Esempio n. 1
0
def NormalizeYAxis(h2,axis_N="Y"):
    h2_new = h2.Clone()
    h2_new.SetDirectory(0)
    TH2.AddDirectory(0)
    
    if axis_N == "Y":
        for ibx in range(1, h2.GetNbinsX()+1):
            verticalsum = 0.0 
            for iby in range(1, h2.GetNbinsY()+1):
                verticalsum = verticalsum + h2.GetBinContent(ibx, iby)
                #print 'old bin content = ',ibx, iby,  h2.GetBinContent(ibx, iby)
            
            # once the sum is calculated this has to be used to scaling each bin content in the X bin i.e. 
            # divide each bin content by verticalsum 
            # following is outside the for loop of iby, create another loop for the Y axis. 
            for iby_ in range (1, h2.GetNbinsY()+1):
                new_content = 0.0 
                old_content = h2.GetBinContent(ibx, iby_)
                # safety check to avoid divide by zero. 
                if verticalsum != 0: new_content = old_content / verticalsum
                h2_new.SetBinContent(ibx, iby_, new_content)

                
                
                ## error calculation  
                error_ = 0.0 
                if verticalsum !=0:
                    delta_a  = math.sqrt(verticalsum) / verticalsum 
                    delta_b = 0.0
                    
                    if old_content > 0.0: delta_b  = math.sqrt(old_content) / old_content
                    error_ =  new_content * (delta_a + delta_b)
                h2_new.SetBinError(ibx,iby_, error_)
                h2_new.SetDirectory(0)
                TH2.AddDirectory(0)
                

                
             
    if axis_N == "X":
        for iby in range(1, h2.GetNbinsY()+1):
            verticalsum = 0.0 
            for ibx in range(1, h2.GetNbinsX()+1):
                verticalsum = verticalsum + h2.GetBinContent(ibx, iby)
                #print 'old bin content = ',ibx, iby,  h2.GetBinContent(ibx, iby)

            ## same as above but now normalised over X
            for ibx_ in range (1, h2.GetNbinsX()+1):
                new_content = 0.0 
                old_content = h2.GetBinContent(ibx_, iby)
                # safety check to avoid divide by zero. 
                if verticalsum != 0: new_content = old_content / verticalsum
                h2_new.SetBinContent(ibx_, iby, new_content)


    return h2_new
Esempio n. 2
0
def NormalizedPrefiringProbability(h2,axis_N="Y"):
    h2_new = h2.Clone()
    h2_new.SetDirectory(0)
    TH2.AddDirectory(0)
    
    Vsum_=[]
    if axis_N == "Y":
        for ibx in range(1, h2.GetNbinsX()+1):
            verticalsum = 0.0 
            for iby in range(1, h2.GetNbinsY()+1):
                verticalsum = verticalsum + h2.GetBinContent(ibx, iby)
                #print 'old bin content = ',ibx, iby,  h2.GetBinContent(ibx, iby)
            Vsum_.append(verticalsum)


    if axis_N == "X":
        for iby in range(1, h2.GetNbinsY()+1):
            verticalsum = 0.0 
            for ibx in range(1, h2.GetNbinsX()+1):
                verticalsum = verticalsum + h2.GetBinContent(ibx, iby)
                #print 'old bin content = ',ibx, iby,  h2.GetBinContent(ibx, iby)
            Vsum_.append(verticalsum)
            
    prob_ = Vsum_[1]/(Vsum_[1]+Vsum_[2]) 
    delta_a = 0.0
    if Vsum_[1]>0.0: delta_a = math.sqrt(Vsum_[1])/Vsum_[1]
    delta_b = 0.0 
    if (Vsum_[1]+Vsum_[2])>0: delta_b = math.sqrt(Vsum_[1]+Vsum_[2]) / (Vsum_[1]+Vsum_[2])
    
    prob_e_ = prob_ * (delta_a + delta_b)
    return [prob_,prob_e_]
Esempio n. 3
0
 def normilize_xaxis(input_h: ROOT.TH2) -> ROOT.TH2:
     normilized_h = input_h.Clone()
     projection = hist.ProjectionY()
     print("projection:", projection.GetXaxis().GetNbins())
     for y_bin in range(input_h.GetYaxis().GetNbins() + 2):
         norm = projection.GetBinContent(y_bin)
         print("norm: ", norm)
         for x_bin in range(input_h.GetXaxis().GetNbins() + 2):
             if norm == 0:
                 normilized_h.SetBinContent(x_bin, y_bin, 0)
             else:
                 normilized_h.SetBinContent(
                     x_bin, y_bin,
                     round(
                         normilized_h.GetBinContent(x_bin, y_bin) / norm,
                         2))
     return normilized_h
Esempio n. 4
0
 def fixZScale(self, canvas):
     '''
     Temperature plot scales may run off the right side of the canvas. Fix 
     that if applicable
     '''
     for obj in canvas.GetListOfPrimitives():
         if obj.InheritsFrom(TH2.Class()):
             scale = obj.GetListOfFunctions().FindObject("palette")
             if scale:
                 if canvas.GetRightMargin() < 0.075:
                     canvas.SetRightMargin(0.075)
                 scale.SetX1(1.005)
                 scale.SetX2(1.035)
                 canvas.Update()
Esempio n. 5
0
def generalEMCOptions(subsystem, hist, processingOptions):
    # Set options for when not debugging
    if processingParameters["debug"] == False:
        # Disable hist stats
        hist.hist.SetStats(False)

    # Disable the title
    gStyle.SetOptTitle(0)

    # Allows curotmization of draw options for 2D hists
    if hist.hist.InheritsFrom(TH2.Class()):
        hist.canvas.SetLogz()

    # Updates the canvas, as Update() does not seem to work
    # See: https://root.cern.ch/root/roottalk/roottalk02/3965.html
    hist.canvas.Modified()
Esempio n. 6
0
def NormalizedPrefiringProbability(h2,axis_N="Y"):
    h2_new = h2.Clone()
    h2_new.SetDirectory(0)
    TH2.AddDirectory(0)
    
    Vsum_=[]
    if axis_N == "Y":
        for ibx in range(1, h2.GetNbinsX()+1):
            verticalsum = 0.0 
            for iby in range(1, h2.GetNbinsY()+1):
                verticalsum = verticalsum + h2.GetBinContent(ibx, iby)
                #print 'old bin content = ',ibx, iby,  h2.GetBinContent(ibx, iby)
            Vsum_.append(verticalsum)
            
    print "Vsum =", Vsum_
    prob_ = Vsum_[1]/(Vsum_[1]+Vsum_[2]) 
    print "prob = ", prob_
    return prob_ 
Esempio n. 7
0
def setEMCHistogramOptions(subsystem):
    """ Set general hist object options.
    
    Canvas and additional options must be set later."""

    # Set the histogram pretty names
    # We can remove the first 12 characters
    for hist in subsystem.histsAvailable.values():
        # Truncate the prefix off EMC hists, but also protect against truncating non-EMC hists
        if "EMC" in hist.histName:
            hist.prettyName = hist.histName[12:]

        # Set colz for any TH2 hists
        if hist.histType.InheritsFrom(TH2.Class()):
            hist.drawOptions += " colz"

    # Set general processing options
    # Sets the histograms to scale if they are setup to scale by nEvents
    subsystem.processingOptions["scaleHists"] = True
    # Sets the hot channel threshold. 0 uses the default in the defined function
    subsystem.processingOptions["hotChannelThreshold"] = 0
Esempio n. 8
0
def invert_col(pad, fgcol=rt.kOrange - 3, bgcol=rt.kBlack):

    #set foreground and background color
    #fgcol = rt.kAzure
    #fgcol = rt.kGreen
    #fgcol = rt.kOrange-3

    pad.SetFillColor(bgcol)
    pad.SetFrameLineColor(fgcol)

    next = TIter(pad.GetListOfPrimitives())
    obj = next()
    while obj != None:
        #H1
        if obj.InheritsFrom(TH1.Class()) == True:
            if obj.GetLineColor() == rt.kBlack:
                obj.SetLineColor(fgcol)
                obj.SetFillColor(bgcol)
            if obj.GetMarkerColor() == rt.kBlack: obj.SetMarkerColor(fgcol)
            obj.SetAxisColor(fgcol, "X")
            obj.SetAxisColor(fgcol, "Y")
            obj.SetLabelColor(fgcol, "X")
            obj.SetLabelColor(fgcol, "Y")
            obj.GetXaxis().SetTitleColor(fgcol)
            obj.GetYaxis().SetTitleColor(fgcol)
        #Legend
        if obj.InheritsFrom(TLegend.Class()) == True:
            obj.SetTextColor(fgcol)
            #obj.SetFillStyle(1000)
            #obj.SetFillColor(fgcol)
            #obj.SetTextColor(bgcol)
            #ln = TIter(obj.GetListOfPrimitives())
            #lo = ln.Next()
            #while lo != None:
            #if lo.GetObject() == None:
            #lo = ln.Next()
            #continue
            #if lo.GetObject().InheritsFrom(TH1.Class()) == True:
            #hx = lo.GetObject()
            #hx.SetFillColor(bgcol)
            #if hx.GetMarkerColor() == rt.kBlack:
            #hx.SetMarkerColor(fgcol)
            #hx.SetLineColor(fgcol)
            #pass
            #lo = ln.Next()
        #RooHist
        if obj.InheritsFrom(RooHist.Class()) == True:
            if obj.GetMarkerColor() == rt.kBlack:
                obj.SetLineColor(fgcol)
                obj.SetMarkerColor(fgcol)
        #H2
        if obj.InheritsFrom(TH2.Class()) == True:
            obj.SetAxisColor(fgcol, "Z")
            obj.SetLabelColor(fgcol, "Z")
            obj.GetZaxis().SetTitleColor(fgcol)
            #obj.SetLineColor(fgcol)
            #obj.SetMarkerColor(fgcol)
        #TLatex
        if obj.InheritsFrom(TLatex.Class()) == True:
            if obj.GetTextColor() == rt.kBlack:
                obj.SetTextColor(fgcol)
        #F2
        if obj.InheritsFrom(TF2.Class()) == True:
            axes = [obj.GetXaxis(), obj.GetYaxis(), obj.GetZaxis()]
            for i in range(len(axes)):
                axes[i].SetAxisColor(fgcol)
                axes[i].SetLabelColor(fgcol)
                axes[i].SetTitleColor(fgcol)
        #F1
        if obj.InheritsFrom(TF1.Class()) == True:
            axes = [obj.GetXaxis(), obj.GetYaxis()]
            for i in range(len(axes)):
                axes[i].SetAxisColor(fgcol)
                axes[i].SetLabelColor(fgcol)
                axes[i].SetTitleColor(fgcol)
        #TGraph
        if obj.InheritsFrom(TGraph.Class()) == True:
            obj.SetFillColor(bgcol)
            ax = obj.GetXaxis()
            ay = obj.GetYaxis()
            ax.SetAxisColor(fgcol)
            ay.SetAxisColor(fgcol)
            ax.SetLabelColor(fgcol)
            ay.SetLabelColor(fgcol)
            ax.SetTitleColor(fgcol)
            ay.SetTitleColor(fgcol)
            if obj.GetLineColor() == rt.kBlack:
                obj.SetLineColor(fgcol)
                obj.SetMarkerColor(fgcol)
        #TGaxis
        if obj.InheritsFrom(TGaxis.Class()) == True:
            obj.SetLineColor(fgcol)
            obj.SetLabelColor(fgcol)
            obj.SetTitleColor(fgcol)

        #TFrame
        if obj.InheritsFrom(TFrame.Class()) == True:
            if obj.GetLineColor() == rt.kBlack:
                obj.SetLineColor(fgcol)
                obj.SetFillColor(bgcol)

        #move to next item
        obj = next()
#THIS SCRIPT IS MADE TO COMPARE THE NJET DISTRIBUTIONS FROM MC12 TTW EVENTS AND FROM MC14 NJET EVENTS. IT ALSO CALCULATE THE REAL AND THE FAKE RATES IN TTBAR EVENTS. IT USES THE NOMINAL TTBARMC SELECTED REQUIRING TRUTH MATCHING FOR REAL RATES (OS REGION) AND THE FAKE EVENTS (AT LEAST ONE NON-PROMPT LEPTON) FOR FAKE RATES IN THE SS REGION
from math import sqrt, pow
from ROOT import TCanvas, TFile, TGraph, TGraphErrors, TColor, TAttFill, TStyle, TLegend, TH1, TH2, TH1D, gROOT, TF1, TTree, TH1I, gDirectory, TChain, TH2D
import array
import copy
import csv

gROOT.SetBatch(True)

TH1.SetDefaultSumw2()
TH2.SetDefaultSumw2()

#path_data12 = '/mel_data/ttH/NewReprocessed_Melb13_ttH_v1.1_noBjetcut/ttW/'
#path_dc14 = '/mel_data/ttH/NewReprocessed_Melb13_ttH_Run2Test18_DxAOD_nobjetcut/ttW/'
path_data12 = '/mel_data/ttH/NewReprocessed_Melb13_ttH_v1.1/ttW/'
path_dc14 = '/mel_data/ttH/NewReprocessed_Melb13_ttH_Run2Test22_DxAOD/ttW/'

import os

dists = ['evtsel_jets_num', 'Jet0Pt']
channels = ['ee', 'em', 'mm']
#this selection has no bjet requirements
selection = {
    'ee':
    'evtsel_is_sltmatch && evtsel_dilep_type && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_diel && ((fabs(Lep0PDG)!=11 || fabs(Lep0Eta)<1.5) && (fabs(Lep1PDG)!=11 || fabs(Lep1Eta)<1.5))',
    'em':
    'evtsel_is_sltmatch && evtsel_dilep_type && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_muel && ((fabs(Lep0PDG)!=11 || fabs(Lep0Eta)<1.5) && (fabs(Lep1PDG)!=11 || fabs(Lep1Eta)<1.5))',
    'mm':
    'evtsel_is_sltmatch && evtsel_dilep_type && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_dimu'
}
#selection={'ee':'evtsel_is_sltmatch && evtsel_bjets_num>=1 && evtsel_dilep_type && evtsel_jets_num>=1 && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_diel && ((fabs(Lep0PDG)!=11 || fabs(Lep0Eta)<1.5) && (fabs(Lep1PDG)!=11 || fabs(Lep1Eta)<1.5))', 'em':'evtsel_is_sltmatch && evtsel_bjets_num>=1 && evtsel_dilep_type && evtsel_jets_num>=1 && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_muel && ((fabs(Lep0PDG)!=11 || fabs(Lep0Eta)<1.5) && (fabs(Lep1PDG)!=11 || fabs(Lep1Eta)<1.5))', 'mm':'evtsel_is_sltmatch && evtsel_bjets_num>=1 && evtsel_dilep_type && evtsel_jets_num>=1 && evtsel_tau_num==0 && (isSS01==1 && Lep0Pt>20 && Lep1Pt>20) && isTT01==1 && evtsel_is_dimu'}