canSname, canSname, 900, 600) gPad.SetLogy() roohistSig = RooDataHist('roohist', 'roohist', RooArgList(x), hSig) roohistSig.Print() res_sig = signal.fitTo(roohistSig, RooFit.Save(ROOT.kTRUE)) res_sig.Print() frame = x.frame() roohistSig.plotOn(frame, RooFit.Binning(166)) signal.plotOn(frame) signal.plotOn(frame, RooFit.Components('bkg'), RooFit.LineColor(ROOT.kRed), RooFit.LineWidth(2), RooFit.LineStyle(ROOT.kDashed)) #frame.GetXaxis().SetRangeUser(1118,6099) frame.GetXaxis().SetRangeUser(minX_mass, maxX_mass) frame.GetXaxis().SetTitle('m_{jj} (GeV)') frame.Draw() parsSig = signal.getParameters(roohistSig) parsSig.setAttribAll('Constant', True) if histpdfSig: # ----------------------------------------- # hist pdf signal canSname = 'can_Mjj' + str(mass)
p_gauss.append(RooGaussian("p_gauss_{}".format(i), "p_gauss_{}".format(i), deltam, p_means[i], p_widths[i])) #Add the 3 Gaussians making up the signal p_sig1frac = RooRealVar("p_sig1frac", "p_sig1frac", 0.01, 0, 1) p_sig2frac = RooRealVar("p_sig2frac", "p_sig2frac", 0.01, 0, 1) p_signal_pdf = RooAddPdf("p_signal_pdf", "p_signal_pdf", RooArgList(*p_gauss), RooArgList(p_sig1frac, p_sig2frac)) #Fit composite signal to data p_signal_pdf.fitTo(dataset_sig) #Draw pure signal fit if draw_p_sig : pure_canvas = TCanvas("pure_canv", "Pure Signal Fit") p_frame = deltam.frame() dataset_sig.plotOn(p_frame) p_signal_pdf.plotOn(p_frame) p_frame.Draw() #Extract fitted parameters p_fracFits = [p_sig1frac.getValV(), p_sig2frac.getValV()] p_meanFits, p_widthFits = [], [] for i in range(n_sig_pdf) : p_meanFits.append(p_means[i].getValV()) p_widthFits.append(p_widths[i].getValV()) ############################################## ######### Defining background pdf ############
class BaseFitter(object): def __init__(self, plot): assert (isinstance(plot, DataMCPlot)) self.plot = plot self._make_underlying_model() self._make_dataset() self._make_fit_model() self._fit() def _make_underlying_model(self): self.pdfs = {} self.yields = {} # yields are plain floats self.ryields = {} # keep track of roofit objects for memory management nbins, xmin, xmax = self.plot.histos[0].GetBinning() self.xvar = RooRealVar("x", "x", xmin, xmax) self.xvar.setBins(nbins) self.pdfs = {} self.hists = [] pdfs = RooArgList() yields = RooArgList() for compname, comp in self.plot.histosDict.iteritems(): if comp.weighted.Integral() == 0: continue assert (isinstance(comp, Histogram)) hist = RooDataHist(compname, compname, RooArgList(self.xvar), comp.weighted) SetOwnership(hist, False) # self.hists.append(hist) pdf = RooHistPdf(compname, compname, RooArgSet(self.xvar), hist) self.pdfs[compname] = pdf # self.pdfs[compname].Print() pdfs.add(pdf) nevts = comp.Integral(xmin=xmin, xmax=xmax) nmin = min(0, nevts * (1 - comp.uncertainty)) nmax = nevts * (1 + comp.uncertainty) theyield = RooRealVar('n{}'.format(compname), 'n{}'.format(compname), nevts, nmin, nmax) self.ryields[compname] = theyield self.yields[compname] = nevts yields.add(theyield) self.underlying_model = RooAddPdf('model', 'model', pdfs, yields) def _make_fit_model(self): pass def _make_dataset(self): nevents = sum(self.yields.values()) self.data = self.underlying_model.generate(RooArgSet(self.xvar), nevents) def _fit(self): self.tresult = self.underlying_model.fitTo(self.data, RooFit.Extended(), RooFit.Save(), RooFit.PrintEvalErrors(-1)) def print_result(self): self.tresult.Print() yzh = self.ryields['ZH'] zh_val = yzh.getVal() zh_err = yzh.getError() percent_unc = zh_err / zh_val * 100. print 'ZH yield = {:8.2f}'.format(zh_val) print 'ZH uncert = {:8.2f}%'.format(percent_unc) return percent_unc def draw_pdfs(self): self.pframe = self.xvar.frame() for pdf in self.pdfs.values(): pdf.plotOn(self.pframe) self.pframe.Draw() def draw_data(self): self.mframe = self.xvar.frame() self.data.plotOn(self.mframe) self.underlying_model.plotOn(self.mframe) for icomp, compname in enumerate(self.pdfs): self.underlying_model.plotOn(self.mframe, RooFit.Components(compname), RooFit.LineColor(icomp + 1)) self.mframe.Draw()
signal = RooAddPdf('signal','signal',sig,bkg,fsig) # ----------------------------------------- # fit signal canSname = 'can_Mjj'+str(mass) if useSub: canSname = 'can_Sub_Mjj'+str(mass) canS = TCanvas(canSname,canSname,900,600) #gPad.SetLogy() roohistSig = RooDataHist('roohist','roohist',RooArgList(x),hSig) signal.fitTo(roohistSig) frame = x.frame() roohistSig.plotOn(frame) signal.plotOn(frame) signal.plotOn(frame,RooFit.Components('bkg'),RooFit.LineColor(ROOT.kRed),RooFit.LineWidth(2),RooFit.LineStyle(ROOT.kDashed)) frame.GetXaxis().SetRangeUser(900,4500) frame.GetXaxis().SetTitle('m_{jj} (GeV)') frame.Draw() parsSig = signal.getParameters(roohistSig) parsSig.setAttribAll('Constant', True) if fitDat: # ----------------------------------------- # define parameters for background NBINS = 180 p1 = RooRealVar('p1','p1',7,1,10) p2 = RooRealVar('p2','p2',5,1,10)
s2 = RooRealVar('ttbar_sigma2','ttbar_sigma2',50,10,200) sig2 = RooGaussian('ttbar_gaus2','ttbar_gaus2',x,m2,s2) fsig = RooRealVar('ttbar_f1','ttbar_f1',0.5,0,1) signal = RooAddPdf('ttbar_pdf','ttbar_pdf',RooArgList(sig1,sig2),RooArgList(fsig)) # ----------------------------------------- # fit signal canS = TCanvas('Template_TT','Template_TT',900,600) #gPad.SetLogy() res = signal.fitTo(roohisto[0],RooFit.Save()) res.Print() frame = x.frame() roohisto[0].plotOn(frame) signal.plotOn(frame) signal.plotOn(frame,RooFit.Components('ttbar_gaus1'),RooFit.LineColor(ROOT.kRed),RooFit.LineWidth(2),RooFit.LineStyle(ROOT.kDashed)) signal.plotOn(frame,RooFit.Components('ttbar_gaus2'),RooFit.LineColor(ROOT.kGreen+1),RooFit.LineWidth(2),RooFit.LineStyle(ROOT.kDashed)) #signal.plotOn(frame,RooFit.Components('sig3'),RooFit.LineColor(ROOT.kMagenta),RooFit.LineWidth(2),RooFit.LineStyle(ROOT.kDashed)) frame.GetXaxis().SetTitle('m_{t} (GeV)') frame.Draw() gPad.Update() canS.Print(canS.GetName()+".pdf") parsSig = signal.getParameters(roohisto[0]) parsSig.setAttribAll('Constant', True) # ----------------------------------------- # fit qcd m1QCD = RooRealVar('qcd_mean1' ,'qcd_mean1',200,130,350)
RooFit.Normalization(sig_hist.GetEntries()/3, RooAbsReal.Raw)) fitter = lxgplus else: fitter = lxg fmip.setVal(1.0) fmip.setConstant(True) xf.Draw() # fitter.Print('v') # raise 'Stop here' fr = fitter.fitTo(sigDS, RooFit.Minos(False), RooFit.Save(True)) fitter.plotOn(xf) if (fmip.getVal() < 0.9): lxgplus.plotOn(xf, RooFit.LineColor(kRed+2), RooFit.LineStyle(kDashed), RooFit.Components('ped*')) lxgplus.plotOn(xf, RooFit.LineColor(myBlue), RooFit.LineStyle(kDashed), RooFit.Components('lxg')) #lxgplus.paramOn(xf) ## c2 = TCanvas('c2', 'signal') xf.Draw() c2.Modified() c2.Update() ## fpar[0] = width.getVal() ## fpar[1] = mpv.getVal() ## fpar[2] = sig_hist.GetEntries()*(1-fped.getVal()) ## fpar[3] = sigma.getVal()