def RooFitSig(mbbarray, bdtarray, weightarray, TC_mass, binstart, binend): fitstart = 40 fitend = 150 mbbarray = range(200) bdtarray = range(200) weightarray = range(200) mass = RooRealVar("X", "m(bb)[GeV]", fitstart, fitend) BDT = RooRealVar("BDT", "BDT", -1, 100) weight = RooRealVar("weight", "weight", -100, 200) branchnames = ["X", "BDT", "weight"] dtype = np.dtype([(branchnames[idx], np.float64) for idx in range(len(branchnames))]) treearray = np.array([(mbbarray[idx], bdtarray[idx], weightarray[idx]) for idx in range(len(mbbarray))], dtype) tree = rnp.array2tree(treearray) m0 = RooRealVar("m0", "m0", TC_mass * 1., TC_mass * 1. - 60., TC_mass * 1. + 60.) m02 = RooRealVar("m02", "m02", TC_mass * 1., TC_mass * 1. - 60., TC_mass * 1. + 60.) alpha = RooRealVar("alpha", "alpha", 1.295, 1.0, 1.6) sigma2 = RooRealVar("sigma2", "sigma2", 35, 8., 100) n = RooRealVar("n", "n", 5, 1, 35) mean = RooRealVar("mean", "mean of gaussian", 750, 0, 6000) sigma = RooRealVar("sigma", "width of gaussian", 90, 38, 300) gauss = RooGaussian("gauss", "gaussian PDF", mass, m0, sigma) gauss2 = RooGaussian("gauss2", "gaussian PDF", mass, m02, sigma2) CBshape = RooCBShape("CBshape", "Crystal Ball PDF", mass, m0, sigma2, alpha, n) ##PDF normalization num1 = RooRealVar("num1", "number of events", 400, 0, 5000) ##relative weight of 2 PDFs f = RooRealVar("f", "f", 0.95, 0.6, 1) sigPdf = RooAddPdf("sigPdf", "Signal PDF", RooArgList(CBshape, gauss), RooArgList(f)) extPdf = RooExtendPdf("extPdf", "extPdf", sigPdf, num1) data = RooDataSet("data", "data", tree, RooArgSet(mass, BDT, weight), "BDT>0", "weight") xframe = mass.frame() mass.setBins(20) data.plotOn(xframe) extPdf.plotOn( xframe) #,Normalization(1.0,RooAbsReal.RelativeExpected),LineColor(1)) hist = extPdf.createHistogram("X", fitend - fitstart) hist.SetAxisRange(binstart, binend) return deepcopy(hist)
def makeTTbarModel(workspace,label, model,channel, wtagger, constraint=[],peak="W", spectrum="_mj"): info ="" if label.find("_ttbar_data")!=-1 and label.find("fail")==-1: rrv_number_total = RooRealVar("rrv_number_total_ttbar_data"+info+"_"+channel,"rrv_number_total_ttbar_data"+info+"_"+channel,500,0.,1e10) eff_ttbar = RooRealVar("eff_ttbar_data"+info+"_"+channel,"eff_ttbar_data"+info+"_"+channel,0.7,0.2,1.0) if peak == "Wt":eff_ttbar = RooRealVar("eff_ttbar_data"+info+"_"+channel,"eff_ttbar_data"+info+"_"+channel,0.7,0.0,1.0) rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "@0*@1", RooArgList(eff_ttbar,rrv_number_total)) elif label.find("_ttbar_data")!=-1 and label.find("fail")!=-1: rrv_number_total = workspace.var("rrv_number_total_ttbar_data"+info+"_"+channel) eff_ttbar = workspace.var("eff_ttbar_data"+info+"_"+channel) rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "(1-@0)*@1", RooArgList(eff_ttbar,rrv_number_total)) elif label.find("_ttbar_TotalMC")!=-1 and label.find("fail")==-1: rrv_number_total = RooRealVar("rrv_number_total_ttbar_TotalMC"+info+"_"+channel,"rrv_number_total_ttbar_TotalMC"+info+"_"+channel,500,0.,1e10) eff_ttbar = RooRealVar("eff_ttbar_TotalMC"+info+"_"+channel,"eff_ttbar_TotalMC"+info+"_"+channel,0.7,0.2,1.0) if peak == "Wt": eff_ttbar = RooRealVar("eff_ttbar_TotalMC"+info+"_"+channel,"eff_ttbar_TotalMC"+info+"_"+channel,0.7,0.0,1.0) rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "@0*@1", RooArgList(eff_ttbar,rrv_number_total)) elif label.find("_ttbar_TotalMC")!=-1 and label.find("fail")!=-1: rrv_number_total = workspace.var("rrv_number_total_ttbar_TotalMC"+info+"_"+channel) eff_ttbar = workspace.var("eff_ttbar_TotalMC"+info+"_"+channel) rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "(1-@0)*@1", RooArgList(eff_ttbar,rrv_number_total)) model_pdf = MakeGeneralPdf(workspace,label,model,spectrum,wtagger,channel,constraint,peak) model = RooExtendPdf("model"+label+"_"+channel+spectrum,"model"+label+"_"+channel+spectrum, model_pdf, rrv_number) getattr(workspace,"import")(model) return workspace.pdf("model"+label+"_"+channel+spectrum)
def roofit_poisson_unbinned_extended(data): """return lambda, errors of lambda""" x = RooRealVar('x', 'x', 0, max(data) * 10) lam = RooRealVar('lambda', 'lambda', 0.1, 0.000001, max(data)) norm_model = RooPoisson('n_model', 'n_model', x, lam) norm = RooRealVar('nm', 'nm', len(data)) model = RooExtendPdf('model', 'model', norm_model, norm) dataset = RooDataSet('data', 'data', RooArgSet(x)) for val in data: x.setVal(val) dataset.add(RooArgSet(x)) model.fitTo(dataset, RooFit.Extended(True), RooFit.Save(), RooFit.PrintLevel(-1)) return lam.getVal(), lam.getError()
def MakeExtendedModel(workspace, label, model,spectrum, channel, wtagger_label,constraint,peak="W"): print "Making extended model with name: " , "model"+label+"_"+channel+spectrum rrv_number = RooRealVar("rrv_number"+label+"_"+channel+spectrum,"rrv_number"+label+"_"+channel+spectrum,500.,0.,1e5) model_pdf = MakeGeneralPdf(workspace,label,model,spectrum,wtagger_label,channel,constraint,peak) model_extended = RooExtendPdf("model"+label+"_"+channel+spectrum,"model"+label+"_"+channel+spectrum,model_pdf, rrv_number) getattr(workspace,'import')(rrv_number) getattr(workspace,'import')(model_extended) return workspace.pdf("model"+label+"_"+channel+spectrum)
def fitNBkg(ibdt, fullbkg): slope = RooRealVar("slope", "slope", 0.5, -10, 10) bkg_exp = RooExponential("bkg_exp", "exponential", slope, theBMass) cut = cut_base + '&& bdt_prob > %s' % (ibdt) theBMass.setRange('sigRangeMC', B0Mass_ - 3 * dict_sigma[ibdt], B0Mass_ + 3 * dict_sigma[ibdt]) databkg = fullbkg.reduce(RooArgSet(theBMass, mumuMass, mumuMassE), cut) r = bkg_exp.fitTo(databkg, RooFit.Save(), ROOT.RooFit.Range('left,right')) frame = theBMass.frame() databkg.plotOn(frame, RooFit.Binning(70), RooFit.MarkerSize(.7)) bkg_exp.plotOn(frame, ) # bkg_exp.fixCoefRange('left,right') nbkg = RooRealVar('nbkg', 'bkg n', 1000, 0, 550000) ebkg = RooExtendPdf('ebkg', 'ebkg', bkg_exp, nbkg, 'sigRangeMC') ebkg.fitTo(databkg, ROOT.RooFit.Range('left,right')) ebkg.plotOn(frame, RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kGreen + 1), RooFit.Range(4.9, 5.6)) frame.Draw() dict_b_v1[ibdt] = [nbkg.getVal(), nbkg.getError()]
def fitNBkg(ibdt, fullbkg, isample): slope = RooRealVar("slope", "slope", 0.5, -10, 10) bkg_exp = RooExponential("bkg_exp", "exponential", slope, theBMass) cut = cut_base + '&& bdt_prob > %s' % (ibdt) theBMass.setRange('sigRangeMC', B0Mass_ - 3 * dict_sigma[ibdt], B0Mass_ + 3 * dict_sigma[ibdt]) databkg = fullbkg.reduce(RooArgSet(theBMass, mumuMass, mumuMassE), cut) r = bkg_exp.fitTo(databkg, RooFit.Save(), ROOT.RooFit.Range('left,right'), RooFit.PrintLevel(-1)) frame = theBMass.frame() databkg.plotOn(frame, RooFit.Binning(70), RooFit.MarkerSize(.7)) bkg_exp.plotOn(frame, ) canv = ROOT.TCanvas() frame.Draw() nbkg = RooRealVar('nbkg', 'bkg n', 1000, 0, 550000) ebkg = RooExtendPdf( 'ebkg', 'ebkg', bkg_exp, nbkg, 'sigRangeMC') ## here imposing the range to calculate bkg yield ebkg.fitTo(databkg, ROOT.RooFit.Range('left,right'), RooFit.PrintLevel(-1)) ebkg.plotOn(frame, RooFit.LineStyle(ROOT.kDashed), RooFit.LineColor(ROOT.kGreen + 1), RooFit.Range(4.9, 5.6)) frame.Draw() # canv.SaveAs('bkg_fit_bdt%f_sample%i.pdf'%(ibdt,isample)) dict_b_v1[ibdt] = [nbkg.getVal(), nbkg.getError()]
def signal(category): interPar = True n = len(genPoints) cColor = color[category] if category in color else 4 nBtag = category.count('b') isAH = False #relict from using Alberto's more complex script if not os.path.exists(PLOTDIR + "MC_signal_" + YEAR): os.makedirs(PLOTDIR + "MC_signal_" + YEAR) #*******************************************************# # # # Variables and selections # # # #*******************************************************# X_mass = RooRealVar("jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV") j1_pt = RooRealVar("jpt_1", "jet1 pt", 0., 13000., "GeV") jj_deltaEta = RooRealVar("jj_deltaEta_widejet", "", 0., 5.) jbtag_WP_1 = RooRealVar("jbtag_WP_1", "", -1., 4.) jbtag_WP_2 = RooRealVar("jbtag_WP_2", "", -1., 4.) fatjetmass_1 = RooRealVar("fatjetmass_1", "", -1., 2500.) fatjetmass_2 = RooRealVar("fatjetmass_2", "", -1., 2500.) jid_1 = RooRealVar("jid_1", "j1 ID", -1., 8.) jid_2 = RooRealVar("jid_2", "j2 ID", -1., 8.) jnmuons_1 = RooRealVar("jnmuons_1", "j1 n_{#mu}", -1., 8.) jnmuons_2 = RooRealVar("jnmuons_2", "j2 n_{#mu}", -1., 8.) jnmuons_loose_1 = RooRealVar("jnmuons_loose_1", "jnmuons_loose_1", -1., 8.) jnmuons_loose_2 = RooRealVar("jnmuons_loose_2", "jnmuons_loose_2", -1., 8.) nmuons = RooRealVar("nmuons", "n_{#mu}", -1., 10.) nelectrons = RooRealVar("nelectrons", "n_{e}", -1., 10.) HLT_AK8PFJet500 = RooRealVar("HLT_AK8PFJet500", "", -1., 1.) HLT_PFJet500 = RooRealVar("HLT_PFJet500", "", -1., 1.) HLT_CaloJet500_NoJetID = RooRealVar("HLT_CaloJet500_NoJetID", "", -1., 1.) HLT_PFHT900 = RooRealVar("HLT_PFHT900", "", -1., 1.) HLT_AK8PFJet550 = RooRealVar("HLT_AK8PFJet550", "", -1., 1.) HLT_PFJet550 = RooRealVar("HLT_PFJet550", "", -1., 1.) HLT_CaloJet550_NoJetID = RooRealVar("HLT_CaloJet550_NoJetID", "", -1., 1.) HLT_PFHT1050 = RooRealVar("HLT_PFHT1050", "", -1., 1.) #HLT_DoublePFJets100_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets100_CaloBTagDeepCSV_p71" , "", -1., 1. ) #HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) #HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) #HLT_DoublePFJets200_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets200_CaloBTagDeepCSV_p71" , "", -1., 1. ) #HLT_DoublePFJets350_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets350_CaloBTagDeepCSV_p71" , "", -1., 1. ) #HLT_DoublePFJets40_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets40_CaloBTagDeepCSV_p71" , "", -1., 1. ) weight = RooRealVar("eventWeightLumi", "", -1.e9, 1.e9) # Define the RooArgSet which will include all the variables defined before # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add' variables = RooArgSet(X_mass) variables.add( RooArgSet(j1_pt, jj_deltaEta, jbtag_WP_1, jbtag_WP_2, fatjetmass_1, fatjetmass_2, jnmuons_1, jnmuons_2, weight)) variables.add( RooArgSet(nmuons, nelectrons, jid_1, jid_2, jnmuons_loose_1, jnmuons_loose_2)) variables.add( RooArgSet(HLT_AK8PFJet500, HLT_PFJet500, HLT_CaloJet500_NoJetID, HLT_PFHT900, HLT_AK8PFJet550, HLT_PFJet550, HLT_CaloJet550_NoJetID, HLT_PFHT1050)) #variables.add(RooArgSet(HLT_DoublePFJets100_CaloBTagDeepCSV_p71, HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets200_CaloBTagDeepCSV_p71, HLT_DoublePFJets350_CaloBTagDeepCSV_p71, HLT_DoublePFJets40_CaloBTagDeepCSV_p71)) X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax()) X_mass.setRange("X_integration_range", X_mass.getMin(), X_mass.getMax()) if VARBINS: binsXmass = RooBinning(len(abins) - 1, abins) X_mass.setBinning(binsXmass) plot_binning = RooBinning( int((X_mass.getMax() - X_mass.getMin()) / 100.), X_mass.getMin(), X_mass.getMax()) else: X_mass.setBins(int((X_mass.getMax() - X_mass.getMin()) / 10)) binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin()) / 100.), X_mass.getMin(), X_mass.getMax()) plot_binning = binsXmass X_mass.setBinning(plot_binning, "PLOT") #X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/10)) #binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax()) #X_mass.setBinning(binsXmass, "PLOT") massArg = RooArgSet(X_mass) # Cuts if BTAGGING == 'semimedium': SRcut = aliasSM[category] #SRcut = aliasSM[category+"_vetoAK8"] else: SRcut = alias[category].format(WP=working_points[BTAGGING]) #SRcut = alias[category+"_vetoAK8"].format(WP=working_points[BTAGGING]) if ADDSELECTION: SRcut += SELECTIONS[options.selection] print " Cut:\t", SRcut #*******************************************************# # # # Signal fits # # # #*******************************************************# treeSign = {} setSignal = {} vmean = {} vsigma = {} valpha1 = {} vslope1 = {} valpha2 = {} vslope2 = {} smean = {} ssigma = {} salpha1 = {} sslope1 = {} salpha2 = {} sslope2 = {} sbrwig = {} signal = {} signalExt = {} signalYield = {} signalIntegral = {} signalNorm = {} signalXS = {} frSignal = {} frSignal1 = {} frSignal2 = {} frSignal3 = {} # Signal shape uncertainties (common amongst all mass points) xmean_jes = RooRealVar( "CMS" + YEAR + "_sig_" + category + "_p1_scale_jes", "Variation of the resonance position with the jet energy scale", 0.02, -1., 1.) #0.001 smean_jes = RooRealVar( "CMS" + YEAR + "_sig_" + category + "_p1_jes", "Change of the resonance position with the jet energy scale", 0., -10, 10) xsigma_jer = RooRealVar( "CMS" + YEAR + "_sig_" + category + "_p2_scale_jer", "Variation of the resonance width with the jet energy resolution", 0.10, -1., 1.) ssigma_jer = RooRealVar( "CMS" + YEAR + "_sig_" + category + "_p2_jer", "Change of the resonance width with the jet energy resolution", 0., -10, 10) xmean_jes.setConstant(True) smean_jes.setConstant(True) xsigma_jer.setConstant(True) ssigma_jer.setConstant(True) for m in massPoints: signalMass = "%s_M%d" % (stype, m) signalName = "ZpBB_{}_{}_M{}".format(YEAR, category, m) sampleName = "ZpBB_M{}".format(m) signalColor = sample[sampleName][ 'linecolor'] if signalName in sample else 1 # define the signal PDF vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m, m * 0.96, m * 1.05) smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)", RooArgList(vmean[m], xmean_jes, smean_jes)) vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma", m * 0.0233, m * 0.019, m * 0.025) ssigma[m] = RooFormulaVar( signalName + "_sigma", "@0*(1+@1*@2)", RooArgList(vsigma[m], xsigma_jer, ssigma_jer)) valpha1[m] = RooRealVar( signalName + "_valpha1", "Crystal Ball alpha 1", 0.2, 0.05, 0.28 ) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0", RooArgList(valpha1[m])) #vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 10., 0.1, 20.) # slope of the power tail vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 13., 10., 20.) # slope of the power tail sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0", RooArgList(vslope1[m])) valpha2[m] = RooRealVar(signalName + "_valpha2", "Crystal Ball alpha 2", 1.) valpha2[m].setConstant(True) salpha2[m] = RooFormulaVar(signalName + "_alpha2", "@0", RooArgList(valpha2[m])) #vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", 6., 2.5, 15.) # slope of the higher power tail ## FIXME test FIXME vslope2_estimation = -5.88111436852 + m * 0.00728809389442 + m * m * ( -1.65059568762e-06) + m * m * m * (1.25128996309e-10) vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", vslope2_estimation, vslope2_estimation * 0.9, vslope2_estimation * 1.1) # slope of the higher power tail ## FIXME end FIXME sslope2[m] = RooFormulaVar( signalName + "_slope2", "@0", RooArgList(vslope2[m])) # slope of the higher power tail signal[m] = RooDoubleCrystalBall(signalName, "m_{%s'} = %d GeV" % ('X', m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m], salpha2[m], sslope2[m]) # extend the PDF with the yield to perform an extended likelihood fit signalYield[m] = RooRealVar(signalName + "_yield", "signalYield", 50, 0., 1.e15) signalNorm[m] = RooRealVar(signalName + "_norm", "signalNorm", 1., 0., 1.e15) signalXS[m] = RooRealVar(signalName + "_xs", "signalXS", 1., 0., 1.e15) signalExt[m] = RooExtendPdf(signalName + "_ext", "extended p.d.f", signal[m], signalYield[m]) # ---------- if there is no simulated signal, skip this mass point ---------- if m in genPoints: if VERBOSE: print " - Mass point", m # define the dataset for the signal applying the SR cuts treeSign[m] = TChain("tree") if YEAR == 'run2': pd = sample[sampleName]['files'] if len(pd) > 3: print "multiple files given than years for a single masspoint:", pd sys.exit() for ss in pd: if not '2016' in ss and not '2017' in ss and not '2018' in ss: print "unknown year given in:", ss sys.exit() else: pd = [x for x in sample[sampleName]['files'] if YEAR in x] if len(pd) > 1: print "multiple files given for a single masspoint/year:", pd sys.exit() for ss in pd: if options.unskimmed: j = 0 while True: if os.path.exists(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j)): treeSign[m].Add(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j)) j += 1 else: print "found {} files for sample:".format(j), ss break else: if os.path.exists(NTUPLEDIR + ss + ".root"): treeSign[m].Add(NTUPLEDIR + ss + ".root") else: print "found no file for sample:", ss if treeSign[m].GetEntries() <= 0.: if VERBOSE: print " - 0 events available for mass", m, "skipping mass point..." signalNorm[m].setVal(-1) vmean[m].setConstant(True) vsigma[m].setConstant(True) salpha1[m].setConstant(True) sslope1[m].setConstant(True) salpha2[m].setConstant(True) sslope2[m].setConstant(True) signalNorm[m].setConstant(True) signalXS[m].setConstant(True) continue #setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar("eventWeightLumi*BTagAK4Weight_deepJet"), RooFit.Import(treeSign[m])) setSignal[m] = RooDataSet("setSignal_" + signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeSign[m])) if VERBOSE: print " - Dataset with", setSignal[m].sumEntries( ), "events loaded" # FIT entries = setSignal[m].sumEntries() if entries < 0. or entries != entries: entries = 0 signalYield[m].setVal(entries) # Instead of eventWeightLumi #signalYield[m].setVal(entries * LUMI / (300000 if YEAR=='run2' else 100000) ) if treeSign[m].GetEntries(SRcut) > 5: if VERBOSE: print " - Running fit" frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1), RooFit.Extended(True), RooFit.SumW2Error(True), RooFit.PrintLevel(-1)) if VERBOSE: print "********** Fit result [", m, "] **", category, "*" * 40, "\n", frSignal[ m].Print(), "\n", "*" * 80 if VERBOSE: frSignal[m].correlationMatrix().Print() drawPlot(signalMass + "_" + category, stype + category, X_mass, signal[m], setSignal[m], frSignal[m]) else: print " WARNING: signal", stype, "and mass point", m, "in category", category, "has 0 entries or does not exist" # Remove HVT cross sections #xs = getCrossSection(stype, channel, m) xs = 1. signalXS[m].setVal(xs * 1000.) signalIntegral[m] = signalExt[m].createIntegral( massArg, RooFit.NormSet(massArg), RooFit.Range("X_integration_range")) boundaryFactor = signalIntegral[m].getVal() if boundaryFactor < 0. or boundaryFactor != boundaryFactor: boundaryFactor = 0 if VERBOSE: print " - Fit normalization vs integral:", signalYield[ m].getVal(), "/", boundaryFactor, "events" signalNorm[m].setVal(boundaryFactor * signalYield[m].getVal() / signalXS[m].getVal() ) # here normalize to sigma(X) x Br = 1 [fb] vmean[m].setConstant(True) vsigma[m].setConstant(True) valpha1[m].setConstant(True) vslope1[m].setConstant(True) valpha2[m].setConstant(True) vslope2[m].setConstant(True) signalNorm[m].setConstant(True) signalXS[m].setConstant(True) #*******************************************************# # # # Signal interpolation # # # #*******************************************************# ### FIXME FIXME just for a test FIXME FIXME #print #print #print "slope2 fit results:" #print #y_vals = [] #for m in genPoints: # y_vals.append(vslope2[m].getVal()) #print "m =", genPoints #print "y =", y_vals #sys.exit() ### FIXME FIXME test end FIXME FIXME # ====== CONTROL PLOT ====== color_scheme = [ 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633 ] c_signal = TCanvas("c_signal", "c_signal", 800, 600) c_signal.cd() frame_signal = X_mass.frame() for j, m in enumerate(genPoints): if m in signalExt.keys(): #print "color:",(j%9)+1 #print "signalNorm[m].getVal() =", signalNorm[m].getVal() #print "RooAbsReal.NumEvent =", RooAbsReal.NumEvent signal[m].plotOn( frame_signal, RooFit.LineColor(color_scheme[j]), RooFit.Normalization(signalNorm[m].getVal(), RooAbsReal.NumEvent), RooFit.Range("X_reasonable_range")) frame_signal.GetXaxis().SetRangeUser(0, 10000) frame_signal.Draw() drawCMS(-1, "Simulation Preliminary", year=YEAR) #drawCMS(-1, "Work in Progress", year=YEAR, suppressCMS=True) #drawCMS(-1, "", year=YEAR, suppressCMS=True) drawAnalysis(category) drawRegion(category) c_signal.SaveAs(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_Signal.pdf") c_signal.SaveAs(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_Signal.png") #if VERBOSE: raw_input("Press Enter to continue...") # ====== CONTROL PLOT ====== # Normalization gnorm = TGraphErrors() gnorm.SetTitle(";m_{X} (GeV);integral (GeV)") gnorm.SetMarkerStyle(20) gnorm.SetMarkerColor(1) gnorm.SetMaximum(0) inorm = TGraphErrors() inorm.SetMarkerStyle(24) fnorm = TF1("fnorm", "pol9", 700, 3000) fnorm.SetLineColor(920) fnorm.SetLineStyle(7) fnorm.SetFillColor(2) fnorm.SetLineColor(cColor) # Mean gmean = TGraphErrors() gmean.SetTitle(";m_{X} (GeV);gaussian mean (GeV)") gmean.SetMarkerStyle(20) gmean.SetMarkerColor(cColor) gmean.SetLineColor(cColor) imean = TGraphErrors() imean.SetMarkerStyle(24) fmean = TF1("fmean", "pol1", 0, 10000) fmean.SetLineColor(2) fmean.SetFillColor(2) # Width gsigma = TGraphErrors() gsigma.SetTitle(";m_{X} (GeV);gaussian width (GeV)") gsigma.SetMarkerStyle(20) gsigma.SetMarkerColor(cColor) gsigma.SetLineColor(cColor) isigma = TGraphErrors() isigma.SetMarkerStyle(24) fsigma = TF1("fsigma", "pol1", 0, 10000) fsigma.SetLineColor(2) fsigma.SetFillColor(2) # Alpha1 galpha1 = TGraphErrors() galpha1.SetTitle(";m_{X} (GeV);crystal ball lower alpha") galpha1.SetMarkerStyle(20) galpha1.SetMarkerColor(cColor) galpha1.SetLineColor(cColor) ialpha1 = TGraphErrors() ialpha1.SetMarkerStyle(24) falpha1 = TF1("falpha", "pol1", 0, 10000) #pol0 falpha1.SetLineColor(2) falpha1.SetFillColor(2) # Slope1 gslope1 = TGraphErrors() gslope1.SetTitle(";m_{X} (GeV);exponential lower slope (1/Gev)") gslope1.SetMarkerStyle(20) gslope1.SetMarkerColor(cColor) gslope1.SetLineColor(cColor) islope1 = TGraphErrors() islope1.SetMarkerStyle(24) fslope1 = TF1("fslope", "pol1", 0, 10000) #pol0 fslope1.SetLineColor(2) fslope1.SetFillColor(2) # Alpha2 galpha2 = TGraphErrors() galpha2.SetTitle(";m_{X} (GeV);crystal ball upper alpha") galpha2.SetMarkerStyle(20) galpha2.SetMarkerColor(cColor) galpha2.SetLineColor(cColor) ialpha2 = TGraphErrors() ialpha2.SetMarkerStyle(24) falpha2 = TF1("falpha", "pol1", 0, 10000) #pol0 falpha2.SetLineColor(2) falpha2.SetFillColor(2) # Slope2 gslope2 = TGraphErrors() gslope2.SetTitle(";m_{X} (GeV);exponential upper slope (1/Gev)") gslope2.SetMarkerStyle(20) gslope2.SetMarkerColor(cColor) gslope2.SetLineColor(cColor) islope2 = TGraphErrors() islope2.SetMarkerStyle(24) fslope2 = TF1("fslope", "pol1", 0, 10000) #pol0 fslope2.SetLineColor(2) fslope2.SetFillColor(2) n = 0 for i, m in enumerate(genPoints): if not m in signalNorm.keys(): continue if signalNorm[m].getVal() < 1.e-6: continue if gnorm.GetMaximum() < signalNorm[m].getVal(): gnorm.SetMaximum(signalNorm[m].getVal()) gnorm.SetPoint(n, m, signalNorm[m].getVal()) #gnorm.SetPointError(i, 0, signalNorm[m].getVal()/math.sqrt(treeSign[m].GetEntriesFast())) gmean.SetPoint(n, m, vmean[m].getVal()) gmean.SetPointError(n, 0, min(vmean[m].getError(), vmean[m].getVal() * 0.02)) gsigma.SetPoint(n, m, vsigma[m].getVal()) gsigma.SetPointError( n, 0, min(vsigma[m].getError(), vsigma[m].getVal() * 0.05)) galpha1.SetPoint(n, m, valpha1[m].getVal()) galpha1.SetPointError( n, 0, min(valpha1[m].getError(), valpha1[m].getVal() * 0.10)) gslope1.SetPoint(n, m, vslope1[m].getVal()) gslope1.SetPointError( n, 0, min(vslope1[m].getError(), vslope1[m].getVal() * 0.10)) galpha2.SetPoint(n, m, salpha2[m].getVal()) galpha2.SetPointError( n, 0, min(valpha2[m].getError(), valpha2[m].getVal() * 0.10)) gslope2.SetPoint(n, m, sslope2[m].getVal()) gslope2.SetPointError( n, 0, min(vslope2[m].getError(), vslope2[m].getVal() * 0.10)) #tmpVar = w.var(var+"_"+signalString) #print m, tmpVar.getVal(), tmpVar.getError() n = n + 1 gmean.Fit(fmean, "Q0", "SAME") gsigma.Fit(fsigma, "Q0", "SAME") galpha1.Fit(falpha1, "Q0", "SAME") gslope1.Fit(fslope1, "Q0", "SAME") galpha2.Fit(falpha2, "Q0", "SAME") gslope2.Fit(fslope2, "Q0", "SAME") # gnorm.Fit(fnorm, "Q0", "", 700, 5000) #for m in [5000, 5500]: gnorm.SetPoint(gnorm.GetN(), m, gnorm.Eval(m, 0, "S")) #gnorm.Fit(fnorm, "Q", "SAME", 700, 6000) gnorm.Fit(fnorm, "Q", "SAME", 1800, 8000) ## adjusted recently for m in massPoints: if vsigma[m].getVal() < 10.: vsigma[m].setVal(10.) # Interpolation method syield = gnorm.Eval(m) spline = gnorm.Eval(m, 0, "S") sfunct = fnorm.Eval(m) #delta = min(abs(1.-spline/sfunct), abs(1.-spline/syield)) delta = abs(1. - spline / sfunct) if sfunct > 0 else 0 syield = spline if interPar: #jmean = gmean.Eval(m) #jsigma = gsigma.Eval(m) #jalpha1 = galpha1.Eval(m) #jslope1 = gslope1.Eval(m) #jalpha2 = galpha2.Eval(m) #jslope2 = gslope2.Eval(m) jmean = gmean.Eval(m, 0, "S") jsigma = gsigma.Eval(m, 0, "S") jalpha1 = galpha1.Eval(m, 0, "S") jslope1 = gslope1.Eval(m, 0, "S") jalpha2 = galpha2.Eval(m, 0, "S") jslope2 = gslope2.Eval(m, 0, "S") else: jmean = fmean.GetParameter( 0) + fmean.GetParameter(1) * m + fmean.GetParameter(2) * m * m jsigma = fsigma.GetParameter(0) + fsigma.GetParameter( 1) * m + fsigma.GetParameter(2) * m * m jalpha1 = falpha1.GetParameter(0) + falpha1.GetParameter( 1) * m + falpha1.GetParameter(2) * m * m jslope1 = fslope1.GetParameter(0) + fslope1.GetParameter( 1) * m + fslope1.GetParameter(2) * m * m jalpha2 = falpha2.GetParameter(0) + falpha2.GetParameter( 1) * m + falpha2.GetParameter(2) * m * m jslope2 = fslope2.GetParameter(0) + fslope2.GetParameter( 1) * m + fslope2.GetParameter(2) * m * m inorm.SetPoint(inorm.GetN(), m, syield) signalNorm[m].setVal(max(0., syield)) imean.SetPoint(imean.GetN(), m, jmean) if jmean > 0: vmean[m].setVal(jmean) isigma.SetPoint(isigma.GetN(), m, jsigma) if jsigma > 0: vsigma[m].setVal(jsigma) ialpha1.SetPoint(ialpha1.GetN(), m, jalpha1) if not jalpha1 == 0: valpha1[m].setVal(jalpha1) islope1.SetPoint(islope1.GetN(), m, jslope1) if jslope1 > 0: vslope1[m].setVal(jslope1) ialpha2.SetPoint(ialpha2.GetN(), m, jalpha2) if not jalpha2 == 0: valpha2[m].setVal(jalpha2) islope2.SetPoint(islope2.GetN(), m, jslope2) if jslope2 > 0: vslope2[m].setVal(jslope2) #### newly introduced, not yet sure if helpful: vmean[m].removeError() vsigma[m].removeError() valpha1[m].removeError() valpha2[m].removeError() vslope1[m].removeError() vslope2[m].removeError() #signalNorm[m].setConstant(False) ## newly put here to ensure it's freely floating in the combine fit #c1 = TCanvas("c1", "Crystal Ball", 1200, 1200) #if not isAH else 1200 #c1.Divide(2, 3) c1 = TCanvas("c1", "Crystal Ball", 1800, 800) c1.Divide(3, 2) c1.cd(1) gmean.SetMinimum(0.) gmean.Draw("APL") imean.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME c1.cd(2) gsigma.SetMinimum(0.) gsigma.Draw("APL") isigma.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME c1.cd(3) galpha1.Draw("APL") ialpha1.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME galpha1.GetYaxis().SetRangeUser(0., 1.1) #adjusted upper limit from 5 to 2 c1.cd(4) gslope1.Draw("APL") islope1.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME gslope1.GetYaxis().SetRangeUser(0., 150.) #adjusted upper limit from 125 to 60 if True: #isAH: c1.cd(5) galpha2.Draw("APL") ialpha2.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME galpha2.GetYaxis().SetRangeUser(0., 2.) c1.cd(6) gslope2.Draw("APL") islope2.Draw("P, SAME") drawRegion(category) drawCMS(-1, "Simulation Preliminary", year=YEAR) ## new FIXME gslope2.GetYaxis().SetRangeUser(0., 20.) c1.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_SignalShape.pdf") c1.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_SignalShape.png") c2 = TCanvas("c2", "Signal Efficiency", 800, 600) c2.cd(1) gnorm.SetMarkerColor(cColor) gnorm.SetMarkerStyle(20) gnorm.SetLineColor(cColor) gnorm.SetLineWidth(2) gnorm.Draw("APL") inorm.Draw("P, SAME") gnorm.GetXaxis().SetRangeUser(genPoints[0] - 100, genPoints[-1] + 100) gnorm.GetYaxis().SetRangeUser(0., gnorm.GetMaximum() * 1.25) drawCMS(-1, "Simulation Preliminary", year=YEAR) #drawCMS(-1, "Work in Progress", year=YEAR, suppressCMS=True) #drawCMS(-1, "", year=YEAR, suppressCMS=True) drawAnalysis(category) drawRegion(category) c2.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_SignalNorm.pdf") c2.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category + "_SignalNorm.png") #*******************************************************# # # # Generate workspace # # # #*******************************************************# # create workspace w = RooWorkspace("Zprime_" + YEAR, "workspace") for m in massPoints: getattr(w, "import")(signal[m], RooFit.Rename(signal[m].GetName())) getattr(w, "import")(signalNorm[m], RooFit.Rename(signalNorm[m].GetName())) getattr(w, "import")(signalXS[m], RooFit.Rename(signalXS[m].GetName())) w.writeToFile(WORKDIR + "MC_signal_%s_%s.root" % (YEAR, category), True) print "Workspace", WORKDIR + "MC_signal_%s_%s.root" % ( YEAR, category), "saved successfully"
def rooFit202(): print ">>> setup model component: gaussian signals and Chebychev polynomial background..." x = RooRealVar("x", "x", 0, 10) mean = RooRealVar("mean", "mean of gaussian", 5) sigma1 = RooRealVar("sigma1", "width of gaussian", 0.5) sigma2 = RooRealVar("sigma2", "width of gaussian", 1.0) sig1 = RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = RooGaussian("sig2", "Signal component 2", x, mean, sigma2) a0 = RooRealVar("a0", "a0", 0.5, 0., 1.) a1 = RooRealVar("a1", "a1", -0.2, 0., 1.) bkg = RooChebychev("bkg", "Background", x, RooArgList(a0, a1)) # Sum the signal components into a composite signal p.d.f. sig1frac = RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.) sig = RooAddPdf("sig", "Signal", RooArgList(sig1, sig2), RooArgList(sig1frac)) print ">>>\n>>> METHOD 1" print ">>> construct extended composite model..." # Sum the composite signal and background into an extended pdf nsig*sig+nbkg*bkg nsig = RooRealVar("nsig", "number of signal events", 500, 0., 10000) nbkg = RooRealVar("nbkg", "number of background events", 500, 0, 10000) model = RooAddPdf("model", "(g1+g2)+a", RooArgList(bkg, sig), RooArgList(nbkg, nsig)) print ">>> sample, fit and plot extended model...\n" # Generate a data sample of expected number events in x from model # nsig + nbkg = model.expectedEvents() # NOTE: since the model predicts a specific number events, one can # omit the requested number of events to be generated # Introduce Poisson fluctuation with Extended(kTRUE) data = model.generate(RooArgSet(x), Extended(kTRUE)) # RooDataSet # Fit model to data, extended ML term automatically included # NOTE: Composite extended pdfs can only be successfully fit if the extended likelihood # term -log(Poisson(Nobs,Nexp)) is included in the minimization because they have # one extra degree of freedom in their parameterization that is constrained by # this extended term. If a pdf is capable of calculating an extended term (i.e. # any extended RooAddPdf), the extended term is AUTOMATICALLY included in the # likelihood calculation. Override this behaviour with Extended(): # Extended(kTRUE) ADD extended likelihood term # Extended(kFALSE) DO NOT ADD extended likelihood #model.fitTo(data,Extended(kTRUE)) model.fitTo(data) print "\n>>> plot data, model and model components..." # Plot data and PDF overlaid, use expected number of events for pdf projection # normalization, rather than observed number of events, data.numEntries() frame1 = x.frame(Title("extended ML fit example")) # RooPlot data.plotOn(frame1, Binning(30), Name("data")) model.plotOn(frame1, Normalization(1.0, RooAbsReal.RelativeExpected), Name("model")) # Overlay the background components of model # NOTE: By default, the pdf is normalized to event count of the last dataset added # to the plot frame. Use "RelativeExpected" to normalize to the expected # event count of the pdf instead argset1 = RooArgSet(bkg) argset2 = RooArgSet(sig1) argset3 = RooArgSet(sig2) argset4 = RooArgSet(bkg, sig2) model.plotOn(frame1, Components(argset1), LineStyle(kDashed), LineColor(kBlue), Normalization(1.0, RooAbsReal.RelativeExpected), Name("bkg")) #model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kBlue), Name("bkg2")) model.plotOn(frame1, Components(argset2), LineStyle(kDotted), LineColor(kMagenta), Normalization(1.0, RooAbsReal.RelativeExpected), Name("sig1")) model.plotOn(frame1, Components(argset3), LineStyle(kDotted), LineColor(kPink), Normalization(1.0, RooAbsReal.RelativeExpected), Name("sig2")) model.plotOn(frame1, Components(argset4), LineStyle(kDashed), LineColor(kAzure - 4), Normalization(1.0, RooAbsReal.RelativeExpected), Name("bkgsig2")) print "\n>>> structure of composite pdf:" model.Print("t") # "tree" mode print "\n>>> parameters:" params = model.getVariables() # RooArgSet params.Print("v") params.Print() print "\n>>> params.find(\"...\").getVal():" print ">>> sigma1 = %.2f" % params.find("sigma1").getVal() print ">>> sigma2 = %.2f" % params.find("sigma2").getVal() print ">>> nsig = %6.2f, sig1frac = %5.2f" % ( params.find("nsig").getVal(), params.find("sig1frac").getVal()) print ">>> nbkg = %6.2f" % params.find("nbkg").getVal() print ">>>\n>>> components:" comps = model.getComponents() # RooArgSet sig = comps.find("sig") # RooAbsArg sigVars = sig.getVariables() # RooArgSet sigVars.Print() print ">>>\n>>> METHOD 2" print ">>> construct extended components first..." # Associated nsig/nbkg as expected number of events with sig/bkg nsig = RooRealVar("nsig", "number of signal events", 500, 0., 10000) nbkg = RooRealVar("nbkg", "number of background events", 500, 0, 10000) esig = RooExtendPdf("esig", "extended signal pdf", sig, nsig) ebkg = RooExtendPdf("ebkg", "extended background pdf", bkg, nbkg) print ">>> sum extended components without coefficients..." # Construct sum of two extended p.d.f. (no coefficients required) model2 = RooAddPdf("model2", "(g1+g2)+a", RooArgList(ebkg, esig)) # METHOD 2 is functionally completely equivalent to METHOD 1. # Its advantage is that the yield parameter is associated to the shape pdf # directly, while in METHOD 1 the association is made after constructing # a RooAddPdf. Also, class RooExtendPdf offers extra functionality to # interpret event counts in a different range. print ">>> plot model..." model2.plotOn(frame1, LineStyle(kDashed), LineColor(kRed), Normalization(1.0, RooAbsReal.RelativeExpected), Name("model2")) print ">>> draw on canvas..." canvas = TCanvas("canvas", "canvas", 100, 100, 800, 600) legend = TLegend(0.2, 0.85, 0.4, 0.65) legend.SetTextSize(0.032) legend.SetBorderSize(0) legend.SetFillStyle(0) gPad.SetLeftMargin(0.14) gPad.SetRightMargin(0.02) frame1.GetYaxis().SetLabelOffset(0.008) frame1.GetYaxis().SetTitleOffset(1.4) frame1.GetYaxis().SetTitleSize(0.045) frame1.GetXaxis().SetTitleSize(0.045) frame1.Draw() legend.AddEntry("data", "data", 'LEP') legend.AddEntry("model", "composite model", 'L') legend.AddEntry("model2", "composite model (method 2)", 'L') legend.AddEntry("bkg", "background only", 'L') #legend.AddEntry("bkg2", "background only (no extended norm)", 'L') legend.AddEntry("sig1", "signal 1", 'L') legend.AddEntry("sig2", "signal 2", 'L') legend.AddEntry("bkgsig2", "background + signal 2", 'L') legend.Draw() canvas.SaveAs("rooFit202.png")
calllikethis1 = '''FitOnePdf(h_Top_FR, 'tt')''' #h_Top_FR.sum(False) sigma_ = math.sqrt(hist_integral) up_ = hist_integral + 5 * sigma_ down_ = hist_integral - 5 * sigma_ nQCD = RooRealVar("nQCD", "QCD normalization", hist_integral, down_, up_) #500, 0., 1200) ndijet = RooRealVar("ndijet", "dijet normalization", 4000, 0.0, 10000000) ####################################### ## Define Background Model ####################################### diJetMass_ext = RooExtendPdf('diJetMass_ext', 'extended pdf for diJetMass', diJetMass, ndijet) diJetMass_ext_2 = RooExtendPdf('diJetMass_ext_2', 'extended pdf for diJetMass_2', diJetMass_2, ndijet) diJetMass_ext_3 = RooExtendPdf('diJetMass_ext_3', 'extended pdf for diJetMass_3', diJetMass_3, ndijet) diJetMass_ext_4 = RooExtendPdf('diJetMass_ext_4', 'extended pdf for diJetMass_4', diJetMass_4, ndijet) diJetMass_ext_5 = RooExtendPdf('diJetMass_ext_5', 'extended pdf for diJetMass_5', diJetMass_5, ndijet) exp_ext = RooExtendPdf('exp_ext', 'extended p.d.f for QCD', expQCD, nQCD) # add pdf to make big extended pdf.
def getCard(sig, ch, ifilename, outdir, mode="histo", unblind=False): try: ifile = ROOT.TFile.Open(ifilename) except IOError: print "Cannot open ", ifilename else: print "Opening file ", ifilename ifile.cd() print syst workdir_ = ifilename.split("/")[:-1] WORKDIR = "/".join(workdir_) + "/" carddir = outdir + "/" + sig + "/" hist_filename = os.getcwd() + "/" + ifilename hist = getHist(ch, sig, ifile) #*******************************************************# # # # Generate workspace # # # #*******************************************************# if (mode == "template"): histBkgData = getHist(ch, "Bkg", ifile) histData = histBkgData if (unblind): print "BE CAREFULL: YOU ARE UNBLINDING" histData = getHist(ch, "data_obs", ifile) print "*********Number of data ", histData.Integral() histSig = getHist(ch, sig, ifile) bkgData = RooDataHist("bkgdata", "Data (MC Bkg)", RooArgList(mT), histBkgData, 1.) obsData = RooDataHist("data_obs", "(pseudo) Data", RooArgList(mT), histData, 1.) sigData = RooDataHist("sigdata", "Data (MC sig)", RooArgList(mT), histSig, 1.) print "Bkg Integral: ", histData.Integral() nBkgEvts = histBkgData.Integral() print "Bkg Events: ", nBkgEvts print "Channel: ", ch modelBkg = fitParam[ch].modelBkg normzBkg = RooRealVar(modelBkg.GetName() + "_norm", "Number of background events", nBkgEvts, 0., 1.e3) print "NormBkg ", nBkgEvts modelExt = RooExtendPdf(modelBkg.GetName() + "_ext", modelBkg.GetTitle(), modelBkg, normzBkg) # create workspace w = RooWorkspace("SVJ", "workspace") # Dataset # ATT: include isData getattr(w, "import")(bkgData, RooFit.Rename("Bkg")) getattr(w, "import")(obsData, RooFit.Rename("data_obs")) getattr(w, "import")(sigData, RooFit.Rename(sig)) for i in xrange(hist.GetNbinsX()): mcstatSysName = "mcstat_%s_%s_bin%d" % (ch, sig, i + 1) #print mcstatSysName #print sig + "_" + mcstatSysName + "Up" mcstatSigUp = getHist(ch, sig + "_" + mcstatSysName + "Up", ifile) #print "Integral ", mcstatSigUp.Integral() mcstatSigDown = getHist(ch, sig + "_" + mcstatSysName + "Down", ifile) mcstatSigHistUp = RooDataHist(sig + "_" + mcstatSysName + "Up", "Data (MC sig)", RooArgList(mT), mcstatSigUp, 1.) mcstatSigHistDown = RooDataHist(sig + "_" + mcstatSysName + "Down", "Data (MC sig)", RooArgList(mT), mcstatSigDown, 1.) getattr(w, "import")(mcstatSigHistUp, RooFit.Rename(sig + "_" + mcstatSysName + "Up")) getattr(w, "import")(mcstatSigHistDown, RooFit.Rename(sig + "_" + mcstatSysName + "Down")) for sysName, sysValue in syst.iteritems(): if (sysValue[0] == "shape" and "mcstat" not in sysName): sysUp = getHist(ch, sig + "_" + sysName + "Up", ifile) sysDown = getHist(ch, sig + "_" + sysName + "Down", ifile) print "==> Trigg sys name: ", sig + "_" + sysName + "Down" sysSigHistUp = RooDataHist(sig + "_" + sysName + "Up", sysName + " uncertainty", RooArgList(mT), sysUp, 1.) sysSigHistDown = RooDataHist(sig + "_" + sysName + "Down", sysName + " uncertainty", RooArgList(mT), sysDown, 1.) getattr(w, "import")(sysSigHistUp, RooFit.Rename(sig + "_" + sysName + "Up")) getattr(w, "import")(sysSigHistDown, RooFit.Rename(sig + "_" + sysName + "Down")) #else: getattr(w, "import")(setToys, RooFit.Rename("data_obs")) getattr(w, "import")(modelBkg, RooFit.Rename(modelBkg.GetName())) #getattr(w, "import")(modelAlt, RooFit.Rename(modelAlt.GetName())) getattr(w, "import")(normzBkg, RooFit.Rename(normzBkg.GetName())) w.writeToFile("%sws_%s_%s_%s.root" % (carddir, sig, ch, mode), True) print "Workspace", "%sws_%s_%s_%s.root" % (carddir, sig, ch, mode), "saved successfully" workfile = "./ws_%s_%s_%s.root" % (sig, ch, mode) # ====== END MODEL GENERATION ====== rates = {} procLine = "" procNumbLine = "" rateLine = "" binString = "" if (mode == "template"): processes.append("Bkg") processes[:-1] = [] rates["Bkg"] = nBkgEvts procLine += ("%-43s") % ("Bkg") rateLine += ("%-43s") % (rates["Bkg"]) binString += (("%-43s") % (ch)) * (2) procNumbLine = 1 else: i = 1 bkgrate = 0 print "===> Backgrounds: ", processes nproc = (len(processes) + 1) for p in processes: print "======================= p for rate", p, " syst, ", syst print "ch is ", ch, " process is ", p, " ifile is ", ifile.GetName( ) rates[p] = getRate(ch, p, ifile) bkgrate = rates[p] if (p == "QCD"): print "qcd: ", bkgrate if (bkgrate == 0): nproc = nproc - 1 continue procNumbLine += ("%-43s") % (i) procLine += ("%-43s") % (p) rateLine += ("%-43.2f") % (bkgrate) i += 1 binString += (("%-43s") % (ch)) * (nproc) if ((not unblind) and (mode == "template")): print "N.B: We are in blind mode. Using MC bkg data for data_obs" rates["data_obs"] = getRate(ch, "Bkg", ifile) print "Pseudo data rate: ", rates["data_obs"] else: rates["data_obs"] = getRate(ch, "data_obs", ifile) rates[sig] = getRate(ch, sig, ifile) card = "imax 1 number of channels \n" card += "jmax * number of backgrounds \n" card += "kmax * number of nuisance parameters\n" card += "-----------------------------------------------------------------------------------\n" if (mode == "template"): # card += "shapes %s %s %s %s %s\n" % (sig, ch, ifilename, "$CHANNEL/$PROCESS", "$CHANNEL/$PROCESS_SYSTEMATIC") # card += "shapes %-15s %-5s %s%s.root %s\n" % (sig, ch, WORKDIR, ch, "SVJ:$PROCESS") card += "shapes %s %s %s %s\n" % (modelBkg.GetName(), ch, workfile, "SVJ:$PROCESS") card += "shapes %s %s %s %s %s\n" % ( sig, ch, workfile, "SVJ:$PROCESS", "SVJ:$PROCESS_$SYSTEMATIC") card += "shapes %s %s %s %s\n" % ("data_obs", ch, workfile, "SVJ:$PROCESS") else: card += "shapes * * %s %s %s\n" % ( hist_filename, "$CHANNEL/$PROCESS", "$CHANNEL/$PROCESS_$SYSTEMATIC") card += "shapes data_obs * %s %s\n" % (hist_filename, "$CHANNEL/$PROCESS") card += "-----------------------------------------------------------------------------------\n" card += "bin %s\n" % ch print "===> Observed data: ", rates["data_obs"] card += "observation %0.d\n" % (rates["data_obs"]) card += "-----------------------------------------------------------------------------------\n" card += "bin %-43s\n" % (binString) card += "process %-43s%-43s\n" % ( sig, procLine) #"roomultipdf" card += "process %-43s%-43s\n" % ( "0", procNumbLine) card += "rate %-43.6f%-43s\n" % ( rates[sig], rateLine) #signalYield[m].getVal(), nevents card += "-----------------------------------------------------------------------------------\n" for sysName, sysValue in syst.iteritems(): print "Systematic Uncertainty: ", sysName if ("2016" in sysName and "2016" not in ch): continue elif ("2017" in sysName and "2017" not in ch): continue elif ("2018" in sysName and "2018" not in ch): continue if ("mu" in sysName and "mu" not in ch): continue elif ("ele" in sysName and "ele" not in ch): continue if (sysValue[0] == "lnN"): card += "%-20s%-20s" % (sysName, sysValue[0]) if (sysValue[1] == "all" and len(sysValue) > 2): if (mode == "template"): card += "%-20s" % (sysValue[2]) * (2) else: card += "%-20s" % (sysValue[2]) * (len(processes) + 1) elif (sysValue[1] == "QCD" and len(sysValue) > 2): if (mode == "template"): card += "%-20s" % (sysValue[2]) * (2) else: card += "%-20s" % (sysValue[2]) * (len(processes) + 1) else: if (sysValue[1] == "all"): sysValue[1] = copy.deepcopy(processes) sysValue[1].append(sig) hsysName = "_" + sysName hsysNameUp = "_" + sysName + "Up" hsysNameDown = "_" + sysName + "Down" #print "Applying syst on ", sysValue[1] if ("sig" in sysValue[1]): if (getRate(ch, sig, ifile) != 0.): sigSys = abs((getRate(ch, sig + hsysNameUp, ifile) - getRate(ch, sig + hsysNameDown, ifile)) / (2 * getRate(ch, sig, ifile))) else: sigSys = 1 if (sigSys < 1. and sigSys > 0.): sigSys = sigSys + 1 card += "%-20s" % (sigSys) else: card += "%-20s" % ("-") for p in processes: if (p in sysValue[1]): if (getRate(ch, p, ifile) != 0.): bkgSys = abs( (getRate(ch, p + hsysNameUp, ifile) - getRate(ch, p + hsysNameDown, ifile)) / (2 * getRate(ch, p, ifile))) else: bkgSys = 1 if (bkgSys < 1. and bkgSys > 0.): bkgSys = bkgSys + 1 card += "%-20s" % (bkgSys) else: card += "%-20s" % ("-") elif (sysValue[0] == "shape"): print "sys shape named ", sysName if ("mcstat" not in sysName and 'autoMCstat' not in sysName): card += "%-20s shape " % (sysName) isbogussys = False #if(getRate(ch, sig+"_"+sysName+"Up", ifile)==0 or getRate(ch, sig+"_"+sysName+"Down", ifile)==0):isbogussys=True if ("sig" in sysValue[1]) and ((getRate(ch, sig, ifile) != 0.) and not isbogussys): #print " signal ",sig," channel, ",ch, " file ",ifile, " rate ",(getRate(ch, sig, ifile)) #print " signal ",sig," channel, ",ch, " file ",ifile, " rate up ",(getRate(ch, sig+"_"+sysName+"Up", ifile)) #print " signal ",sig," channel, ",ch, " file ",ifile, " rate down",(getRate(ch, sig+"_"+sysName+"Down", ifile)) card += "%-20s" % ("1") else: card += "%-20s" % ("-") for p in processes: if (p in sysValue[1]): if "q2SingleTop" in sysName: card += "%-20s" % ("1") else: card += "%-20s" % ("1") #print "adding to channel ", p else: card += "%-20s" % ("-") elif ("mcstat" in sysName): # CAMBIARE NOME DELLA SYST for samp in sysValue[1]: sampName = "" line = "" if (samp == "sig" or samp == "Sig"): line = "%-20s" % ("1") line += "%-20s" % ("-") * (len(processes)) sampName = sig elif (mode != "template"): line = "%-20s" % ("-") lineProc = [ "%-20s" % ("-") for x in xrange(len(processes)) ] if samp in processes: index = processes.index(samp) lineProc[index] = "1" lineProc = " ".join(lineProc) line += lineProc sampName = samp else: continue for i in xrange(hist.GetNbinsX()): sysName = "mcstat_%s_%s_bin%d " % (ch, sampName, i + 1) card += "%-20s shape " % (sysName) card += line card += "\n" if ('autoMCstat' in sysName): card += "%-20s%-20s%-20d\n " % (ch, "autoMCStats", 0) card += "\n" # End for loop on syst unc. for k, v in rateParams.items(): for ch_ in v.chs: if ("2016" in k and "2016" not in ch): continue elif ("2017" in k and "2017" not in ch): continue elif ("2018" in k and "2018" not in ch): continue if ("mu" in k and "mu" not in ch): continue elif ("ele" in k and "ele" not in ch): continue if (ch_ == ("_").join(ch.split("_")[:-1])): if (("2016" in k) or ("2017" in k) or ("2018" in k)): if ('mu' in k and 'mu' in ch): card += "%-20s%-20s%-20s%-20s%-20d\n" % ( k, "rateParam", ch, v.bkg, 1) elif ('ele' in k and 'ele' in ch): card += "%-20s%-20s%-20s%-20s%-20d\n" % ( k, "rateParam", ch, v.bkg, 1) else: sameyear = (("2016" in k and "2016" in ch) or ("2017" in k and "2017" in ch) or ("2018" in k and "2018" in ch)) if (sameyear): card += "%-20s%-20s%-20s%-20s%-20d\n" % ( k, "rateParam", ch, v.bkg, 1) else: card += "%-20s%-20s%-20s%-20s%-20d\n" % (k, "rateParam", ch, v.bkg, 1) card += "\n" if not os.path.isdir(outdir): os.system('mkdir ' + outdir) if not os.path.isdir(outdir + "/" + sig): os.system('mkdir ' + outdir + "/" + sig) outname = "%s%s_%s_%s.txt" % (carddir, sig, ch, mode) cardfile = open(outname, 'w') cardfile.write(card) cardfile.close() #print card return card
# ------------------------------------------- # 2. use gau3's extended PDF to fit data1 xframe2 = x.frame(RooFit.Title("2. use gauss3's extended PDF to fit data1 ")) # gauss 3 mean3 = RooRealVar("mean3","mean of gaussian",0,-10,10) sigma3 = RooRealVar("sigma3","width of gaussian",1,0.1,10) gauss3 = RooGaussian("gauss3","gaussian PDF",x,mean3,sigma3) # convert gauss 3 to extended PDF nGauss3 = RooRealVar("nGauss3", "Gauss 3 ext normalization", 600, 0., 1000) gauss3_ext = RooExtendPdf("gauss3_ext", "extended p.d.f", gauss3, nGauss3) #gauss3_ext.plotOn(xframe2, RooFit.Normalization(1.0, RooAbsReal.RelativeExpected), RooFit.LineColor(RooFit.kGreen)) print "for gauss3 before fit" print "mean3: ", mean3.Print()," sigma3: ",sigma3.Print() print "nGauss3: ", nGauss3.Print() # fit gauss3_ext.fitTo(data1) # plot norm3 = nGauss3.getVal()
norm = ws.arg( wsname + "_norm") norm.Print() mass_var = multipdf.getVariables().first() mass_var.setRange("HiggsMassWindow5",120,130) mass_var.setRange("HiggsMassWindow2",123,127) mass_var.setRange("HiggsMassWindow10",115,135) mass_var.setRange("WholeRange",100,180) frame = mass_var.frame() option = "AL" pdf_information = {} multipdf.plotOn( frame ) for pdf_index in range(0,multipdf.getNumPdfs()): pdf_ = multipdf.getPdf( pdf_index ) print pdf_.GetName() + "_Normalized" , pdf_.GetTitle() pdf = RooExtendPdf( pdf_.GetName() + "_Normalized" , pdf_.GetTitle() , pdf_ , norm ) pdf.plotOn( frame , RooFit.DrawOption(option) , RooFit.LineColor( colors[pdf_index] ) , RooFit.LineStyle(0) , RooFit.LineWidth(3) , RooFit.Range("WholeRange") ) totalInt = pdf.createIntegral( RooArgSet(mass_var) ,RooFit.Range("WholeRange")) #totalInt.Print() , RooFit.NormSet( RooArgSet(mass_var) ), fracInt5 = pdf.createIntegral( RooArgSet(mass_var) ,RooFit.Range("HiggsMassWindow5")) fracInt2 = pdf.createIntegral( RooArgSet(mass_var) ,RooFit.Range("HiggsMassWindow2")) fracInt10 = pdf.createIntegral( RooArgSet(mass_var) ,RooFit.Range("HiggsMassWindow10")) #fracInt.Print() if "A" in option : option = "L" pdf_information[ pdf_index ] = { "name":pdf.GetName() , "pdf":pdf , "ratio5":fracInt5.getVal()/totalInt.getVal(), "ratio2":fracInt2.getVal()/totalInt.getVal(), "ratio10":fracInt10.getVal()/totalInt.getVal() } doSig = False if len(sys.argv) > 3 : fsigName = sys.argv[2] fsig = TFile.Open( fsigName )
def signal(channel, stype): if 'VBF' in channel: stype = 'XZHVBF' else: stype = 'XZH' # HVT model if stype.startswith('X'): signalType = 'HVT' genPoints = [800, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500, 4000, 4500, 5000] massPoints = [x for x in range(800, 5000+1, 100)] interPar = True else: print "Signal type", stype, "not recognized" return n = len(genPoints) category = channel cColor = color[category] if category in color else 1 nElec = channel.count('e') nMuon = channel.count('m') nLept = nElec + nMuon nBtag = channel.count('b') if '0b' in channel: nBtag = 0 X_name = "VH_mass" if not os.path.exists(PLOTDIR+stype+category): os.makedirs(PLOTDIR+stype+category) #*******************************************************# # # # Variables and selections # # # #*******************************************************# X_mass = RooRealVar( "X_mass", "m_{ZH}", XBINMIN, XBINMAX, "GeV") J_mass = RooRealVar( "H_mass", "jet mass", LOWMIN, HIGMAX, "GeV") V_mass = RooRealVar( "V_mass", "V jet mass", -9., 1.e6, "GeV") CSV1 = RooRealVar( "H_csv1", "", -999., 2. ) CSV2 = RooRealVar( "H_csv2", "", -999., 2. ) DeepCSV1= RooRealVar( "H_deepcsv1", "", -999., 2. ) DeepCSV2= RooRealVar( "H_deepcsv2", "", -999., 2. ) H_ntag = RooRealVar( "H_ntag", "", -9., 9. ) H_dbt = RooRealVar( "H_dbt", "", -2., 2. ) H_tau21 = RooRealVar( "H_tau21", "", -9., 2. ) H_eta = RooRealVar( "H_eta", "", -9., 9. ) H_tau21_ddt = RooRealVar( "H_ddt", "", -9., 2. ) MaxBTag = RooRealVar( "MaxBTag", "", -10., 2. ) H_chf = RooRealVar( "H_chf", "", -1., 2. ) MinDPhi = RooRealVar( "MinDPhi", "", -1., 99. ) DPhi = RooRealVar( "DPhi", "", -1., 99. ) DEta = RooRealVar( "DEta", "", -1., 99. ) Mu1_relIso = RooRealVar( "Mu1_relIso", "", -1., 99. ) Mu2_relIso = RooRealVar( "Mu2_relIso", "", -1., 99. ) nTaus = RooRealVar( "nTaus", "", -1., 99. ) Vpt = RooRealVar( "V.Pt()", "", -1., 1.e6 ) V_pt = RooRealVar( "V_pt", "", -1., 1.e6 ) H_pt = RooRealVar( "H_pt", "", -1., 1.e6 ) VH_deltaR=RooRealVar( "VH_deltaR", "", -1., 99. ) isZtoNN = RooRealVar( "isZtoNN", "", 0., 2. ) isZtoEE = RooRealVar( "isZtoEE", "", 0., 2. ) isZtoMM = RooRealVar( "isZtoMM", "", 0., 2. ) isHtobb = RooRealVar( "isHtobb", "", 0., 2. ) isVBF = RooRealVar( "isVBF", "", 0., 2. ) isMaxBTag_loose = RooRealVar( "isMaxBTag_loose", "", 0., 2. ) weight = RooRealVar( "eventWeightLumi", "", -1.e9, 1.e9 ) Xmin = XBINMIN Xmax = XBINMAX # Define the RooArgSet which will include all the variables defined before # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add' variables = RooArgSet(X_mass, J_mass, V_mass, CSV1, CSV2, H_ntag, H_dbt, H_tau21) variables.add(RooArgSet(DEta, DPhi, MaxBTag, MinDPhi, nTaus, Vpt)) variables.add(RooArgSet(DeepCSV1, DeepCSV2,VH_deltaR, H_tau21_ddt)) variables.add(RooArgSet(isZtoNN, isZtoEE, isZtoMM, isHtobb, isMaxBTag_loose, weight)) variables.add(RooArgSet(isVBF, Mu1_relIso, Mu2_relIso, H_chf, H_pt, V_pt,H_eta)) #X_mass.setRange("X_extended_range", X_mass.getMin(), X_mass.getMax()) X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax()) X_mass.setRange("X_integration_range", Xmin, Xmax) X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/100)) binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax()) X_mass.setBinning(binsXmass, "PLOT") massArg = RooArgSet(X_mass) # Cuts SRcut = selection[category]+selection['SR'] print " Cut:\t", SRcut #*******************************************************# # # # Signal fits # # # #*******************************************************# treeSign = {} setSignal = {} vmean = {} vsigma = {} valpha1 = {} vslope1 = {} smean = {} ssigma = {} salpha1 = {} sslope1 = {} salpha2 = {} sslope2 = {} a1 = {} a2 = {} sbrwig = {} signal = {} signalExt = {} signalYield = {} signalIntegral = {} signalNorm = {} signalXS = {} frSignal = {} frSignal1 = {} frSignal2 = {} frSignal3 = {} # Signal shape uncertainties (common amongst all mass points) xmean_fit = RooRealVar("sig_p1_fit", "Variation of the resonance position with the fit uncertainty", 0.005, -1., 1.) smean_fit = RooRealVar("CMSRunII_sig_p1_fit", "Change of the resonance position with the fit uncertainty", 0., -10, 10) xmean_jes = RooRealVar("sig_p1_scale_jes", "Variation of the resonance position with the jet energy scale", 0.010, -1., 1.) #0.001 smean_jes = RooRealVar("CMSRunII_sig_p1_jes", "Change of the resonance position with the jet energy scale", 0., -10, 10) xmean_e = RooRealVar("sig_p1_scale_e", "Variation of the resonance position with the electron energy scale", 0.001, -1., 1.) smean_e = RooRealVar("CMSRunII_sig_p1_scale_e", "Change of the resonance position with the electron energy scale", 0., -10, 10) xmean_m = RooRealVar("sig_p1_scale_m", "Variation of the resonance position with the muon energy scale", 0.001, -1., 1.) smean_m = RooRealVar("CMSRunII_sig_p1_scale_m", "Change of the resonance position with the muon energy scale", 0., -10, 10) xsigma_fit = RooRealVar("sig_p2_fit", "Variation of the resonance width with the fit uncertainty", 0.02, -1., 1.) ssigma_fit = RooRealVar("CMSRunII_sig_p2_fit", "Change of the resonance width with the fit uncertainty", 0., -10, 10) xsigma_jes = RooRealVar("sig_p2_scale_jes", "Variation of the resonance width with the jet energy scale", 0.010, -1., 1.) #0.001 ssigma_jes = RooRealVar("CMSRunII_sig_p2_jes", "Change of the resonance width with the jet energy scale", 0., -10, 10) xsigma_jer = RooRealVar("sig_p2_scale_jer", "Variation of the resonance width with the jet energy resolution", 0.020, -1., 1.) ssigma_jer = RooRealVar("CMSRunII_sig_p2_jer", "Change of the resonance width with the jet energy resolution", 0., -10, 10) xsigma_e = RooRealVar("sig_p2_scale_e", "Variation of the resonance width with the electron energy scale", 0.001, -1., 1.) ssigma_e = RooRealVar("CMSRunII_sig_p2_scale_e", "Change of the resonance width with the electron energy scale", 0., -10, 10) xsigma_m = RooRealVar("sig_p2_scale_m", "Variation of the resonance width with the muon energy scale", 0.040, -1., 1.) ssigma_m = RooRealVar("CMSRunII_sig_p2_scale_m", "Change of the resonance width with the muon energy scale", 0., -10, 10) xalpha1_fit = RooRealVar("sig_p3_fit", "Variation of the resonance alpha with the fit uncertainty", 0.03, -1., 1.) salpha1_fit = RooRealVar("CMSRunII_sig_p3_fit", "Change of the resonance alpha with the fit uncertainty", 0., -10, 10) xslope1_fit = RooRealVar("sig_p4_fit", "Variation of the resonance slope with the fit uncertainty", 0.10, -1., 1.) sslope1_fit = RooRealVar("CMSRunII_sig_p4_fit", "Change of the resonance slope with the fit uncertainty", 0., -10, 10) xmean_fit.setConstant(True) smean_fit.setConstant(True) xmean_jes.setConstant(True) smean_jes.setConstant(True) xmean_e.setConstant(True) smean_e.setConstant(True) xmean_m.setConstant(True) smean_m.setConstant(True) xsigma_fit.setConstant(True) ssigma_fit.setConstant(True) xsigma_jes.setConstant(True) ssigma_jes.setConstant(True) xsigma_jer.setConstant(True) ssigma_jer.setConstant(True) xsigma_e.setConstant(True) ssigma_e.setConstant(True) xsigma_m.setConstant(True) ssigma_m.setConstant(True) xalpha1_fit.setConstant(True) salpha1_fit.setConstant(True) xslope1_fit.setConstant(True) sslope1_fit.setConstant(True) # the alpha method is now done. for m in massPoints: signalString = "M%d" % m signalMass = "%s_M%d" % (stype, m) signalName = "%s%s_M%d" % (stype, category, m) signalColor = sample[signalMass]['linecolor'] if signalName in sample else 1 # define the signal PDF vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m, m*0.5, m*1.25) smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)*(1+@3*@4)*(1+@5*@6)*(1+@7*@8)", RooArgList(vmean[m], xmean_e, smean_e, xmean_m, smean_m, xmean_jes, smean_jes, xmean_fit, smean_fit)) vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma", m*0.035, m*0.01, m*0.4) sigmaList = RooArgList(vsigma[m], xsigma_e, ssigma_e, xsigma_m, ssigma_m, xsigma_jes, ssigma_jes, xsigma_jer, ssigma_jer) sigmaList.add(RooArgList(xsigma_fit, ssigma_fit)) ssigma[m] = RooFormulaVar(signalName + "_sigma", "@0*(1+@1*@2)*(1+@3*@4)*(1+@5*@6)*(1+@7*@8)*(1+@9*@10)", sigmaList) valpha1[m] = RooRealVar(signalName + "_valpha1", "Crystal Ball alpha", 1., 0., 5.) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0*(1+@1*@2)", RooArgList(valpha1[m], xalpha1_fit, salpha1_fit)) vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope", 10., 1., 60.) # slope of the power tail #10 1 60 sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0*(1+@1*@2)", RooArgList(vslope1[m], xslope1_fit, sslope1_fit)) salpha2[m] = RooRealVar(signalName + "_alpha2", "Crystal Ball alpha", 2, 1., 5.) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right sslope2[m] = RooRealVar(signalName + "_slope2", "Crystal Ball slope", 10, 1.e-1, 115.) # slope of the power tail #define polynomial #a1[m] = RooRealVar(signalName + "_a1", "par 1 for polynomial", m, 0.5*m, 2*m) a1[m] = RooRealVar(signalName + "_a1", "par 1 for polynomial", 0.001*m, 0.0005*m, 0.01*m) a2[m] = RooRealVar(signalName + "_a2", "par 2 for polynomial", 0.05, -1.,1.) #if channel=='nnbbVBF' or channel=='nn0bVBF': # signal[m] = RooPolynomial(signalName,"m_{%s'} = %d GeV" % (stype[1], m) , X_mass, RooArgList(a1[m],a2[m])) #else: # signal[m] = RooCBShape(signalName, "m_{%s'} = %d GeV" % (stype[1], m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m]) # Signal name does not have the channel signal[m] = RooCBShape(signalName, "m_{%s'} = %d GeV" % (stype[1], m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m]) # Signal name does not have the channel # extend the PDF with the yield to perform an extended likelihood fit signalYield[m] = RooRealVar(signalName+"_yield", "signalYield", 100, 0., 1.e6) signalNorm[m] = RooRealVar(signalName+"_norm", "signalNorm", 1., 0., 1.e6) signalXS[m] = RooRealVar(signalName+"_xs", "signalXS", 1., 0., 1.e6) signalExt[m] = RooExtendPdf(signalName+"_ext", "extended p.d.f", signal[m], signalYield[m]) vslope1[m].setMax(50.) vslope1[m].setVal(20.) #valpha1[m].setVal(1.0) #valpha1[m].setConstant(True) if 'bb' in channel and 'VBF' not in channel: if 'nn' in channel: valpha1[m].setVal(0.5) elif '0b' in channel and 'VBF' not in channel: if 'nn' in channel: if m==800: valpha1[m].setVal(2.) vsigma[m].setVal(m*0.04) elif 'ee' in channel: valpha1[m].setVal(0.8) if m==800: #valpha1[m].setVal(1.2) valpha1[m].setVal(2.5) vslope1[m].setVal(50.) elif 'mm' in channel: if m==800: valpha1[m].setVal(2.) vsigma[m].setVal(m*0.03) else: vmean[m].setVal(m*0.9) vsigma[m].setVal(m*0.08) elif 'bb' in channel and 'VBF' in channel: if 'nn' in channel: if m!=1800: vmean[m].setVal(m*0.8) vsigma[m].setVal(m*0.08) valpha1[m].setMin(1.) elif 'ee' in channel: valpha1[m].setVal(0.7) elif 'mm' in channel: if m==800: vslope1[m].setVal(50.) valpha1[m].setVal(0.7) elif '0b' in channel and 'VBF' in channel: if 'nn' in channel: valpha1[m].setVal(3.) vmean[m].setVal(m*0.8) vsigma[m].setVal(m*0.08) valpha1[m].setMin(1.) elif 'ee' in channel: if m<2500: valpha1[m].setVal(2.) if m==800: vsigma[m].setVal(m*0.05) elif m==1000: vsigma[m].setVal(m*0.03) elif m>1000 and m<1800: vsigma[m].setVal(m*0.04) elif 'mm' in channel: if m<2000: valpha1[m].setVal(2.) if m==1000 or m==1800: vsigma[m].setVal(m*0.03) elif m==1200 or m==1600: vsigma[m].setVal(m*0.04) #if m < 1000: vsigma[m].setVal(m*0.06) # If it's not the proper channel, make it a gaussian #if nLept==0 and 'VBF' in channel: # valpha1[m].setVal(5) # valpha1[m].setConstant(True) # vslope1[m].setConstant(True) # salpha2[m].setConstant(True) # sslope2[m].setConstant(True) # ---------- if there is no simulated signal, skip this mass point ---------- if m in genPoints: if VERBOSE: print " - Mass point", m # define the dataset for the signal applying the SR cuts treeSign[m] = TChain("tree") for j, ss in enumerate(sample[signalMass]['files']): treeSign[m].Add(NTUPLEDIR + ss + ".root") if treeSign[m].GetEntries() <= 0.: if VERBOSE: print " - 0 events available for mass", m, "skipping mass point..." signalNorm[m].setVal(-1) vmean[m].setConstant(True) vsigma[m].setConstant(True) salpha1[m].setConstant(True) sslope1[m].setConstant(True) salpha2[m].setConstant(True) sslope2[m].setConstant(True) signalNorm[m].setConstant(True) signalXS[m].setConstant(True) continue setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeSign[m])) if VERBOSE: print " - Dataset with", setSignal[m].sumEntries(), "events loaded" # FIT signalYield[m].setVal(setSignal[m].sumEntries()) if treeSign[m].GetEntries(SRcut) > 5: if VERBOSE: print " - Running fit" frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1), RooFit.Extended(True), RooFit.SumW2Error(True), RooFit.PrintLevel(-1)) if VERBOSE: print "********** Fit result [", m, "] **", category, "*"*40, "\n", frSignal[m].Print(), "\n", "*"*80 if VERBOSE: frSignal[m].correlationMatrix().Print() drawPlot(signalMass, stype+channel, X_mass, signal[m], setSignal[m], frSignal[m]) else: print " WARNING: signal", stype, "and mass point", m, "in channel", channel, "has 0 entries or does not exist" # Remove HVT cross section (which is the same for Zlep and Zinv) if stype == "XZHVBF": sample_name = 'Zprime_VBF_Zh_Zlephinc_narrow_M-%d' % m else: sample_name = 'ZprimeToZHToZlepHinc_narrow_M%d' % m xs = xsection[sample_name]['xsec'] signalXS[m].setVal(xs * 1000.) signalIntegral[m] = signalExt[m].createIntegral(massArg, RooFit.NormSet(massArg), RooFit.Range("X_integration_range")) boundaryFactor = signalIntegral[m].getVal() if VERBOSE: print " - Fit normalization vs integral:", signalYield[m].getVal(), "/", boundaryFactor, "events" if channel=='nnbb' and m==5000: signalNorm[m].setVal(2.5) elif channel=='nn0b' and m==5000: signalNorm[m].setVal(6.7) else: signalNorm[m].setVal( boundaryFactor * signalYield[m].getVal() / signalXS[m].getVal()) # here normalize to sigma(X) x Br(X->VH) = 1 [fb] a1[m].setConstant(True) a2[m].setConstant(True) vmean[m].setConstant(True) vsigma[m].setConstant(True) valpha1[m].setConstant(True) vslope1[m].setConstant(True) salpha2[m].setConstant(True) sslope2[m].setConstant(True) signalNorm[m].setConstant(True) signalXS[m].setConstant(True) #*******************************************************# # # # Signal interpolation # # # #*******************************************************# # ====== CONTROL PLOT ====== c_signal = TCanvas("c_signal", "c_signal", 800, 600) c_signal.cd() frame_signal = X_mass.frame() for m in genPoints[:-2]: if m in signalExt.keys(): signal[m].plotOn(frame_signal, RooFit.LineColor(sample["%s_M%d" % (stype, m)]['linecolor']), RooFit.Normalization(signalNorm[m].getVal(), RooAbsReal.NumEvent), RooFit.Range("X_reasonable_range")) frame_signal.GetXaxis().SetRangeUser(0, 6500) frame_signal.Draw() drawCMS(-1, YEAR, "Simulation") drawAnalysis(channel) drawRegion(channel) c_signal.SaveAs(PLOTDIR+"/"+stype+category+"/"+stype+"_Signal.pdf") c_signal.SaveAs(PLOTDIR+"/"+stype+category+"/"+stype+"_Signal.png") #if VERBOSE: raw_input("Press Enter to continue...") # ====== CONTROL PLOT ====== # Normalization gnorm = TGraphErrors() gnorm.SetTitle(";m_{X} (GeV);integral (GeV)") gnorm.SetMarkerStyle(20) gnorm.SetMarkerColor(1) gnorm.SetMaximum(0) inorm = TGraphErrors() inorm.SetMarkerStyle(24) fnorm = TF1("fnorm", "pol9", 800, 5000) #"pol5" if not channel=="XZHnnbb" else "pol6" #pol5*TMath::Floor(x-1800) + ([5]*x + [6]*x*x)*(1-TMath::Floor(x-1800)) fnorm.SetLineColor(920) fnorm.SetLineStyle(7) fnorm.SetFillColor(2) fnorm.SetLineColor(cColor) # Mean gmean = TGraphErrors() gmean.SetTitle(";m_{X} (GeV);gaussian mean (GeV)") gmean.SetMarkerStyle(20) gmean.SetMarkerColor(cColor) gmean.SetLineColor(cColor) imean = TGraphErrors() imean.SetMarkerStyle(24) fmean = TF1("fmean", "pol1", 0, 5000) fmean.SetLineColor(2) fmean.SetFillColor(2) # Width gsigma = TGraphErrors() gsigma.SetTitle(";m_{X} (GeV);gaussian width (GeV)") gsigma.SetMarkerStyle(20) gsigma.SetMarkerColor(cColor) gsigma.SetLineColor(cColor) isigma = TGraphErrors() isigma.SetMarkerStyle(24) fsigma = TF1("fsigma", "pol1", 0, 5000) fsigma.SetLineColor(2) fsigma.SetFillColor(2) # Alpha1 galpha1 = TGraphErrors() galpha1.SetTitle(";m_{X} (GeV);crystal ball lower alpha") galpha1.SetMarkerStyle(20) galpha1.SetMarkerColor(cColor) galpha1.SetLineColor(cColor) ialpha1 = TGraphErrors() ialpha1.SetMarkerStyle(24) falpha1 = TF1("falpha", "pol0", 0, 5000) falpha1.SetLineColor(2) falpha1.SetFillColor(2) # Slope1 gslope1 = TGraphErrors() gslope1.SetTitle(";m_{X} (GeV);exponential lower slope (1/Gev)") gslope1.SetMarkerStyle(20) gslope1.SetMarkerColor(cColor) gslope1.SetLineColor(cColor) islope1 = TGraphErrors() islope1.SetMarkerStyle(24) fslope1 = TF1("fslope", "pol0", 0, 5000) fslope1.SetLineColor(2) fslope1.SetFillColor(2) # Alpha2 galpha2 = TGraphErrors() galpha2.SetTitle(";m_{X} (GeV);crystal ball upper alpha") galpha2.SetMarkerStyle(20) galpha2.SetMarkerColor(cColor) galpha2.SetLineColor(cColor) ialpha2 = TGraphErrors() ialpha2.SetMarkerStyle(24) falpha2 = TF1("falpha", "pol0", 0, 5000) falpha2.SetLineColor(2) falpha2.SetFillColor(2) # Slope2 gslope2 = TGraphErrors() gslope2.SetTitle(";m_{X} (GeV);exponential upper slope (1/Gev)") gslope2.SetMarkerStyle(20) gslope2.SetMarkerColor(cColor) gslope2.SetLineColor(cColor) islope2 = TGraphErrors() islope2.SetMarkerStyle(24) fslope2 = TF1("fslope", "pol0", 0, 5000) fslope2.SetLineColor(2) fslope2.SetFillColor(2) n = 0 for i, m in enumerate(genPoints): if not m in signalNorm.keys(): continue if signalNorm[m].getVal() < 1.e-6: continue signalString = "M%d" % m signalName = "%s_M%d" % (stype, m) if gnorm.GetMaximum() < signalNorm[m].getVal(): gnorm.SetMaximum(signalNorm[m].getVal()) gnorm.SetPoint(n, m, signalNorm[m].getVal()) gmean.SetPoint(n, m, vmean[m].getVal()) gmean.SetPointError(n, 0, min(vmean[m].getError(), vmean[m].getVal()*0.02)) gsigma.SetPoint(n, m, vsigma[m].getVal()) gsigma.SetPointError(n, 0, min(vsigma[m].getError(), vsigma[m].getVal()*0.05)) galpha1.SetPoint(n, m, valpha1[m].getVal()) galpha1.SetPointError(n, 0, min(valpha1[m].getError(), valpha1[m].getVal()*0.10)) gslope1.SetPoint(n, m, vslope1[m].getVal()) gslope1.SetPointError(n, 0, min(vslope1[m].getError(), vslope1[m].getVal()*0.10)) galpha2.SetPoint(n, m, salpha2[m].getVal()) galpha2.SetPointError(n, 0, min(salpha2[m].getError(), salpha2[m].getVal()*0.10)) gslope2.SetPoint(n, m, sslope2[m].getVal()) gslope2.SetPointError(n, 0, min(sslope2[m].getError(), sslope2[m].getVal()*0.10)) n = n + 1 print "fit on gmean:" gmean.Fit(fmean, "Q0", "SAME") print "fit on gsigma:" gsigma.Fit(fsigma, "Q0", "SAME") print "fit on galpha:" galpha1.Fit(falpha1, "Q0", "SAME") print "fit on gslope:" gslope1.Fit(fslope1, "Q0", "SAME") galpha2.Fit(falpha2, "Q0", "SAME") gslope2.Fit(fslope2, "Q0", "SAME") #for m in [5000, 5500]: gnorm.SetPoint(gnorm.GetN(), m, gnorm.Eval(m, 0, "S")) gnorm.Fit(fnorm, "Q", "SAME", 700, 5000) for m in massPoints: signalName = "%s_M%d" % (stype, m) if vsigma[m].getVal() < 10.: vsigma[m].setVal(10.) # Interpolation method syield = gnorm.Eval(m) spline = gnorm.Eval(m, 0, "S") sfunct = fnorm.Eval(m) #delta = min(abs(1.-spline/sfunct), abs(1.-spline/syield)) delta = abs(1.-spline/sfunct) if sfunct > 0 else 0 syield = spline if interPar: jmean = gmean.Eval(m) jsigma = gsigma.Eval(m) jalpha1 = galpha1.Eval(m) jslope1 = gslope1.Eval(m) else: jmean = fmean.GetParameter(0) + fmean.GetParameter(1)*m + fmean.GetParameter(2)*m*m jsigma = fsigma.GetParameter(0) + fsigma.GetParameter(1)*m + fsigma.GetParameter(2)*m*m jalpha1 = falpha1.GetParameter(0) + falpha1.GetParameter(1)*m + falpha1.GetParameter(2)*m*m jslope1 = fslope1.GetParameter(0) + fslope1.GetParameter(1)*m + fslope1.GetParameter(2)*m*m inorm.SetPoint(inorm.GetN(), m, syield) signalNorm[m].setVal(syield) imean.SetPoint(imean.GetN(), m, jmean) if jmean > 0: vmean[m].setVal(jmean) isigma.SetPoint(isigma.GetN(), m, jsigma) if jsigma > 0: vsigma[m].setVal(jsigma) ialpha1.SetPoint(ialpha1.GetN(), m, jalpha1) if not jalpha1==0: valpha1[m].setVal(jalpha1) islope1.SetPoint(islope1.GetN(), m, jslope1) if jslope1 > 0: vslope1[m].setVal(jslope1) c1 = TCanvas("c1", "Crystal Ball", 1200, 800) c1.Divide(2, 2) c1.cd(1) gmean.SetMinimum(0.) gmean.Draw("APL") imean.Draw("P, SAME") drawRegion(channel) c1.cd(2) gsigma.SetMinimum(0.) gsigma.Draw("APL") isigma.Draw("P, SAME") drawRegion(channel) c1.cd(3) galpha1.Draw("APL") ialpha1.Draw("P, SAME") drawRegion(channel) galpha1.GetYaxis().SetRangeUser(0., 5.) c1.cd(4) gslope1.Draw("APL") islope1.Draw("P, SAME") drawRegion(channel) gslope1.GetYaxis().SetRangeUser(0., 125.) if False: c1.cd(5) galpha2.Draw("APL") ialpha2.Draw("P, SAME") drawRegion(channel) c1.cd(6) gslope2.Draw("APL") islope2.Draw("P, SAME") drawRegion(channel) gslope2.GetYaxis().SetRangeUser(0., 10.) c1.Print(PLOTDIR+stype+category+"/"+stype+"_SignalShape.pdf") c1.Print(PLOTDIR+stype+category+"/"+stype+"_SignalShape.png") c2 = TCanvas("c2", "Signal Efficiency", 800, 600) c2.cd(1) gnorm.SetMarkerColor(cColor) gnorm.SetMarkerStyle(20) gnorm.SetLineColor(cColor) gnorm.SetLineWidth(2) gnorm.Draw("APL") inorm.Draw("P, SAME") gnorm.GetXaxis().SetRangeUser(genPoints[0]-100, genPoints[-1]+100) gnorm.GetYaxis().SetRangeUser(0., gnorm.GetMaximum()*1.25) drawCMS(-1,YEAR , "Simulation") drawAnalysis(channel) drawRegion(channel) c2.Print(PLOTDIR+stype+category+"/"+stype+"_SignalNorm.pdf") c2.Print(PLOTDIR+stype+category+"/"+stype+"_SignalNorm.png") #*******************************************************# # # # Generate workspace # # # #*******************************************************# # create workspace w = RooWorkspace("ZH_RunII", "workspace") for m in massPoints: getattr(w, "import")(signal[m], RooFit.Rename(signal[m].GetName())) getattr(w, "import")(signalNorm[m], RooFit.Rename(signalNorm[m].GetName())) getattr(w, "import")(signalXS[m], RooFit.Rename(signalXS[m].GetName())) w.writeToFile("%s%s.root" % (WORKDIR, stype+channel), True) print "Workspace", "%s%s.root" % (WORKDIR, stype+channel), "saved successfully" sys.exit()
def rooFit204(): print ">>> setup model signal components: gaussians..." x = RooRealVar("x","x",0,10) mean = RooRealVar("mean","mean of gaussian",5) sigma1 = RooRealVar("sigma1","width of gaussians",0.5) sigma2 = RooRealVar("sigma2","width of gaussians",1) sig1 = RooGaussian("sig1","Signal component 1",x,mean,sigma1) sig2 = RooGaussian("sig2","Signal component 2",x,mean,sigma2) sig1frac = RooRealVar("sig1frac","fraction of component 1 in signal",0.8,0.,1.) sig = RooAddPdf("sig","Signal",RooArgList(sig1,sig2),RooArgList(sig1frac)) print ">>> setup model background components: Chebychev polynomial..." a0 = RooRealVar("a0","a0",0.5,0.,1.) a1 = RooRealVar("a1","a1",-0.2,0.,1.) bkg = RooChebychev("bkg","Background",x,RooArgList(a0,a1)) print ">>> construct extended components with specified range..." # Define signal range in which events counts are to be defined x.setRange("signalRange",5,6) # Associated nsig/nbkg as expected number of events with sig/bkg _in_the_range_ "signalRange" nsig = RooRealVar("nsig","number of signal events in signalRange", 500,0.,10000) nbkg = RooRealVar("nbkg","number of background events in signalRange",500,0,10000) esig = RooExtendPdf("esig","extended signal pdf", sig,nsig,"signalRange") ebkg = RooExtendPdf("ebkg","extended background pdf",bkg,nbkg,"signalRange") print ">>> sum extended components..." # Construct sum of two extended p.d.f. (no coefficients required) model = RooAddPdf("model","(g1+g2)+a",RooArgList(ebkg,esig)) print ">>> sample data, fit model..." data = model.generate(RooArgSet(x),1000) # RooDataSet result = model.fitTo(data,Extended(kTRUE),Save()) # RooFitResult print "\n>>> fit result:" result.Print() print "\n>>> plot everything..." frame1 = x.frame(Title("Fitting a sub range")) # RooPlot data.plotOn(frame1,Binning(50),Name("data")) model.plotOn(frame1,LineColor(kBlue),Name("model")) argset1 = RooArgSet(bkg) model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kBlue),Name("bkg"),Normalization(1.0,RooAbsReal.RelativeExpected)) #model.plotOn(frame1,Components(argset1),LineStyle(kDashed),LineColor(kRed),Name("bkg2")) print ">>> draw on canvas..." canvas = TCanvas("canvas","canvas",100,100,800,600) legend = TLegend(0.2,0.85,0.4,0.7) legend.SetTextSize(0.032) legend.SetBorderSize(0) legend.SetFillStyle(0) gPad.SetLeftMargin(0.14); gPad.SetRightMargin(0.02) frame1.GetYaxis().SetLabelOffset(0.008) frame1.GetYaxis().SetTitleOffset(1.4) frame1.GetYaxis().SetTitleSize(0.045) frame1.GetXaxis().SetTitleSize(0.045) frame1.Draw() legend.AddEntry("data", "data", 'LEP') legend.AddEntry("model", "fit", 'L') legend.AddEntry("bkg", "background only",'L') #legend.AddEntry("bkg2", "background only (no extended norm)",'L') legend.Draw() canvas.SaveAs("rooFit204.png")
x.setRange("whole_range",-10 ,10 ) x.setRange("right_gaussian_range",3 ,10 ) x.setRange("left_gaussian_range",-10 ,3 ) # another PDF gauss 11 mean11 = RooRealVar("mean11","mean of gaussian",2,-10,10) sigma11 = RooRealVar("sigma11","width of gaussian",3,0.1,10) gauss11 = RooGaussian("gauss11","gaussian PDF",x ,mean11 ,sigma11) # fit partial range #gauss11.fitTo(data3_half,RooFit.Range("left_gaussian_range")) # convert to ext PDF then fit nGauss11 = RooRealVar("nGauss11", "Gauss 11 ext pdf",750 , 0., 2000) gauss11_ext = RooExtendPdf("gauss11_ext", "extended p.d.f", gauss11, nGauss11) #gauss11_ext.plotOn(xframe7,RooFit.Normalization( nGauss11.getVal() , RooAbsReal.NumEvent), RooFit.Range("left_gaussian_range"), RooFit.LineColor(RooFit.kRed)) #gauss11_ext.plotOn(xframe7,RooFit.Normalization( nGauss11.getVal() , RooAbsReal.NumEvent), RooFit.Range("whole_range"), RooFit.LineColor(RooFit.kRed)) gauss11_ext.fixAddCoefRange("whole_range") gauss11_ext.fitTo(data3_half,RooFit.Range("left_gaussian_range")) print "" print "mean11: ", mean11.Print(), print "" print "sigma11: ", sigma11.Print() print "" print "nGauss11: ", nGauss11.Print() print ""
def main(): # usage description usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2" # input parameters parser = ArgumentParser( description= 'Script that creates combine datacards and corresponding RooFit workspaces', epilog=usage) parser.add_argument("--inputData", dest="inputData", required=True, help="Input data spectrum", metavar="INPUT_DATA") parser.add_argument("--dataHistname", dest="dataHistname", required=True, help="Data histogram name", metavar="DATA_HISTNAME") parser.add_argument("--inputSig", dest="inputSig", required=True, help="Input signal shapes", metavar="INPUT_SIGNAL") parser.add_argument("-f", "--final_state", dest="final_state", required=True, help="Final state (e.g. qq, qg, gg)", metavar="FINAL_STATE") parser.add_argument("-f2", "--type", dest="atype", required=True, help="Type (e.g. hG, lG, hR, lR)") parser.add_argument( "-o", "--output_path", dest="output_path", required=True, help="Output path where datacards and workspaces will be stored", metavar="OUTPUT_PATH") parser.add_argument( "-l", "--lumi", dest="lumi", required=True, default=1000., type=float, help="Integrated luminosity in pb-1 (default: %(default).1f)", metavar="LUMI") parser.add_argument( "--massMin", dest="massMin", default=500, type=int, help= "Lower bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MIN") parser.add_argument( "--massMax", dest="massMax", default=1200, type=int, help= "Upper bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MAX") parser.add_argument( "--p1", dest="p1", default=5.0000e-03, type=float, help="Fit function p1 parameter (default: %(default)e)", metavar="P1") parser.add_argument( "--p2", dest="p2", default=9.1000e+00, type=float, help="Fit function p2 parameter (default: %(default)e)", metavar="P2") parser.add_argument( "--p3", dest="p3", default=5.0000e-01, type=float, help="Fit function p3 parameter (default: %(default)e)", metavar="P3") parser.add_argument( "--lumiUnc", dest="lumiUnc", required=True, type=float, help="Relative uncertainty in the integrated luminosity", metavar="LUMI_UNC") parser.add_argument("--jesUnc", dest="jesUnc", type=float, help="Relative uncertainty in the jet energy scale", metavar="JES_UNC") parser.add_argument( "--jerUnc", dest="jerUnc", type=float, help="Relative uncertainty in the jet energy resolution", metavar="JER_UNC") parser.add_argument( "--sqrtS", dest="sqrtS", default=13000., type=float, help="Collision center-of-mass energy (default: %(default).1f)", metavar="SQRTS") parser.add_argument("--fixP3", dest="fixP3", default=False, action="store_true", help="Fix the fit function p3 parameter") parser.add_argument("--runFit", dest="runFit", default=False, action="store_true", help="Run the fit") parser.add_argument("--fitBonly", dest="fitBonly", default=False, action="store_true", help="Run B-only fit") parser.add_argument("--fixBkg", dest="fixBkg", default=False, action="store_true", help="Fix all background parameters") parser.add_argument("--decoBkg", dest="decoBkg", default=False, action="store_true", help="Decorrelate background parameters") parser.add_argument("--fitStrategy", dest="fitStrategy", type=int, default=1, help="Fit strategy (default: %(default).1f)") parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug printout") parser.add_argument( "--postfix", dest="postfix", default='', help="Postfix for the output file names (default: %(default)s)") parser.add_argument("--pyes", dest="pyes", default=False, action="store_true", help="Make files for plots") parser.add_argument("--jyes", dest="jyes", default=False, action="store_true", help="Make files for JES/JER plots") parser.add_argument( "--pdir", dest="pdir", default='testarea', help="Name a directory for the plots (default: %(default)s)") parser.add_argument("--chi2", dest="chi2", default=False, action="store_true", help="Compute chi squared") parser.add_argument("--widefit", dest="widefit", default=False, action="store_true", help="Fit with wide bin hist") mass_group = parser.add_mutually_exclusive_group(required=True) mass_group.add_argument( "--mass", type=int, nargs='*', default=1000, help= "Mass can be specified as a single value or a whitespace separated list (default: %(default)i)" ) mass_group.add_argument( "--massrange", type=int, nargs=3, help="Define a range of masses to be produced. Format: min max step", metavar=('MIN', 'MAX', 'STEP')) mass_group.add_argument("--masslist", help="List containing mass information") args = parser.parse_args() if args.atype == 'hG': fstr = "bbhGGBB" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'hR': fstr = "bbhRS" in2 = 'bcorrbin/binmodh.root' elif args.atype == 'lG': fstr = "bblGGBB" in2 = 'bcorrbin/binmodl.root' else: fstr = "bblRS" in2 = 'bcorrbin/binmodl.root' # check if the output directory exists if not os.path.isdir(os.path.join(os.getcwd(), args.output_path)): os.mkdir(os.path.join(os.getcwd(), args.output_path)) # mass points for which resonance shapes will be produced masses = [] if args.massrange != None: MIN, MAX, STEP = args.massrange masses = range(MIN, MAX + STEP, STEP) elif args.masslist != None: # A mass list was provided print "Will create mass list according to", args.masslist masslist = __import__(args.masslist.replace(".py", "")) masses = masslist.masses else: masses = args.mass # sort masses masses.sort() # import ROOT stuff from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf, RooExtendPdf if not args.debug: RooMsgService.instance().setSilentMode(kTRUE) RooMsgService.instance().setStreamStatus(0, kFALSE) RooMsgService.instance().setStreamStatus(1, kFALSE) # input data file inputData = TFile(args.inputData) # input data histogram hData = inputData.Get(args.dataHistname) inData2 = TFile(in2) hData2 = inData2.Get('h_data') # input sig file inputSig = TFile(args.inputSig) sqrtS = args.sqrtS # mass variable mjj = RooRealVar('mjj', 'mjj', float(args.massMin), float(args.massMax)) # integrated luminosity and signal cross section lumi = args.lumi signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section for mass in masses: print ">> Creating datacard and workspace for %s resonance with m = %i GeV..." % ( args.final_state, int(mass)) # get signal shape hSig = inputSig.Get("h_" + args.final_state + "_" + str(int(mass))) # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity) hSig.Scale( signalCrossSection * lumi / hSig.Integral() ) # divide by a number that provides roughly an r value of 1-10 rooSigHist = RooDataHist('rooSigHist', 'rooSigHist', RooArgList(mjj), hSig) print 'Signal acceptance:', (rooSigHist.sumEntries() / hSig.Integral()) signal = RooHistPdf('signal', 'signal', RooArgSet(mjj), rooSigHist) signal_norm = RooRealVar('signal_norm', 'signal_norm', 0, -1e+05, 1e+05) signal_norm2 = RooRealVar('signal_norm2', 'signal_norm2', 0, -1e+05, 1e+05) signal_norm3 = RooRealVar('signal_norm3', 'signal_norm3', 0, -1e+05, 1e+05) signal_norm4 = RooRealVar('signal_norm4', 'signal_norm4', 0, -1e+05, 1e+05) signal_norm5 = RooRealVar('signal_norm5', 'signal_norm5', 0, -1e+05, 1e+05) if args.fitBonly: signal_norm.setConstant() signal_norm2.setConstant() signal_norm3.setConstant() signal_norm4.setConstant() signal_norm5.setConstant() p1 = RooRealVar('p1', 'p1', args.p1, 0., 100.) p2 = RooRealVar('p2', 'p2', args.p2, 0., 60.) p3 = RooRealVar('p3', 'p3', args.p3, -10., 10.) p4 = RooRealVar('p4', 'p4', 5.6, -50., 50.) p5 = RooRealVar('p5', 'p5', 10., -50., 50.) p6 = RooRealVar('p6', 'p6', .016, -50., 50.) p7 = RooRealVar('p7', 'p7', 8., -50., 50.) p8 = RooRealVar('p8', 'p8', .22, -50., 50.) p9 = RooRealVar('p9', 'p9', 14.1, -50., 50.) p10 = RooRealVar('p10', 'p10', 8., -50., 50.) p11 = RooRealVar('p11', 'p11', 4.8, -50., 50.) p12 = RooRealVar('p12', 'p12', 7., -50., 50.) p13 = RooRealVar('p13', 'p13', 7., -50., 50.) p14 = RooRealVar('p14', 'p14', 7., -50., 50.) p15 = RooRealVar('p15', 'p15', 1., -50., 50.) p16 = RooRealVar('p16', 'p16', 9., -50., 50.) p17 = RooRealVar('p17', 'p17', 0.6, -50., 50.) if args.fixP3: p3.setConstant() background = RooGenericPdf( 'background', '(pow(1-@0/%.1f,@1)/pow(@0/%.1f,@2+@3*log(@0/%.1f)))' % (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p1, p2, p3)) dataInt = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm = RooRealVar('background_norm', 'background_norm', dataInt, 0., 1e+08) background2 = RooGenericPdf( 'background2', '(pow(@0/%.1f,-@1)*pow(1-@0/%.1f,@2))' % (sqrtS, sqrtS), RooArgList(mjj, p4, p5)) dataInt2 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background2_norm = RooRealVar('background2_norm', 'background2_norm', dataInt2, 0., 1e+08) background3 = RooGenericPdf('background3', '(1/pow(@1+@0/%.1f,@2))' % (sqrtS), RooArgList(mjj, p6, p7)) dataInt3 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background3_norm = RooRealVar('background3_norm', 'background3_norm', dataInt3, 0., 1e+08) background4 = RooGenericPdf( 'background4', '(1/pow(@1+@2*@0/%.1f+pow(@0/%.1f,2),@3))' % (sqrtS, sqrtS), RooArgList(mjj, p8, p9, p10)) dataInt4 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background4_norm = RooRealVar('background4_norm', 'background4_norm', dataInt4, 0., 1e+08) background5 = RooGenericPdf( 'background5', '(pow(@0/%.1f,-@1)*pow(1-pow(@0/%.1f,1/3),@2))' % (sqrtS, sqrtS), RooArgList(mjj, p11, p12)) dataInt5 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background5_norm = RooRealVar('background5_norm', 'background5_norm', dataInt5, 0., 1e+08) background6 = RooGenericPdf( 'background6', '(pow(@0/%.1f,2)+@1*@0/%.1f+@2)' % (sqrtS, sqrtS), RooArgList(mjj, p13, p14)) dataInt6 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm6 = RooRealVar('background_norm6', 'background_norm6', dataInt6, 0., 1e+08) background7 = RooGenericPdf( 'background7', '((-1+@1*@0/%.1f)*pow(@0/%.1f,@2+@3*log(@0/%.1f)))' % (sqrtS, sqrtS, sqrtS), RooArgList(mjj, p15, p16, p17)) dataInt7 = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norm7 = RooRealVar('background_norm7', 'background_norm7', dataInt7, 0., 1e+08) #Extend PDFs exts = RooExtendPdf('extsignal', 'Extended Signal Pdf', signal, signal_norm) extb = RooExtendPdf('extbackground', 'Extended Background Pdf', background, background_norm) exts2 = RooExtendPdf('extsignal2', 'Extended Signal Pdf2', signal, signal_norm2) extb2 = RooExtendPdf('extbackground2', 'Extended Background Pdf2', background2, background2_norm) exts3 = RooExtendPdf('extsignal3', 'Extended Signal Pdf3', signal, signal_norm3) extb3 = RooExtendPdf('extbackground3', 'Extended Background Pdf3', background3, background3_norm) exts4 = RooExtendPdf('extsignal4', 'Extended Signal Pdf4', signal, signal_norm4) extb4 = RooExtendPdf('extbackground4', 'Extended Background Pdf4', background4, background4_norm) exts5 = RooExtendPdf('extsignal5', 'Extended Signal Pdf5', signal, signal_norm5) extb5 = RooExtendPdf('extbackground5', 'Extended Background Pdf5', background5, background5_norm) # S+B model model = RooAddPdf("model", "s+b", RooArgList(extb, exts)) model2 = RooAddPdf("model2", "s+b2", RooArgList(extb2, exts2)) model3 = RooAddPdf("model3", "s+b3", RooArgList(extb3, exts3)) model4 = RooAddPdf("model4", "s+b4", RooArgList(extb4, exts4)) model5 = RooAddPdf("model5", "s+b5", RooArgList(extb5, exts5)) #model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm)) #model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm)) rooDataHist = RooDataHist('rooDatahist', 'rooDathist', RooArgList(mjj), hData) if args.runFit: mframe = mjj.frame() rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata")) res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframe, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy)) # model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) # res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink)) # res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) # model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure)) rooDataHist2 = RooDataHist('rooDatahist2', 'rooDathist2', RooArgList(mjj), hData2) # rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data")) if args.pyes: c = TCanvas("c", "c", 800, 800) mframe.SetAxisRange(300., 1300.) c.SetLogy() # mframe.SetMaximum(10) # mframe.SetMinimum(1) mframe.Draw() fitname = args.pdir + '/5funcfit_m' + str(mass) + fstr + '.pdf' c.SaveAs(fitname) # cpull = TCanvas("cpull","cpull",800,800) # pulls = mframe.pullHist("data","model1") # pulls.Draw("ABX") # pullname = args.pdir+'/pull_m'+str(mass)+fstr+'.pdf' # cpull.SaveAs(pullname) # cpull2 = TCanvas("cpull2","cpull2",800,800) # pulls2 = mframe.pullHist("setonedata","model1") # pulls2.Draw("ABX") # pull2name = args.pdir+'/pull2_m'+str(mass)+fstr+'.pdf' # cpull2.SaveAs(pull2name) if args.widefit: mframew = mjj.frame() rooDataHist2.plotOn(mframew, ROOT.RooFit.Name("data")) res6 = model.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model.plotOn(mframew, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) res7 = model2.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model2.plotOn(mframew, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange)) res8 = model3.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model3.plotOn(mframew, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) res9 = model4.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model4.plotOn(mframew, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) res10 = model5.fitTo(rooDataHist2, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) model5.plotOn(mframew, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet)) if args.pyes: c = TCanvas("c", "c", 800, 800) mframew.SetAxisRange(300., 1300.) c.SetLogy() # mframew.SetMaximum(10) # mframew.SetMinimum(1) mframew.Draw() fitname = args.pdir + '/5funcfittowide_m' + str( mass) + fstr + '.pdf' c.SaveAs(fitname) cpull = TCanvas("cpull", "cpull", 800, 800) pulls = mframew.pullHist("data", "model1") pulls.Draw("ABX") pullname = args.pdir + '/pullwidefit_m' + str( mass) + fstr + '.pdf' cpull.SaveAs(pullname) if args.chi2: fullInt = model.createIntegral(RooArgSet(mjj)) norm = dataInt / fullInt.getVal() chi1 = 0. fullInt2 = model2.createIntegral(RooArgSet(mjj)) norm2 = dataInt2 / fullInt2.getVal() chi2 = 0. fullInt3 = model3.createIntegral(RooArgSet(mjj)) norm3 = dataInt3 / fullInt3.getVal() chi3 = 0. fullInt4 = model4.createIntegral(RooArgSet(mjj)) norm4 = dataInt4 / fullInt4.getVal() chi4 = 0. fullInt5 = model5.createIntegral(RooArgSet(mjj)) norm5 = dataInt5 / fullInt5.getVal() chi5 = 0. for i in range(args.massMin, args.massMax): new = 0 new2 = 0 new3 = 0 new4 = 0 new5 = 0 height = hData.GetBinContent(i) xLow = hData.GetXaxis().GetBinLowEdge(i) xUp = hData.GetXaxis().GetBinLowEdge(i + 1) obs = height * (xUp - xLow) mjj.setRange("intrange", xLow, xUp) integ = model.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp = integ.getVal() * norm new = pow(exp - obs, 2) / exp chi1 = chi1 + new integ2 = model2.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp2 = integ2.getVal() * norm2 new2 = pow(exp2 - obs, 2) / exp2 chi2 = chi2 + new2 integ3 = model3.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp3 = integ3.getVal() * norm3 new3 = pow(exp3 - obs, 2) / exp3 chi3 = chi3 + new3 integ4 = model4.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp4 = integ4.getVal() * norm4 if exp4 != 0: new4 = pow(exp4 - obs, 2) / exp4 else: new4 = 0 chi4 = chi4 + new4 integ5 = model5.createIntegral( RooArgSet(mjj), ROOT.RooFit.NormSet(RooArgSet(mjj)), ROOT.RooFit.Range("intrange")) exp5 = integ5.getVal() * norm5 new5 = pow(exp5 - obs, 2) / exp5 chi5 = chi5 + new5 print "chi1 %d " % (chi1) print "chi2 %d " % (chi2) print "chi3 %d " % (chi3) print "chi4 %d " % (chi4) print "chi5 %d " % (chi5) if not args.decoBkg: print " " res.Print() res2.Print() res3.Print() res4.Print() res5.Print() # res6.Print() # res7.Print() # decorrelated background parameters for Bayesian limits if args.decoBkg: signal_norm.setConstant() res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy)) res.Print() ## temp workspace for the PDF diagonalizer w_tmp = RooWorkspace("w_tmp") deco = PdfDiagonalizer("deco", w_tmp, res) # here diagonalizing only the shape parameters since the overall normalization is already decorrelated background_deco = deco.diagonalize(background) print "##################### workspace for decorrelation" w_tmp.Print("v") print "##################### original parameters" background.getParameters(rooDataHist).Print("v") print "##################### decorrelated parameters" # needed if want to evaluate limits without background systematics if args.fixBkg: w_tmp.var("deco_eig1").setConstant() w_tmp.var("deco_eig2").setConstant() if not args.fixP3: w_tmp.var("deco_eig3").setConstant() background_deco.getParameters(rooDataHist).Print("v") print "##################### original pdf" background.Print() print "##################### decorrelated pdf" background_deco.Print() # release signal normalization signal_norm.setConstant(kFALSE) # set the background normalization range to +/- 5 sigma bkg_val = background_norm.getVal() bkg_error = background_norm.getError() background_norm.setMin(bkg_val - 5 * bkg_error) background_norm.setMax(bkg_val + 5 * bkg_error) background_norm.Print() # change background PDF names background.SetName("background_old") background_deco.SetName("background") # needed if want to evaluate limits without background systematics if args.fixBkg: background_norm.setConstant() p1.setConstant() p2.setConstant() p3.setConstant() # ----------------------------------------- # dictionaries holding systematic variations of the signal shape hSig_Syst = {} hSig_Syst_DataHist = {} sigCDF = TGraph(hSig.GetNbinsX() + 1) # JES and JER uncertainties if args.jesUnc != None or args.jerUnc != None: sigCDF.SetPoint(0, 0., 0.) integral = 0. for i in range(1, hSig.GetNbinsX() + 1): x = hSig.GetXaxis().GetBinLowEdge(i + 1) integral = integral + hSig.GetBinContent(i) sigCDF.SetPoint(i, x, integral) if args.jesUnc != None: hSig_Syst['JESUp'] = copy.deepcopy(hSig) hSig_Syst['JESDown'] = copy.deepcopy(hSig) if args.jerUnc != None: hSig_Syst['JERUp'] = copy.deepcopy(hSig) hSig_Syst['JERDown'] = copy.deepcopy(hSig) # reset signal histograms for key in hSig_Syst.keys(): hSig_Syst[key].Reset() hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key) # produce JES signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jes = 1. - args.jesUnc xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jes = 1. + args.jesUnc xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JESUp'] = RooDataHist('hSig_JESUp', 'hSig_JESUp', RooArgList(mjj), hSig_Syst['JESUp']) hSig_Syst_DataHist['JESDown'] = RooDataHist( 'hSig_JESDown', 'hSig_JESDown', RooArgList(mjj), hSig_Syst['JESDown']) if args.jyes: c2 = TCanvas("c2", "c2", 800, 800) mframe2 = mjj.frame(ROOT.RooFit.Title("JES One Sigma Shifts")) mframe2.SetAxisRange(args.massMin, args.massMax) hSig_Syst_DataHist['JESUp'].plotOn( mframe2, ROOT.RooFit.Name("JESUP"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JESDown'].plotOn( mframe2, ROOT.RooFit.Name("JESDOWN"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe2, ROOT.RooFit.DataError(2), ROOT.RooFit.Name("SIG"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe2.Draw() mframe2.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7, 0.8, 0.9, 0.9) leg.SetFillColor(0) leg.AddEntry(mframe2.findObject("SIG"), "Signal Model", "l") leg.AddEntry(mframe2.findObject("JESUP"), "+1 Sigma", "l") leg.AddEntry(mframe2.findObject("JESDOWN"), "-1 Sigma", "l") leg.Draw() jesname = args.pdir + '/jes_m' + str(mass) + fstr + '.pdf' c2.SaveAs(jesname) # produce JER signal shapes if args.jesUnc != None: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jer = 1. - args.jerUnc xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jer = 1. + args.jerUnc xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JERUp'] = RooDataHist('hSig_JERUp', 'hSig_JERUp', RooArgList(mjj), hSig_Syst['JERUp']) hSig_Syst_DataHist['JERDown'] = RooDataHist( 'hSig_JERDown', 'hSig_JERDown', RooArgList(mjj), hSig_Syst['JERDown']) if args.jyes: c3 = TCanvas("c3", "c3", 800, 800) mframe3 = mjj.frame(ROOT.RooFit.Title("JER One Sigma Shifts")) mframe3.SetAxisRange(args.massMin, args.massMax) hSig_Syst_DataHist['JERUp'].plotOn( mframe3, ROOT.RooFit.Name("JERUP"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kRed), ROOT.RooFit.LineColor(ROOT.EColor.kRed)) hSig_Syst_DataHist['JERDown'].plotOn( mframe3, ROOT.RooFit.Name("JERDOWN"), ROOT.RooFit.DrawOption("L"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kBlue), ROOT.RooFit.LineColor(ROOT.EColor.kBlue)) rooSigHist.plotOn(mframe3, ROOT.RooFit.DrawOption("L"), ROOT.RooFit.Name("SIG"), ROOT.RooFit.DataError(2), ROOT.RooFit.LineStyle(1), ROOT.RooFit.MarkerColor(ROOT.EColor.kGreen), ROOT.RooFit.LineColor(ROOT.EColor.kGreen)) mframe3.Draw() mframe3.GetXaxis().SetTitle("Dijet Mass (GeV)") leg = TLegend(0.7, 0.8, 0.9, 0.9) leg.SetFillColor(0) leg.AddEntry(mframe3.findObject("SIG"), "Signal Model", "l") leg.AddEntry(mframe3.findObject("JERUP"), "+1 Sigma", "l") leg.AddEntry(mframe3.findObject("JERDOWN"), "-1 Sigma", "l") leg.Draw() jername = args.pdir + '/jer_m' + str(mass) + fstr + '.pdf' c3.SaveAs(jername) # ----------------------------------------- # create a datacard and corresponding workspace postfix = (('_' + args.postfix) if args.postfix != '' else '') dcName = 'datacard_' + args.final_state + '_m' + str( mass) + postfix + '.txt' wsName = 'workspace_' + args.final_state + '_m' + str( mass) + postfix + '.root' w = RooWorkspace('w', 'workspace') getattr(w, 'import')(rooSigHist, RooFit.Rename("signal")) if args.jesUnc != None: getattr(w, 'import')(hSig_Syst_DataHist['JESUp'], RooFit.Rename("signal__JESUp")) getattr(w, 'import')(hSig_Syst_DataHist['JESDown'], RooFit.Rename("signal__JESDown")) if args.jerUnc != None: getattr(w, 'import')(hSig_Syst_DataHist['JERUp'], RooFit.Rename("signal__JERUp")) getattr(w, 'import')(hSig_Syst_DataHist['JERDown'], RooFit.Rename("signal__JERDown")) if args.decoBkg: getattr(w, 'import')(background_deco, ROOT.RooCmdArg()) else: getattr(w, 'import')(background, ROOT.RooCmdArg(), RooFit.Rename("background")) getattr(w, 'import')(background2, ROOT.RooCmdArg(), RooFit.Rename("background2")) getattr(w, 'import')(background3, ROOT.RooCmdArg(), RooFit.Rename("background3")) getattr(w, 'import')(background4, ROOT.RooCmdArg(), RooFit.Rename("background4")) getattr(w, 'import')(background5, ROOT.RooCmdArg(), RooFit.Rename("background5")) getattr(w, 'import')(background_norm, ROOT.RooCmdArg(), RooFit.Rename("background_norm")) getattr(w, 'import')(background2_norm, ROOT.RooCmdArg(), RooFit.Rename("background2_norm")) getattr(w, 'import')(background3_norm, ROOT.RooCmdArg(), RooFit.Rename("background3_norm")) getattr(w, 'import')(background4_norm, ROOT.RooCmdArg(), RooFit.Rename("background4_norm")) getattr(w, 'import')(background5_norm, ROOT.RooCmdArg(), RooFit.Rename("background5_norm")) getattr(w, 'import')(res) getattr(w, 'import')(res2) getattr(w, 'import')(res3) getattr(w, 'import')(res4) getattr(w, 'import')(res5) getattr(w, 'import')(background_norm, ROOT.RooCmdArg()) getattr(w, 'import')(signal_norm, ROOT.RooCmdArg()) getattr(w, 'import')(rooDataHist, RooFit.Rename("data_obs")) w.Print() w.writeToFile(os.path.join(args.output_path, wsName)) beffUnc = 0.3 boffUnc = 0.06 datacard = open(os.path.join(args.output_path, dcName), 'w') datacard.write('imax 1\n') datacard.write('jmax 1\n') datacard.write('kmax *\n') datacard.write('---------------\n') if args.jesUnc != None or args.jerUnc != None: datacard.write('shapes * * ' + wsName + ' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n') else: datacard.write('shapes * * ' + wsName + ' w:$PROCESS\n') datacard.write('---------------\n') datacard.write('bin 1\n') datacard.write('observation -1\n') datacard.write('------------------------------\n') datacard.write('bin 1 1\n') datacard.write('process signal background\n') datacard.write('process 0 1\n') datacard.write('rate -1 1\n') datacard.write('------------------------------\n') datacard.write('lumi lnN %f -\n' % (1. + args.lumiUnc)) datacard.write('beff lnN %f -\n' % (1. + beffUnc)) datacard.write('boff lnN %f -\n' % (1. + boffUnc)) datacard.write('bkg lnN - 1.03\n') if args.jesUnc != None: datacard.write('JES shape 1 -\n') if args.jerUnc != None: datacard.write('JER shape 1 -\n') # flat parameters --- flat prior datacard.write('background_norm flatParam\n') if args.decoBkg: datacard.write('deco_eig1 flatParam\n') datacard.write('deco_eig2 flatParam\n') if not args.fixP3: datacard.write('deco_eig3 flatParam\n') else: datacard.write('p1 flatParam\n') datacard.write('p2 flatParam\n') if not args.fixP3: datacard.write('p3 flatParam\n') datacard.close() print '>> Datacards and workspaces created and stored in %s/' % ( os.path.join(os.getcwd(), args.output_path))
def main(): # usage description usage = "Example: ./scripts/createDatacards.py --inputData inputs/rawhistV7_Run2015D_scoutingPFHT_UNBLINDED_649_838_JEC_HLTplusV7_Mjj_cor_smooth.root --dataHistname mjj_mjjcor_gev --inputSig inputs/ResonanceShapes_gg_13TeV_Scouting_Spring15.root -f gg -o datacards -l 1866 --lumiUnc 0.027 --massrange 1000 1500 50 --runFit --p1 5 --p2 7 --p3 0.4 --massMin 838 --massMax 2037 --fitStrategy 2" # input parameters parser = ArgumentParser( description= 'Script that creates combine datacards and corresponding RooFit workspaces', epilog=usage) parser.add_argument("analysis", type=str, help="Analysis name") parser.add_argument("model", type=str, help="Model (Hbb, RSG)") #parser.add_argument("--inputData", dest="inputData", required=True, # help="Input data spectrum", # metavar="INPUT_DATA") parser.add_argument("--dataHistname", dest="dataHistname", type=str, default="h_data", help="Data histogram name", metavar="DATA_HISTNAME") #parser.add_argument("--inputSig", dest="inputSig", required=True, # help="Input signal shapes", # metavar="INPUT_SIGNAL") parser.add_argument("-f", "--final_state", dest="final_state", default="qq", help="Final state (e.g. qq, qg, gg)", metavar="FINAL_STATE") parser.add_argument("--fit_functions", dest="fit_functions", default="f1,f2,f3,f4,f5", help="List of fit functions") #parser.add_argument("-f2", "--type", dest="atype", required=True, help="Type (e.g. hG, lG, hR, lR)") parser.add_argument( "-o", "--output_path", dest="output_path", help= "Output path where datacards and workspaces will be stored. If not specified, this is derived from limit_configuration.", metavar="OUTPUT_PATH") parser.add_argument("--correctTrigger", dest="correctTrigger", action='store_true', help="Include trigger correction in PDF") parser.add_argument( "-l", "--lumi", dest="lumi", default=19700., type=float, help="Integrated luminosity in pb-1 (default: %(default).1f)", metavar="LUMI") parser.add_argument( "--massMin", dest="massMin", default=500, type=int, help= "Lower bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MIN") parser.add_argument( "--massMax", dest="massMax", default=1200, type=int, help= "Upper bound of the mass range used for fitting (default: %(default)s)", metavar="MASS_MAX") parser.add_argument( "--fitSignal", action="store_true", help= "Use signal fitted shapes (CB+Voigtian) instead of histogram templates" ) #parser.add_argument("--lumiUnc", dest="lumiUnc", # required=True, type=float, # help="Relative uncertainty in the integrated luminosity", # metavar="LUMI_UNC") #parser.add_argument("--jesUnc", dest="jesUnc", # type=float, # help="Relative uncertainty in the jet energy scale", # metavar="JES_UNC") #parser.add_argument("--jerUnc", dest="jerUnc", # type=float, # help="Relative uncertainty in the jet energy resolution", # metavar="JER_UNC") parser.add_argument( "--sqrtS", dest="sqrtS", default=8000., type=float, help="Collision center-of-mass energy (default: %(default).1f)", metavar="SQRTS") parser.add_argument("--fixP3", dest="fixP3", default=False, action="store_true", help="Fix the fit function p3 parameter") parser.add_argument("--runFit", dest="runFit", default=False, action="store_true", help="Run the fit") parser.add_argument("--fitBonly", dest="fitBonly", default=False, action="store_true", help="Run B-only fit") parser.add_argument("--fixBkg", dest="fixBkg", default=False, action="store_true", help="Fix all background parameters") parser.add_argument("--decoBkg", dest="decoBkg", default=False, action="store_true", help="Decorrelate background parameters") parser.add_argument("--fitStrategy", dest="fitStrategy", type=int, default=1, help="Fit strategy (default: %(default).1f)") parser.add_argument("--debug", dest="debug", default=False, action="store_true", help="Debug printout") parser.add_argument( "--postfix", dest="postfix", default='', help="Postfix for the output file names (default: %(default)s)") parser.add_argument("--pyes", dest="pyes", default=False, action="store_true", help="Make files for plots") parser.add_argument("--jyes", dest="jyes", default=False, action="store_true", help="Make files for JES/JER plots") parser.add_argument( "--pdir", dest="pdir", default='testarea', help="Name a directory for the plots (default: %(default)s)") parser.add_argument("--chi2", dest="chi2", default=False, action="store_true", help="Compute chi squared") parser.add_argument("--widefit", dest="widefit", default=False, action="store_true", help="Fit with wide bin hist") mass_group = parser.add_mutually_exclusive_group(required=True) mass_group.add_argument( "--mass", type=int, nargs='*', default=1000, help= "Mass can be specified as a single value or a whitespace separated list (default: %(default)i)" ) mass_group.add_argument( "--massrange", type=int, nargs=3, help="Define a range of masses to be produced. Format: min max step", metavar=('MIN', 'MAX', 'STEP')) mass_group.add_argument("--masslist", help="List containing mass information") args = parser.parse_args() fit_functions = args.fit_functions.split(",") # mass points for which resonance shapes will be produced masses = [] if args.fitBonly: masses.append(750) else: if args.massrange != None: MIN, MAX, STEP = args.massrange masses = range(MIN, MAX + STEP, STEP) elif args.masslist != None: # A mass list was provided print "Will create mass list according to", args.masslist masslist = __import__(args.masslist.replace(".py", "")) masses = masslist.masses else: masses = args.mass # sort masses masses.sort() # import ROOT stuff from ROOT import gStyle, TFile, TH1F, TH1D, TGraph, kTRUE, kFALSE, TCanvas, TLegend, TPad, TLine from ROOT import RooHist, RooRealVar, RooDataHist, RooArgList, RooArgSet, RooAddPdf, RooProdPdf, RooEffProd, RooFit, RooGenericPdf, RooWorkspace, RooMsgService, RooHistPdf, RooExtendPdf if not args.debug: RooMsgService.instance().setSilentMode(kTRUE) RooMsgService.instance().setStreamStatus(0, kFALSE) RooMsgService.instance().setStreamStatus(1, kFALSE) # input data file #inputData = TFile(limit_config.get_data_input(args.analysis)) # input data histogram #hData = inputData.Get(args.dataHistname) #hData.SetDirectory(0) data_file = TFile( analysis_config.get_b_histogram_filename(args.analysis, "BJetPlusX_2012")) hData = data_file.Get("BHistograms/h_pfjet_mjj") hData.SetDirectory(0) # input sig file if not args.fitSignal: print "[create_datacards] INFO : Opening resonance shapes file at " + limit_config.get_resonance_shapes( args.analysis, args.model) inputSig = TFile( limit_config.get_resonance_shapes(args.analysis, args.model), "READ") sqrtS = args.sqrtS # mass variable mjj = RooRealVar('mjj', 'mjj', float(args.massMin), float(args.massMax)) # integrated luminosity and signal cross section lumi = args.lumi signalCrossSection = 1. # set to 1. so that the limit on r can be interpreted as a limit on the signal cross section if args.correctTrigger: trigger_efficiency_pdf = trigger_efficiency.get_pdf(args.analysis, mjj) trigger_efficiency_formula = trigger_efficiency.get_formula( args.analysis, mjj) else: trigger_efficiency_pdf = trigger_efficiency.get_trivial_pdf(mjj) trigger_efficiency_formula = trigger_efficiency.get_trivial_formula( mjj) for mass in masses: print ">> Creating datacard and workspace for %s resonance with m = %i GeV..." % ( args.final_state, int(mass)) rooDataHist = RooDataHist('rooDatahist', 'rooDathist', RooArgList(mjj), hData) if not args.fitSignal: hSig = inputSig.Get("h_" + args.final_state + "_" + str(int(mass))) if not hSig: raise Exception("Couldn't find histogram " + "h_" + args.final_state + "_" + str(int(mass)) + " in file " + limit_config.get_resonance_shapes( args.analysis, args.model)) # normalize signal shape to the expected event yield (works even if input shapes are not normalized to unity) hSig.Scale( signalCrossSection * lumi / hSig.Integral() ) # divide by a number that provides roughly an r value of 1-10 rooSigHist = RooDataHist('rooSigHist', 'rooSigHist', RooArgList(mjj), hSig) print 'Signal acceptance:', (rooSigHist.sumEntries() / hSig.Integral()) # If using fitted signal shapes, load the signal PDF if args.fitSignal: print "[create_datacards] Loading fitted signal PDFs from " + analysis_config.get_signal_fit_file( args.analysis, args.model, mass, "bukin", interpolated=(not mass in analysis_config.simulation.simulated_masses)) f_signal_pdfs = TFile( analysis_config.get_signal_fit_file( args.analysis, args.model, mass, "bukin", interpolated=( not mass in analysis_config.simulation.simulated_masses)), "READ") w_signal = f_signal_pdfs.Get("w_signal") input_parameters = signal_fits.get_parameters( w_signal.pdf("signal")) # Make a new PDF with nuisance parameters signal_pdf_notrig, signal_vars = signal_fits.make_signal_pdf_systematic( "bukin", mjj, mass=mass) signal_pdf_name = signal_pdf_notrig.GetName() signal_pdf_notrig.SetName(signal_pdf_name + "_notrig") #signal_pdf = RooProdPdf(signal_pdf_name, signal_pdf_name, signal_pdf_notrig, trigger_efficiency_pdf) signal_pdf = RooEffProd(signal_pdf_name, signal_pdf_name, signal_pdf_notrig, trigger_efficiency_formula) # Copy input parameter values signal_vars["xp_0"].setVal(input_parameters["xp"][0]) signal_vars["xp_0"].setError(input_parameters["xp"][1]) signal_vars["xp_0"].setConstant() signal_vars["sigp_0"].setVal(input_parameters["sigp"][0]) signal_vars["sigp_0"].setError(input_parameters["sigp"][1]) signal_vars["sigp_0"].setConstant() signal_vars["xi_0"].setVal(input_parameters["xi"][0]) signal_vars["xi_0"].setError(input_parameters["xi"][1]) signal_vars["xi_0"].setConstant() signal_vars["rho1_0"].setVal(input_parameters["rho1"][0]) signal_vars["rho1_0"].setError(input_parameters["rho1"][1]) signal_vars["rho1_0"].setConstant() signal_vars["rho2_0"].setVal(input_parameters["rho2"][0]) signal_vars["rho2_0"].setError(input_parameters["rho2"][1]) signal_vars["rho2_0"].setConstant() f_signal_pdfs.Close() signal_parameters = {} signal_pdfs_notrig = {} signal_pdfs = {} signal_norms = {} background_pdfs = {} background_pdfs_notrig = {} background_parameters = {} background_norms = {} signal_epdfs = {} background_epdfs = {} models = {} fit_results = {} for fit_function in fit_functions: print "[create_datacards] INFO : On fit function {}".format( fit_function) if args.fitSignal: # Make a copy of the signal PDF, so that each fitTo call uses its own copy. # The copy should have all variables set constant. #signal_pdfs[fit_function], signal_parameters[fit_function] = signal_fits.copy_signal_pdf("bukin", signal_pdf, mjj, tag=fit_function, include_systematics=True) signal_pdfs_notrig[fit_function] = ROOT.RooBukinPdf( signal_pdf_notrig, signal_pdf_notrig.GetName() + "_" + fit_function) signal_pdfs[fit_function] = RooEffProd( signal_pdf.GetName() + "_" + fit_function, signal_pdf.GetName() + "_" + fit_function, signal_pdfs_notrig[fit_function], trigger_efficiency_formula) #signal_pdfs[fit_function] = RooProdPdf(signal_pdf.GetName() + "_" + fit_function, signal_pdf.GetName() + "_" + fit_function, signal_pdfs_notrig[fit_function], trigger_efficiency_pdf) iterator = signal_pdfs_notrig[fit_function].getVariables( ).createIterator() this_parameter = iterator.Next() while this_parameter: this_parameter.setConstant() this_parameter = iterator.Next() else: signal_pdfs[fit_function] = RooHistPdf( 'signal_' + fit_function, 'signal_' + fit_function, RooArgSet(mjj), rooSigHist) signal_norms[fit_function] = RooRealVar( 'signal_norm_' + fit_function, 'signal_norm_' + fit_function, 0., 0., 1e+05) if args.fitBonly: signal_norms[fit_function].setConstant() background_pdfs_notrig[fit_function], background_parameters[ fit_function] = make_background_pdf(fit_function, mjj, collision_energy=8000.) background_pdf_name = background_pdfs_notrig[fit_function].GetName( ) background_pdfs_notrig[fit_function].SetName(background_pdf_name + "_notrig") background_pdfs[fit_function] = RooEffProd( background_pdf_name, background_pdf_name, background_pdfs_notrig[fit_function], trigger_efficiency_formula) #background_pdfs[fit_function] = RooProdPdf(background_pdf_name, background_pdf_name, background_pdfs_notrig[fit_function], trigger_efficiency_pdf) #background_pdfs[fit_function] = background_pdfs_notrig[fit_function] #background_pdfs[fit_function].SetName(background_pdf_name) # Initial values if "trigbbh" in args.analysis: if fit_function == "f3": background_parameters[fit_function]["p1"].setVal(55.) background_parameters[fit_function]["p1"].setMin(20.) background_parameters[fit_function]["p2"].setVal(8.) elif fit_function == "f4": background_parameters[fit_function]["p1"].setVal(28.) background_parameters[fit_function]["p2"].setVal(-22.) background_parameters[fit_function]["p3"].setVal(10.) elif "trigbbl" in args.analysis: if fit_function == "f3": background_parameters[fit_function]["p1"].setVal(82.) background_parameters[fit_function]["p1"].setMin(60.) background_parameters[fit_function]["p2"].setVal(8.) elif fit_function == "f4": background_parameters[fit_function]["p1"].setVal(41.) background_parameters[fit_function]["p2"].setVal(-45.) background_parameters[fit_function]["p3"].setVal(10.) data_integral = hData.Integral( hData.GetXaxis().FindBin(float(args.massMin)), hData.GetXaxis().FindBin(float(args.massMax))) background_norms[fit_function] = RooRealVar( 'background_' + fit_function + '_norm', 'background_' + fit_function + '_norm', data_integral, 0., 1.e8) signal_epdfs[fit_function] = RooExtendPdf( 'esignal_' + fit_function, 'esignal_' + fit_function, signal_pdfs[fit_function], signal_norms[fit_function]) background_epdfs[fit_function] = RooExtendPdf( 'ebackground_' + fit_function, 'ebackground_' + fit_function, background_pdfs[fit_function], background_norms[fit_function]) models[fit_function] = RooAddPdf( 'model_' + fit_function, 's+b', RooArgList(background_epdfs[fit_function], signal_epdfs[fit_function])) if args.runFit: print "[create_datacards] INFO : Starting fit with function {}".format( fit_function) fit_results[fit_function] = models[fit_function].fitTo( rooDataHist, RooFit.Save(kTRUE), RooFit.Extended(kTRUE), RooFit.Strategy(args.fitStrategy), RooFit.Verbose(0)) print "[create_datacards] INFO : Done with fit {}. Printing results.".format( fit_function) fit_results[fit_function].Print() print "[create_datacards] DEBUG : End args.runFit if block." # needed if want to evaluate limits without background systematics if args.fixBkg: background_norms[fit_function].setConstant() for par_name, par in background_parameters[ fit_function].iteritems(): par.setConstant() # ----------------------------------------- #signal_pdfs_syst = {} # JES and JER uncertainties if args.fitSignal: print "[create_datacards] INFO : Getting signal PDFs from " + analysis_config.get_signal_fit_file( args.analysis, args.model, mass, "bukin", interpolated=(not mass in analysis_config.simulation.simulated_masses)) f_signal_pdfs = TFile( analysis_config.get_signal_fit_file( args.analysis, args.model, mass, "bukin", interpolated=( not mass in analysis_config.simulation.simulated_masses))) w_signal = f_signal_pdfs.Get("w_signal") if "jes" in systematics: xp_central = signal_vars["xp_0"].getVal() #print w_signal.pdf("signal__JESUp") #print signal_fits.get_parameters(w_signal.pdf("signal__JESUp")) xp_up = signal_fits.get_parameters( w_signal.pdf("signal__JESUp"))["xpJESUp"][0] xp_down = signal_fits.get_parameters( w_signal.pdf("signal__JESDown"))["xpJESDown"][0] signal_vars["dxp"].setVal( max(abs(xp_up - xp_central), abs(xp_down - xp_central))) if signal_vars["dxp"].getVal() > 2 * mass * 0.1: print "[create_datacards] WARNING : Large dxp value. dxp = {}, xp_down = {}, xp_central = {}, xp_up = {}".format( signal_vars["dxp"].getVal(), xp_down, xp_central, xp_up) signal_vars["alpha_jes"].setVal(0.) signal_vars["alpha_jes"].setConstant(False) else: signal_vars["dxp"].setVal(0.) signal_vars["alpha_jes"].setVal(0.) signal_vars["alpha_jes"].setConstant() signal_vars["dxp"].setError(0.) signal_vars["dxp"].setConstant() if "jer" in systematics: sigp_central = signal_vars["sigp_0"].getVal() sigp_up = signal_fits.get_parameters( w_signal.pdf("signal__JERUp"))["sigpJERUp"][0] sigp_down = signal_fits.get_parameters( w_signal.pdf("signal__JERDown"))["sigpJERDown"][0] signal_vars["dsigp"].setVal( max(abs(sigp_up - sigp_central), abs(sigp_down - sigp_central))) signal_vars["alpha_jer"].setVal(0.) signal_vars["alpha_jer"].setConstant(False) else: signal_vars["dsigp"].setVal(0.) signal_vars["alpha_jer"].setVal(0.) signal_vars["alpha_jer"].setConstant() signal_vars["dsigp"].setError(0.) signal_vars["dsigp"].setConstant() #for variation in ["JERUp", "JERDown"]: # signal_pdfs_syst[variation] = w_signal.pdf("signal__" + variation) #for variation, pdf in signal_pdfs_syst.iteritems(): # signal_parameters = pdf.getVariables() # iter = signal_parameters.createIterator() # var = iter.Next() # while var: # var.setConstant() # var = iter.Next() f_signal_pdfs.Close() else: # dictionaries holding systematic variations of the signal shape hSig_Syst = {} hSig_Syst_DataHist = {} sigCDF = TGraph(hSig.GetNbinsX() + 1) if "jes" in systematics or "jer" in systematics: sigCDF.SetPoint(0, 0., 0.) integral = 0. for i in range(1, hSig.GetNbinsX() + 1): x = hSig.GetXaxis().GetBinLowEdge(i + 1) integral = integral + hSig.GetBinContent(i) sigCDF.SetPoint(i, x, integral) if "jes" in systematics: hSig_Syst['JESUp'] = copy.deepcopy(hSig) hSig_Syst['JESDown'] = copy.deepcopy(hSig) if "jer" in systematics: hSig_Syst['JERUp'] = copy.deepcopy(hSig) hSig_Syst['JERDown'] = copy.deepcopy(hSig) # reset signal histograms for key in hSig_Syst.keys(): hSig_Syst[key].Reset() hSig_Syst[key].SetName(hSig_Syst[key].GetName() + '_' + key) # produce JES signal shapes if "jes" in systematics: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jes = 1. - systematics["jes"] xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jes = 1. + systematics["jes"] xLowPrime = jes * xLow xUpPrime = jes * xUp hSig_Syst['JESDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JESUp'] = RooDataHist( 'hSig_JESUp', 'hSig_JESUp', RooArgList(mjj), hSig_Syst['JESUp']) hSig_Syst_DataHist['JESDown'] = RooDataHist( 'hSig_JESDown', 'hSig_JESDown', RooArgList(mjj), hSig_Syst['JESDown']) # produce JER signal shapes if "jer" in systematics: for i in range(1, hSig.GetNbinsX() + 1): xLow = hSig.GetXaxis().GetBinLowEdge(i) xUp = hSig.GetXaxis().GetBinLowEdge(i + 1) jer = 1. - systematics["jer"] xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERUp'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) jer = 1. + systematics["jer"] xLowPrime = jer * (xLow - float(mass)) + float(mass) xUpPrime = jer * (xUp - float(mass)) + float(mass) hSig_Syst['JERDown'].SetBinContent( i, sigCDF.Eval(xUpPrime) - sigCDF.Eval(xLowPrime)) hSig_Syst_DataHist['JERUp'] = RooDataHist( 'hSig_JERUp', 'hSig_JERUp', RooArgList(mjj), hSig_Syst['JERUp']) hSig_Syst_DataHist['JERDown'] = RooDataHist( 'hSig_JERDown', 'hSig_JERDown', RooArgList(mjj), hSig_Syst['JERDown']) # ----------------------------------------- # create a datacard and corresponding workspace postfix = (('_' + args.postfix) if args.postfix != '' else '') wsName = 'workspace_' + args.final_state + '_m' + str( mass) + postfix + '.root' w = RooWorkspace('w', 'workspace') if args.fitSignal: signal_pdf.SetName("signal") getattr(w, 'import')(signal_pdf, RooFit.Rename("signal")) # Create a norm variable "signal_norm" which normalizes the PDF to unity. norm = args.lumi #signal_norm = ROOT.RooRealVar("signal_norm", "signal_norm", 1. / norm, 0.1 / norm, 10. / norm) #if args.analysis == "trigbbh_CSVTM" and mass >= 1100: signal_norm = ROOT.RooRealVar("signal_norm", "signal_norm", norm / 100., norm / 100. / 10., norm * 10.) #else: # signal_norm = ROOT.RooRealVar("signal_norm", "signal_norm", norm, norm / 10., norm * 10.) print "[create_datacards] INFO : Set signal norm to {}".format( signal_norm.getVal()) signal_norm.setConstant() getattr(w, 'import')(signal_norm, ROOT.RooCmdArg()) #if "jes" in systematics: # getattr(w,'import')(signal_pdfs_syst['JESUp'],RooFit.Rename("signal__JESUp")) # getattr(w,'import')(signal_pdfs_syst['JESDown'],RooFit.Rename("signal__JESDown")) #if "jer" in systematics: # getattr(w,'import')(signal_pdfs_syst['JERUp'],RooFit.Rename("signal__JERUp")) # getattr(w,'import')(signal_pdfs_syst['JERDown'],RooFit.Rename("signal__JERDown")) else: getattr(w, 'import')(rooSigHist, RooFit.Rename("signal")) if "jes" in systematics: getattr(w, 'import')(hSig_Syst_DataHist['JESUp'], RooFit.Rename("signal__JESUp")) getattr(w, 'import')(hSig_Syst_DataHist['JESDown'], RooFit.Rename("signal__JESDown")) if "jer" in systematics: getattr(w, 'import')(hSig_Syst_DataHist['JERUp'], RooFit.Rename("signal__JERUp")) getattr(w, 'import')(hSig_Syst_DataHist['JERDown'], RooFit.Rename("signal__JERDown")) if args.decoBkg: getattr(w, 'import')(background_deco, ROOT.RooCmdArg()) else: for fit_function in fit_functions: print "Importing background PDF" print background_pdfs[fit_function] background_pdfs[fit_function].Print() getattr(w, 'import')(background_pdfs[fit_function], ROOT.RooCmdArg(), RooFit.Rename("background_" + fit_function), RooFit.RecycleConflictNodes()) w.pdf("background_" + fit_function).Print() getattr(w, 'import')(background_norms[fit_function], ROOT.RooCmdArg(), RooFit.Rename("background_" + fit_function + "_norm")) getattr(w, 'import')(fit_results[fit_function]) getattr(w, 'import')(signal_norms[fit_function], ROOT.RooCmdArg()) if args.fitBonly: getattr(w, 'import')(models[fit_function], ROOT.RooCmdArg(), RooFit.RecycleConflictNodes()) getattr(w, 'import')(rooDataHist, RooFit.Rename("data_obs")) w.Print() print "Starting save" if args.output_path: if not os.path.isdir(os.path.join(os.getcwd(), args.output_path)): os.mkdir(os.path.join(os.getcwd(), args.output_path)) print "[create_datacards] INFO : Writing workspace to file {}".format( os.path.join(args.output_path, wsName)) w.writeToFile(os.path.join(args.output_path, wsName)) else: print "[create_datacards] INFO : Writing workspace to file {}".format( limit_config.get_workspace_filename( args.analysis, args.model, mass, fitBonly=args.fitBonly, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger)) w.writeToFile( limit_config.get_workspace_filename( args.analysis, args.model, mass, fitBonly=args.fitBonly, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger)) # Clean up for name, obj in signal_norms.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in background_pdfs.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in background_pdfs_notrig.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in background_norms.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in signal_pdfs.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in signal_pdfs_notrig.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in signal_epdfs.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in background_epdfs.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in fit_results.iteritems(): if obj: obj.IsA().Destructor(obj) for name, dict_l2 in background_parameters.iteritems(): for name2, obj in dict_l2.iteritems(): if obj: obj.IsA().Destructor(obj) for name, obj in models.iteritems(): if obj: obj.IsA().Destructor(obj) rooDataHist.IsA().Destructor(rooDataHist) w.IsA().Destructor(w) # Make datacards only if S+B fitted if not args.fitBonly: beffUnc = 0.3 boffUnc = 0.06 for fit_function in fit_functions: if args.output_path: dcName = 'datacard_' + args.final_state + '_m' + str( mass) + postfix + '_' + fit_function + '.txt' print "[create_datacards] INFO : Writing datacard to file {}".format( os.path.join(args.output_path, dcName)) datacard = open(os.path.join(args.output_path, dcName), 'w') else: print "[create_datacards] INFO : Writing datacard to file {}".format( limit_config.get_datacard_filename( args.analysis, args.model, mass, fit_function, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger)) datacard = open( limit_config.get_datacard_filename( args.analysis, args.model, mass, fit_function, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger), 'w') datacard.write('imax 1\n') datacard.write('jmax 1\n') datacard.write('kmax *\n') datacard.write('---------------\n') if ("jes" in systematics or "jer" in systematics) and not args.fitSignal: if args.output_path: datacard.write('shapes * * ' + wsName + ' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n') else: datacard.write('shapes * * ' + os.path.basename( limit_config.get_workspace_filename( args.analysis, args.model, mass, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger)) + ' w:$PROCESS w:$PROCESS__$SYSTEMATIC\n') else: if args.output_path: datacard.write('shapes * * ' + wsName + ' w:$PROCESS\n') else: datacard.write('shapes * * ' + os.path.basename( limit_config.get_workspace_filename( args.analysis, args.model, mass, fitSignal=args.fitSignal, correctTrigger=args.correctTrigger)) + ' w:$PROCESS\n') datacard.write('---------------\n') datacard.write('bin 1\n') datacard.write('observation -1\n') datacard.write('------------------------------\n') datacard.write('bin 1 1\n') datacard.write('process signal background_' + fit_function + '\n') datacard.write('process 0 1\n') if args.fitSignal: datacard.write('rate 1 1\n') else: datacard.write('rate -1 1\n') datacard.write('------------------------------\n') datacard.write('lumi lnN %f -\n' % (1. + systematics["luminosity"])) datacard.write('beff lnN %f -\n' % (1. + beffUnc)) datacard.write('boff lnN %f -\n' % (1. + boffUnc)) #datacard.write('bkg lnN - 1.03\n') if args.fitSignal: if "jes" in systematics: datacard.write("alpha_jes param 0.0 1.0\n") if "jer" in systematics: datacard.write("alpha_jer param 0.0 1.0\n") else: if "jes" in systematics: datacard.write('JES shape 1 -\n') if "jer" in systematics: datacard.write('JER shape 1 -\n') # flat parameters --- flat prior datacard.write('background_' + fit_function + '_norm flatParam\n') if args.decoBkg: datacard.write('deco_eig1 flatParam\n') datacard.write('deco_eig2 flatParam\n') else: for par_name, par in background_parameters[ fit_function].iteritems(): datacard.write(fit_function + "_" + par_name + ' flatParam\n') datacard.close() print "[create_datacards] INFO : Done with this datacard" #print '>> Datacards and workspaces created and stored in %s/'%( os.path.join(os.getcwd(),args.output_path) ) print "All done."
#p3 = RooRealVar('p3','p3',-0.5,-100,100) p1 = RooRealVar('p1', 'p1', 12, 0., 100) p2 = RooRealVar('p2', 'p2', 2., 0., 60.) p3 = RooRealVar('p3', 'p3', -0.5, -10, 10) #p1 = RooRealVar('p1','p1',12,0.,100) #p2 = RooRealVar('p2','p2',2.,1.,10.) #p3 = RooRealVar('p3','p3',-0.5,-1,1) #p3.setConstant(ROOT.kTRUE) background = RooGenericPdf( 'background', '(pow(1-@0/13000,@1)/pow(@0/13000,@2+@3*log(@0/13000)))', RooArgList(x, p1, p2, p3)) background_norm = RooRealVar('background_norm', 'background_norm', 1, 0, 10000000000) ebkg = RooExtendPdf("ebkg", "extended background p.d.f", background, background_norm) roohistSig = RooDataHist('roohist', 'roohist', RooArgList(x), hSig) signal = RooHistPdf('signal', 'signal', RooArgSet(x), roohistSig) signal_norm = RooRealVar('signal_norm', 'signal_norm', 1, -100000, 100000) #signal_norm.setConstant(ROOT.kTRUE) ##variation 1, with one more parameter #if fitModel==1: # TMath::Power(1-x/8000,[1])*(1+[4]*x/8000) ) / ( TMath::Power(x/8000,[2]+[3]*log(x/8000)) # #p1_f6 = RooRealVar('p1_f6','p1_f6',10, 5,15) #p2_f6 = RooRealVar('p2_f6','p2_f6',10.,5,15.) #p3_f6 = RooRealVar('p3_f6','p3_f6',6,0,10) #p4_f6 = RooRealVar('p4_f6','p4_f6',3,-10,10) #p5_f6 = RooRealVar('p5_f6','p5_f6',0.5,-10,10.)
def dijet(category): channel = 'bb' stype = channel isSB = True # relict from using Alberto's more complex script isData = not ISMC nTupleDir = NTUPLEDIR samples = data if isData else back pd = [] for sample_name in samples: if YEAR == 'run2': pd += sample[sample_name]['files'] else: pd += [x for x in sample[sample_name]['files'] if YEAR in x] print "datasets:", pd if not os.path.exists(PLOTDIR): os.makedirs(PLOTDIR) if BIAS: print "Running in BIAS mode" order = 0 RSS = {} X_mass = RooRealVar("jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV") weight = RooRealVar("MANtag_weight", "", -1.e9, 1.e9) variables = RooArgSet(X_mass) variables.add(RooArgSet(weight)) if VARBINS: binsXmass = RooBinning(len(abins) - 1, abins) X_mass.setBinning(RooBinning(len(abins_narrow) - 1, abins_narrow)) plot_binning = RooBinning( int((X_mass.getMax() - X_mass.getMin()) / 100), X_mass.getMin(), X_mass.getMax()) else: X_mass.setBins(int((X_mass.getMax() - X_mass.getMin()) / 10)) binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin()) / 100), X_mass.getMin(), X_mass.getMax()) plot_binning = binsXmass baseCut = "" print stype, "|", baseCut print " - Reading from Tree" treeBkg = TChain("tree") for ss in pd: if os.path.exists(nTupleDir + ss + "_" + BTAGGING + ".root"): treeBkg.Add(nTupleDir + ss + "_" + BTAGGING + ".root") else: print "found no file for sample:", ss setData = RooDataSet("setData", "Data (QCD+TTbar MC)", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeBkg)) nevents = setData.sumEntries() dataMin, dataMax = array('d', [0.]), array('d', [0.]) setData.getRange(X_mass, dataMin, dataMax) xmin, xmax = dataMin[0], dataMax[0] lastBin = X_mass.getMax() if VARBINS: for b in narrow_bins: if b > xmax: lastBin = b break print "Imported", ( "data" if isData else "MC" ), "RooDataSet with", nevents, "events between [%.1f, %.1f]" % (xmin, xmax) #xmax = xmax+binsXmass.averageBinWidth() # start form next bin # 1 parameter print "fitting 1 parameter model" p1_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p1_1", "p1", 7.0, 0., 2000.) modelBkg1 = RooGenericPdf("Bkg1", "Bkg. fit (2 par.)", "1./pow(@0/13000, @1)", RooArgList(X_mass, p1_1)) normzBkg1 = RooRealVar( modelBkg1.GetName() + "_norm", "Number of background events", nevents, 0., 5. * nevents) #range dependent of actual number of events! modelExt1 = RooExtendPdf(modelBkg1.GetName() + "_ext", modelBkg1.GetTitle(), modelBkg1, normzBkg1) fitRes1 = modelExt1.fitTo(setData, RooFit.Extended(True), RooFit.Save(1), RooFit.SumW2Error(not isData), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1)) fitRes1.Print() RSS[1] = drawFit("Bkg1", category, X_mass, modelBkg1, setData, binsXmass, [fitRes1], normzBkg1.getVal()) # 2 parameters print "fitting 2 parameter model" p2_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_1", "p1", 0., -100., 1000.) p2_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_2", "p2", p1_1.getVal(), -100., 600.) modelBkg2 = RooGenericPdf("Bkg2", "Bkg. fit (3 par.)", "pow(1-@0/13000, @1) / pow(@0/13000, @2)", RooArgList(X_mass, p2_1, p2_2)) normzBkg2 = RooRealVar(modelBkg2.GetName() + "_norm", "Number of background events", nevents, 0., 5. * nevents) modelExt2 = RooExtendPdf(modelBkg2.GetName() + "_ext", modelBkg2.GetTitle(), modelBkg2, normzBkg2) fitRes2 = modelExt2.fitTo(setData, RooFit.Extended(True), RooFit.Save(1), RooFit.SumW2Error(not isData), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1)) fitRes2.Print() RSS[2] = drawFit("Bkg2", category, X_mass, modelBkg2, setData, binsXmass, [fitRes2], normzBkg2.getVal()) # 3 parameters print "fitting 3 parameter model" p3_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_1", "p1", p2_1.getVal(), -2000., 2000.) p3_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_2", "p2", p2_2.getVal(), -400., 2000.) p3_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_3", "p3", -2.5, -500., 500.) modelBkg3 = RooGenericPdf( "Bkg3", "Bkg. fit (4 par.)", "pow(1-@0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))", RooArgList(X_mass, p3_1, p3_2, p3_3)) normzBkg3 = RooRealVar(modelBkg3.GetName() + "_norm", "Number of background events", nevents, 0., 5. * nevents) modelExt3 = RooExtendPdf(modelBkg3.GetName() + "_ext", modelBkg3.GetTitle(), modelBkg3, normzBkg3) fitRes3 = modelExt3.fitTo(setData, RooFit.Extended(True), RooFit.Save(1), RooFit.SumW2Error(not isData), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1)) fitRes3.Print() RSS[3] = drawFit("Bkg3", category, X_mass, modelBkg3, setData, binsXmass, [fitRes3], normzBkg3.getVal()) # 4 parameters print "fitting 4 parameter model" p4_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_1", "p1", p3_1.getVal(), -2000., 2000.) p4_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_2", "p2", p3_2.getVal(), -2000., 2000.) p4_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_3", "p3", p3_3.getVal(), -50., 50.) p4_4 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_4", "p4", 0.1, -50., 50.) modelBkg4 = RooGenericPdf( "Bkg4", "Bkg. fit (5 par.)", "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000)+@4*pow(log(@0/13000), 2))", RooArgList(X_mass, p4_1, p4_2, p4_3, p4_4)) normzBkg4 = RooRealVar(modelBkg4.GetName() + "_norm", "Number of background events", nevents, 0., 5. * nevents) modelExt4 = RooExtendPdf(modelBkg4.GetName() + "_ext", modelBkg4.GetTitle(), modelBkg4, normzBkg4) fitRes4 = modelExt4.fitTo(setData, RooFit.Extended(True), RooFit.Save(1), RooFit.SumW2Error(not isData), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1)) fitRes4.Print() RSS[4] = drawFit("Bkg4", category, X_mass, modelBkg4, setData, binsXmass, [fitRes4], normzBkg4.getVal()) # Normalization parameters are should be set constant, but shape ones should not # if BIAS: # p1_1.setConstant(True) # p2_1.setConstant(True) # p2_2.setConstant(True) # p3_1.setConstant(True) # p3_2.setConstant(True) # p3_3.setConstant(True) # p4_1.setConstant(True) # p4_2.setConstant(True) # p4_3.setConstant(True) # p4_4.setConstant(True) normzBkg1.setConstant(True) normzBkg2.setConstant(True) normzBkg3.setConstant(True) normzBkg4.setConstant(True) #*******************************************************# # # # Fisher # # # #*******************************************************# # Fisher test with open(PLOTDIR + "/Fisher_" + category + ".tex", 'w') as fout: fout.write(r"\begin{tabular}{c|c|c|c|c}") fout.write("\n") fout.write(r"function & $\chi^2$ & RSS & ndof & F-test \\") fout.write("\n") fout.write("\hline") fout.write("\n") CL_high = False for o1 in range(1, 5): o2 = min(o1 + 1, 5) fout.write("%d par & %.2f & %.2f & %d & " % (o1 + 1, RSS[o1]["chi2"], RSS[o1]["rss"], RSS[o1]["nbins"] - RSS[o1]["npar"])) if o2 > len(RSS): fout.write(r"\\") fout.write("\n") continue #order==0 and CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1 + 1., o2 + 1., RSS[o1]["nbins"]) fout.write("CL=%.3f " % (CL)) if CL > 0.10: # The function with less parameters is enough if not CL_high: order = o1 #fout.write( "%d par are sufficient " % (o1+1)) CL_high = True else: #fout.write( "%d par are needed " % (o2+1)) if not CL_high: order = o2 fout.write(r"\\") fout.write("\n") fout.write("\hline") fout.write("\n") fout.write(r"\end{tabular}") print "saved F-test table as", PLOTDIR + "/Fisher_" + category + ".tex" #print "-"*25 #print "function & $\\chi^2$ & RSS & ndof & F-test & result \\\\" #print "\\multicolumn{6}{c}{", "Zprime_to_bb", "} \\\\" #print "\\hline" #CL_high = False #for o1 in range(1, 5): # o2 = min(o1 + 1, 5) # print "%d par & %.2f & %.2f & %d & " % (o1+1, RSS[o1]["chi2"], RSS[o1]["rss"], RSS[o1]["nbins"]-RSS[o1]["npar"]), # if o2 > len(RSS): # print "\\\\" # continue #order==0 and # CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1+1., o2+1., RSS[o1]["nbins"]) # print "%d par vs %d par CL=%f & " % (o1+1, o2+1, CL), # if CL > 0.10: # The function with less parameters is enough # if not CL_high: # order = o1 # print "%d par are sufficient" % (o1+1), # CL_high=True # else: # print "%d par are needed" % (o2+1), # if not CL_high: # order = o2 # print "\\\\" #print "\\hline" #print "-"*25 #print "@ Order is", order, "("+category+")" #order = min(3, order) #order = 2 if order == 1: modelBkg = modelBkg1 #.Clone("Bkg") modelAlt = modelBkg2 #.Clone("BkgAlt") normzBkg = normzBkg1 #.Clone("Bkg_norm") fitRes = fitRes1 elif order == 2: modelBkg = modelBkg2 #.Clone("Bkg") modelAlt = modelBkg3 #.Clone("BkgAlt") normzBkg = normzBkg2 #.Clone("Bkg_norm") fitRes = fitRes2 elif order == 3: modelBkg = modelBkg3 #.Clone("Bkg") modelAlt = modelBkg4 #.Clone("BkgAlt") normzBkg = normzBkg3 #.Clone("Bkg_norm") fitRes = fitRes3 elif order == 4: modelBkg = modelBkg4 #.Clone("Bkg") modelAlt = modelBkg3 #.Clone("BkgAlt") normzBkg = normzBkg4 #.Clone("Bkg_norm") fitRes = fitRes4 else: print "Functions with", order + 1, "or more parameters are needed to fit the background" exit() modelBkg.SetName("Bkg_" + YEAR + "_" + category) modelAlt.SetName("Alt_" + YEAR + "_" + category) normzBkg.SetName("Bkg_" + YEAR + "_" + category + "_norm") print "-" * 25 # Generate pseudo data setToys = RooDataSet() setToys.SetName("data_toys") setToys.SetTitle("Data (toys)") if not isData: print " - Generating", nevents, "events for toy data" setToys = modelBkg.generate(RooArgSet(X_mass), nevents) #setToys = modelAlt.generate(RooArgSet(X_mass), nevents) print "toy data generated" if VERBOSE: raw_input("Press Enter to continue...") #*******************************************************# # # # Plot # # # #*******************************************************# print "starting to plot" c = TCanvas("c_" + category, category, 800, 800) c.Divide(1, 2) setTopPad(c.GetPad(1), RATIO) setBotPad(c.GetPad(2), RATIO) c.cd(1) frame = X_mass.frame() setPadStyle(frame, 1.25, True) if VARBINS: frame.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin) signal = getSignal( category, stype, 2000) #replacing Alberto's getSignal by own dummy function graphData = setData.plotOn(frame, RooFit.Binning(plot_binning), RooFit.Scaling(False), RooFit.Invisible()) modelBkg.plotOn(frame, RooFit.VisualizeError(fitRes, 1, False), RooFit.LineColor(602), RooFit.FillColor(590), RooFit.FillStyle(1001), RooFit.DrawOption("FL"), RooFit.Name("1sigma")) modelBkg.plotOn(frame, RooFit.LineColor(602), RooFit.FillColor(590), RooFit.FillStyle(1001), RooFit.DrawOption("L"), RooFit.Name(modelBkg.GetName())) modelAlt.plotOn(frame, RooFit.LineStyle(7), RooFit.LineColor(613), RooFit.FillColor(609), RooFit.FillStyle(1001), RooFit.DrawOption("L"), RooFit.Name(modelAlt.GetName())) if not isSB and signal[0] is not None: # FIXME remove /(2./3.) signal[0].plotOn( frame, RooFit.Normalization(signal[1] * signal[2], RooAbsReal.NumEvent), RooFit.LineStyle(3), RooFit.LineWidth(6), RooFit.LineColor(629), RooFit.DrawOption("L"), RooFit.Name("Signal")) graphData = setData.plotOn( frame, RooFit.Binning(plot_binning), RooFit.Scaling(False), RooFit.XErrorSize(0 if not VARBINS else 1), RooFit.DataError(RooAbsData.Poisson if isData else RooAbsData.SumW2), RooFit.DrawOption("PE0"), RooFit.Name(setData.GetName())) fixData(graphData.getHist(), True, True, not isData) pulls = frame.pullHist(setData.GetName(), modelBkg.GetName(), True) chi = frame.chiSquare(setData.GetName(), modelBkg.GetName(), True) #setToys.plotOn(frame, RooFit.DataError(RooAbsData.Poisson), RooFit.DrawOption("PE0"), RooFit.MarkerColor(2)) frame.GetYaxis().SetTitle("Events / ( 100 GeV )") frame.GetYaxis().SetTitleOffset(1.05) frame.Draw() #print "frame drawn" # Get Chi2 # chi2[1] = frame.chiSquare(modelBkg1.GetName(), setData.GetName()) # chi2[2] = frame.chiSquare(modelBkg2.GetName(), setData.GetName()) # chi2[3] = frame.chiSquare(modelBkg3.GetName(), setData.GetName()) # chi2[4] = frame.chiSquare(modelBkg4.GetName(), setData.GetName()) frame.SetMaximum(frame.GetMaximum() * 10) frame.SetMinimum(max(frame.GetMinimum(), 1.e-1)) c.GetPad(1).SetLogy() drawAnalysis(category) drawRegion(category, True) #drawCMS(LUMI, "Simulation Preliminary") drawCMS(LUMI, "Work in Progress", suppressCMS=True) leg = TLegend(0.575, 0.6, 0.95, 0.9) leg.SetBorderSize(0) leg.SetFillStyle(0) #1001 leg.SetFillColor(0) leg.AddEntry(setData.GetName(), setData.GetTitle() + " (%d events)" % nevents, "PEL") leg.AddEntry(modelBkg.GetName(), modelBkg.GetTitle(), "FL") #.SetTextColor(629) leg.AddEntry(modelAlt.GetName(), modelAlt.GetTitle(), "L") if not isSB and signal[0] is not None: leg.AddEntry("Signal", signal[0].GetTitle(), "L") leg.SetY1(0.9 - leg.GetNRows() * 0.05) leg.Draw() latex = TLatex() latex.SetNDC() latex.SetTextSize(0.04) latex.SetTextFont(42) if not isSB: latex.DrawLatex(leg.GetX1() * 1.16, leg.GetY1() - 0.04, "HVT model B (g_{V}=3)") # latex.DrawLatex(0.67, leg.GetY1()-0.045, "#sigma_{X} = 1.0 pb") c.cd(2) frame_res = X_mass.frame() setPadStyle(frame_res, 1.25) frame_res.addPlotable(pulls, "P") setBotStyle(frame_res, RATIO, False) if VARBINS: frame_res.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin) frame_res.GetYaxis().SetRangeUser(-5, 5) frame_res.GetYaxis().SetTitle("pulls(#sigma)") frame_res.GetYaxis().SetTitleOffset(0.3) frame_res.Draw() fixData(pulls, False, True, False) drawChi2(RSS[order]["chi2"], RSS[order]["nbins"] - (order + 1), True) line = drawLine(X_mass.getMin(), 0, lastBin, 0) if VARBINS: c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf") c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png") else: c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf") c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png") #*******************************************************# # # # Generate workspace # # # #*******************************************************# if BIAS: gSystem.Load("libHiggsAnalysisCombinedLimit.so") from ROOT import RooMultiPdf cat = RooCategory("pdf_index", "Index of Pdf which is active") pdfs = RooArgList(modelBkg, modelAlt) roomultipdf = RooMultiPdf("roomultipdf", "All Pdfs", cat, pdfs) normulti = RooRealVar("roomultipdf_norm", "Number of background events", nevents, 0., 1.e6) normzBkg.setConstant( False ) ## newly put here to ensure it's freely floating in the combine fit # create workspace w = RooWorkspace("Zprime_" + YEAR, "workspace") # Dataset if isData: getattr(w, "import")(setData, RooFit.Rename("data_obs")) else: getattr(w, "import")(setToys, RooFit.Rename("data_obs")) #getattr(w, "import")(setData, RooFit.Rename("data_obs")) if BIAS: getattr(w, "import")(cat, RooFit.Rename(cat.GetName())) getattr(w, "import")(normulti, RooFit.Rename(normulti.GetName())) getattr(w, "import")(roomultipdf, RooFit.Rename(roomultipdf.GetName())) getattr(w, "import")(modelBkg, RooFit.Rename(modelBkg.GetName())) getattr(w, "import")(modelAlt, RooFit.Rename(modelAlt.GetName())) getattr(w, "import")(normzBkg, RooFit.Rename(normzBkg.GetName())) w.writeToFile(WORKDIR + "%s_%s.root" % (DATA_TYPE + "_" + YEAR, category), True) print "Workspace", WORKDIR + "%s_%s.root" % ( DATA_TYPE + "_" + YEAR, category), "saved successfully" if VERBOSE: raw_input("Press Enter to continue...")
xframe10 = x.frame(RooFit.Title("10. A Gaussian later used to test RooMCStudy")) xArg = RooArgSet(x) N_times_experiments = 1000 N_number_of_events = 500 # gauss 16 mean16 = RooRealVar("mean16","mean of gaussian",-1,-10,10) sigma16 = RooRealVar("sigma16","width of gaussian",2,0.1,10) gauss16 = RooGaussian("gauss16","gaussian PDF",x,mean16,sigma16) nGauss16 = RooRealVar("nGauss16", "nGauss16", N_number_of_events , 0. ,1000 ) gauss16_ext = RooExtendPdf("gauss16_ext", "extended p.d.f", gauss16, nGauss16) gauss16_ext.plotOn( xframe10 ) # RooMCStudy mgr1 = RooMCStudy(gauss16_ext , gauss16_ext , xArg ) mgr1.generateAndFit( N_times_experiments , N_number_of_events ) # plot list_par = [mean16, sigma16, nGauss16] list_frame1 = RooMCStudy_box( mgr1 , list_par )
def signal(category): interPar = True n = len(genPoints) cColor = color[category] if category in color else 4 nBtag = category.count('b') isAH = False #relict from using Alberto's more complex script if not os.path.exists(PLOTDIR+"MC_signal_"+YEAR): os.makedirs(PLOTDIR+"MC_signal_"+YEAR) #*******************************************************# # # # Variables and selections # # # #*******************************************************# X_mass = RooRealVar ( "jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV") j1_pt = RooRealVar( "jpt_1", "jet1 pt", 0., 13000., "GeV") jj_deltaEta = RooRealVar( "jj_deltaEta_widejet", "", 0., 5.) jbtag_WP_1 = RooRealVar("jbtag_WP_1", "", -1., 4. ) jbtag_WP_2 = RooRealVar("jbtag_WP_2", "", -1., 4. ) fatjetmass_1 = RooRealVar("fatjetmass_1", "", -1., 2500. ) fatjetmass_2 = RooRealVar("fatjetmass_2", "", -1., 2500. ) jid_1 = RooRealVar( "jid_1", "j1 ID", -1., 8.) jid_2 = RooRealVar( "jid_2", "j2 ID", -1., 8.) jnmuons_1 = RooRealVar( "jnmuons_1", "j1 n_{#mu}", -1., 8.) jnmuons_2 = RooRealVar( "jnmuons_2", "j2 n_{#mu}", -1., 8.) jmuonpt_1 = RooRealVar( "jmuonpt_1", "j1 muon pt", 0., 13000.) jmuonpt_2 = RooRealVar( "jmuonpt_2", "j2 muon pt", 0., 13000.) nmuons = RooRealVar( "nmuons", "n_{#mu}", -1., 10. ) nelectrons = RooRealVar("nelectrons", "n_{e}", -1., 10. ) HLT_AK8PFJet500 = RooRealVar("HLT_AK8PFJet500" , "", -1., 1. ) HLT_PFJet500 = RooRealVar("HLT_PFJet500" , "" , -1., 1. ) HLT_CaloJet500_NoJetID = RooRealVar("HLT_CaloJet500_NoJetID" , "" , -1., 1. ) HLT_PFHT900 = RooRealVar("HLT_PFHT900" , "" , -1., 1. ) HLT_AK8PFJet550 = RooRealVar("HLT_AK8PFJet550" , "", -1., 1. ) HLT_PFJet550 = RooRealVar("HLT_PFJet550" , "" , -1., 1. ) HLT_CaloJet550_NoJetID = RooRealVar("HLT_CaloJet550_NoJetID" , "" , -1., 1. ) HLT_PFHT1050 = RooRealVar("HLT_PFHT1050" , "" , -1., 1. ) HLT_DoublePFJets100_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets100_CaloBTagDeepCSV_p71" , "", -1., 1. ) HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) HLT_DoublePFJets200_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets200_CaloBTagDeepCSV_p71" , "", -1., 1. ) HLT_DoublePFJets350_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets350_CaloBTagDeepCSV_p71" , "", -1., 1. ) HLT_DoublePFJets40_CaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets40_CaloBTagDeepCSV_p71" , "", -1., 1. ) weight = RooRealVar( "eventWeightLumi", "", -1.e9, 1.e9 ) # Define the RooArgSet which will include all the variables defined before # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add' variables = RooArgSet(X_mass) variables.add(RooArgSet(j1_pt, jj_deltaEta, jbtag_WP_1, jbtag_WP_2, fatjetmass_1, fatjetmass_2, jnmuons_1, jnmuons_2, weight)) variables.add(RooArgSet(nmuons, nelectrons, jid_1, jid_2, jmuonpt_1, jmuonpt_2)) variables.add(RooArgSet(HLT_AK8PFJet500, HLT_PFJet500, HLT_CaloJet500_NoJetID, HLT_PFHT900, HLT_AK8PFJet550, HLT_PFJet550, HLT_CaloJet550_NoJetID, HLT_PFHT1050)) variables.add(RooArgSet(HLT_DoublePFJets100_CaloBTagDeepCSV_p71, HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets200_CaloBTagDeepCSV_p71, HLT_DoublePFJets350_CaloBTagDeepCSV_p71, HLT_DoublePFJets40_CaloBTagDeepCSV_p71)) X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax()) X_mass.setRange("X_integration_range", X_mass.getMin(), X_mass.getMax()) if VARBINS: binsXmass = RooBinning(len(abins)-1, abins) X_mass.setBinning(binsXmass) plot_binning = RooBinning(int((X_mass.getMax()-X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax()) else: X_mass.setBins(int((X_mass.getMax()-X_mass.getMin())/10)) binsXmass = RooBinning(int((X_mass.getMax()-X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax()) plot_binning = binsXmass X_mass.setBinning(plot_binning, "PLOT") #X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/10)) #binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax()) #X_mass.setBinning(binsXmass, "PLOT") massArg = RooArgSet(X_mass) # Cuts if BTAGGING=='semimedium': SRcut = aliasSM[category] #SRcut = aliasSM[category+"_vetoAK8"] else: SRcut = alias[category].format(WP=working_points[BTAGGING]) #SRcut = alias[category+"_vetoAK8"].format(WP=working_points[BTAGGING]) if ADDSELECTION: SRcut += SELECTIONS[options.selection] print " Cut:\t", SRcut #*******************************************************# # # # Signal fits # # # #*******************************************************# treeSign = {} setSignal = {} vmean = {} vsigma = {} valpha1 = {} vslope1 = {} valpha2 = {} vslope2 = {} smean = {} ssigma = {} salpha1 = {} sslope1 = {} salpha2 = {} sslope2 = {} sbrwig = {} signal = {} signalExt = {} signalYield = {} signalIntegral = {} signalNorm = {} signalXS = {} frSignal = {} frSignal1 = {} frSignal2 = {} frSignal3 = {} # Signal shape uncertainties (common amongst all mass points) xmean_jes = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p1_scale_jes", "Variation of the resonance position with the jet energy scale", 0.02, -1., 1.) #0.001 smean_jes = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p1_jes", "Change of the resonance position with the jet energy scale", 0., -10, 10) xsigma_jer = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p2_scale_jer", "Variation of the resonance width with the jet energy resolution", 0.10, -1., 1.) ssigma_jer = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p2_jer", "Change of the resonance width with the jet energy resolution", 0., -10, 10) xmean_jes.setConstant(True) smean_jes.setConstant(True) xsigma_jer.setConstant(True) ssigma_jer.setConstant(True) for m in massPoints: signalMass = "%s_M%d" % (stype, m) signalName = "ZpBB_{}_{}_M{}".format(YEAR, category, m) sampleName = "bstar_M{}".format(m) signalColor = sample[sampleName]['linecolor'] if signalName in sample else 1 # define the signal PDF vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m, m*0.96, m*1.05) smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)", RooArgList(vmean[m], xmean_jes, smean_jes)) vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma", m*0.0233, m*0.019, m*0.025) ssigma[m] = RooFormulaVar(signalName + "_sigma", "@0*(1+@1*@2)", RooArgList(vsigma[m], xsigma_jer, ssigma_jer)) valpha1[m] = RooRealVar(signalName + "_valpha1", "Crystal Ball alpha 1", 0.2, 0.05, 0.28) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0", RooArgList(valpha1[m])) #vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 10., 0.1, 20.) # slope of the power tail vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 13., 10., 20.) # slope of the power tail sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0", RooArgList(vslope1[m])) valpha2[m] = RooRealVar(signalName + "_valpha2", "Crystal Ball alpha 2", 1.) valpha2[m].setConstant(True) salpha2[m] = RooFormulaVar(signalName + "_alpha2", "@0", RooArgList(valpha2[m])) #vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", 6., 2.5, 15.) # slope of the higher power tail ## FIXME test FIXME vslope2_estimation = -5.88111436852 + m*0.00728809389442 + m*m*(-1.65059568762e-06) + m*m*m*(1.25128996309e-10) vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", vslope2_estimation, vslope2_estimation*0.9, vslope2_estimation*1.1) # slope of the higher power tail ## FIXME end FIXME sslope2[m] = RooFormulaVar(signalName + "_slope2", "@0", RooArgList(vslope2[m])) # slope of the higher power tail signal[m] = RooDoubleCrystalBall(signalName, "m_{%s'} = %d GeV" % ('X', m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m], salpha2[m], sslope2[m]) # extend the PDF with the yield to perform an extended likelihood fit signalYield[m] = RooRealVar(signalName+"_yield", "signalYield", 50, 0., 1.e15) signalNorm[m] = RooRealVar(signalName+"_norm", "signalNorm", 1., 0., 1.e15) signalXS[m] = RooRealVar(signalName+"_xs", "signalXS", 1., 0., 1.e15) signalExt[m] = RooExtendPdf(signalName+"_ext", "extended p.d.f", signal[m], signalYield[m]) # ---------- if there is no simulated signal, skip this mass point ---------- if m in genPoints: if VERBOSE: print " - Mass point", m # define the dataset for the signal applying the SR cuts treeSign[m] = TChain("tree") if YEAR=='run2': pd = sample[sampleName]['files'] if len(pd)>3: print "multiple files given than years for a single masspoint:",pd sys.exit() for ss in pd: if not '2016' in ss and not '2017' in ss and not '2018' in ss: print "unknown year given in:", ss sys.exit() else: pd = [x for x in sample[sampleName]['files'] if YEAR in x] if len(pd)>1: print "multiple files given for a single masspoint/year:",pd sys.exit() for ss in pd: if options.unskimmed: j=0 while True: if os.path.exists(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j)): treeSign[m].Add(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j)) j += 1 else: print "found {} files for sample:".format(j), ss break else: if os.path.exists(NTUPLEDIR + ss + ".root"): treeSign[m].Add(NTUPLEDIR + ss + ".root") else: print "found no file for sample:", ss if treeSign[m].GetEntries() <= 0.: if VERBOSE: print " - 0 events available for mass", m, "skipping mass point..." signalNorm[m].setVal(-1) vmean[m].setConstant(True) vsigma[m].setConstant(True) salpha1[m].setConstant(True) sslope1[m].setConstant(True) salpha2[m].setConstant(True) sslope2[m].setConstant(True) signalNorm[m].setConstant(True) signalXS[m].setConstant(True) continue #setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar("eventWeightLumi*BTagAK4Weight_deepJet"), RooFit.Import(treeSign[m])) setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeSign[m])) if VERBOSE: print " - Dataset with", setSignal[m].sumEntries(), "events loaded" # FIT entries = setSignal[m].sumEntries() if entries < 0. or entries != entries: entries = 0 signalYield[m].setVal(entries) # Instead of eventWeightLumi #signalYield[m].setVal(entries * LUMI / (300000 if YEAR=='run2' else 100000) ) if treeSign[m].GetEntries(SRcut) > 5: if VERBOSE: print " - Running fit" frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1), RooFit.Extended(True), RooFit.SumW2Error(True), RooFit.PrintLevel(-1)) if VERBOSE: print "********** Fit result [", m, "] **", category, "*"*40, "\n", frSignal[m].Print(), "\n", "*"*80 if VERBOSE: frSignal[m].correlationMatrix().Print() drawPlot(signalMass+"_"+category, stype+category, X_mass, signal[m], setSignal[m], frSignal[m]) else: print " WARNING: signal", stype, "and mass point", m, "in category", category, "has 0 entries or does not exist" # Remove HVT cross sections #xs = getCrossSection(stype, channel, m) xs = 1. signalXS[m].setVal(xs * 1000.) signalIntegral[m] = signalExt[m].createIntegral(massArg, RooFit.NormSet(massArg), RooFit.Range("X_integration_range")) boundaryFactor = signalIntegral[m].getVal() if boundaryFactor < 0. or boundaryFactor != boundaryFactor: boundaryFactor = 0 if VERBOSE: print " - Fit normalization vs integral:", signalYield[m].getVal(), "/", boundaryFactor, "events" signalNorm[m].setVal( boundaryFactor * signalYield[m].getVal() / signalXS[m].getVal()) # here normalize to sigma(X) x Br = 1 [fb]