Esempio n. 1
0
def main():

    try:
        # retrive command line options
        shortopts = "m:i:n:d:k:l:t:o:vh?"
        longopts = [
            "methods=", "inputfile=", "nTrees=", "maxDepth=", "mass=",
            "varListKey=", "inputtrees=", "outputfile=", "verbose", "help",
            "usage"
        ]
        opts, args = getopt.getopt(sys.argv[1:], shortopts, longopts)

    except getopt.GetoptError:
        # print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infname = DEFAULT_INFNAME
    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    outfname = DEFAULT_OUTFNAME
    methods = DEFAULT_METHODS
    nTrees = DEFAULT_NTREES
    mDepth = DEFAULT_MDEPTH
    mass = DEFAULT_MASS
    varListKey = DEFAULT_VARLISTKEY
    verbose = True
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-d", "--maxDepth"):
            mDepth = a
        elif o in ("-k", "--mass"):
            mass = a
        elif o in ("-l", "--varListKey"):
            varListKey = a
        elif o in ("-i", "--inputfile"):
            infname = a
        elif o in ("-n", "--nTrees"):
            nTrees = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit(' ')
            trees.sort()
            trees.reverse()
            if len(trees) - trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)
            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True

    varList = varsList.varList[varListKey]
    nVars = str(len(varList)) + 'vars'
    Note = methods + '_' + varListKey + '_' + nVars + '_mDepth' + mDepth + '_M' + mass
    outfname = "weights/TMVA_" + Note + ".root"
    # Print methods
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
#     gROOT.SetMacroPath( "./" )
#     gROOT.Macro       ( "./TMVAlogon.C" )
#    gROOT.LoadMacro   ( "./TMVAGui.C" )

# Import TMVA classes from ROOT
    from ROOT import TMVA

    # Output file
    outputFile = TFile(outfname, 'RECREATE')

    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in
    # front of the "Silent" argument in the option string
    #     factory = TMVA.Factory( "TMVAClassification", outputFile,
    #                             "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" )
    factory = TMVA.Factory(
        "TMVAClassification", outputFile,
        "!V:!Silent:Color:DrawProgressBar:Transformations=I;:AnalysisType=Classification"
    )

    # Set verbosity
    factory.SetVerbose(verbose)

    # If you wish to modify default settings
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    (TMVA.gConfig().GetIONames()).fWeightFileDir = "weights/" + Note

    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]

    for iVar in varList:
        if iVar[0] == 'NJets_singleLepCalc':
            factory.AddVariable(iVar[0], iVar[1], iVar[2], 'I')
        else:
            factory.AddVariable(iVar[0], iVar[1], iVar[2], 'F')

    # You can add so-called "Spectator variables", which are not used in the MVA training,
    # but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
    # input variables, the response values of all trained MVAs, and the spectator variables

    inputDir = varsList.inputDir
    print 'mass point ' + mass
    infname = "ChargedHiggs_HplusTB_HplusToTB_M-%s_13TeV_amcatnlo_pythia8_hadd.root" % (
        mass)
    iFileSig = TFile.Open(inputDir + infname)
    sigChain = iFileSig.Get("ljmet")
    #    os.exits(1)
    #BDT machinary
    factory.AddSignalTree(sigChain)
    bkg_list = []
    bkg_trees_list = []
    hist_list = []
    weightsList = []
    for i in range(len(varsList.bkg)):
        bkg_list.append(TFile.Open(inputDir + varsList.bkg[i]))
        print inputDir + varsList.bkg[i]
        bkg_trees_list.append(bkg_list[i].Get("ljmet"))
        bkg_trees_list[i].GetEntry(0)

        if bkg_trees_list[i].GetEntries() == 0:
            continue
        factory.AddBackgroundTree(bkg_trees_list[i], 1)

    signalWeight = 1  #0.0159/sigChain.GetEntries() #xs (pb)

    # ====== register trees ====================================================
    # To give different trees for training and testing, do as follows:
    #    factory.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    factory.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )

    # Use the following code instead of the above two or four lines to add signal and background
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================

    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : factory.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: factory.SetBackgroundWeightExpression("weight1*weight2");
    #factory.SetBackgroundWeightExpression( "weight" )
    factory.SetSignalWeightExpression(weightStrS)
    factory.SetBackgroundWeightExpression(weightStrB)

    # Apply additional cuts on the signal and background sample.
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )
    mycutSig = TCut(cutStrS)
    mycutBkg = TCut(cutStrB)

    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    factory.PrepareTrainingAndTestTree(
        mycutSig,
        mycutBkg,
        #                                         "nTrain_Signal=0:nTrain_Background=0:nTest_Signal=10:nTest_Background=100:SplitMode=Random:NormMode=NumEvents:!V" )
        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V"
    )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation

    # bdtSetting for "BDT"
    bdtSetting = '!H:!V:NTrees=%s:MaxDepth=%s' % (nTrees, mDepth)
    bdtSetting += ':MinNodeSize=2.5%:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20'
    bdtSetting += ':IgnoreNegWeightsInTraining=True'
    # bdtSetting for "BDTMitFisher"
    bdtFSetting = '!H:!V:NTrees=%s' % nTrees
    bdtFSetting += ':MinNodeSize=2.5%:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20'
    bdtFSetting += ':IgnoreNegWeightsInTraining=True'
    # bdtSetting for "BDTG"
    bdtGSetting = '!H:!V:NTrees=%s:MaxDepth=%s' % (nTrees, mDepth)
    bdtGSetting += ':MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20'
    bdtGSetting += ':Pray'  #Pray takes into account the effect of negative bins in BDTG
    #bdtGSetting += ':IgnoreNegWeightsInTraining=True'
    # bdtSetting for "BDTB"
    bdtBSetting = '!H:!V:NTrees=%s' % nTrees
    bdtBSetting += ':MinNodeSize=2.5%:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20'
    bdtBSetting += ':IgnoreNegWeightsInTraining=True'
    # bdtSetting for "BDTD"
    bdtDSetting = '!H:!V:NTrees=%s' % nTrees
    bdtDSetting += ':MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate'
    bdtDSetting += ':IgnoreNegWeightsInTraining=True'
    #Note also that explicitly setting *nEventsMin* so far OVERWRITES the option recomeded ^[[0m

    #BOOKING AN ALGORITHM
    if methods == "BDT": factory.BookMethod(TMVA.Types.kBDT, "BDT", bdtSetting)
    if methods == "BDTG":
        factory.BookMethod(TMVA.Types.kBDT, "BDTG", bdtGSetting)
    if methods == "BDTMitFisher":
        factory.BookMethod(TMVA.Types.kBDT, "BDTMitFisher", bdtFSetting)
    if methods == "BDTB":
        factory.BookMethod(TMVA.Types.kBDT, "BDTB", bdtBSetting)
    if methods == "BDTD":
        factory.BookMethod(TMVA.Types.kBDT, "BDTD", bdtDSetting)
    # --------------------------------------------------------------------------------------------------

    # ---- Now you can tell the factory to train, test, and evaluate the MVAs.

    # Train MVAs
    factory.TrainAllMethods()

    # Test MVAs
    factory.TestAllMethods()

    # Evaluate MVAs
    factory.EvaluateAllMethods()

    # Save the output.
    outputFile.Close()
    #
    #     print "=== wrote root file %s\n" % outfname
    #     print "=== TMVAClassification is done!\n"

    # save plots:
    os.chdir('weights/' + Note)
    #TMVA.mvaeffs( "../../"+outfname ) #Classifier Cut Efficiencies
    gROOT.SetBatch(1)
    TMVA.efficiencies(
        "../../" + outfname
    )  #Classifier Background Rejection vs Signal Efficiency (ROC curve)
    #TMVA.efficiencies( "weights/TMVA_BDTG_APR9_33vars_mDepth3_MLow.root", 3 ) #Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)
    TMVA.mvas("../../" + outfname,
              0)  #Classifier Output Distributions (test sample)
    TMVA.correlations(
        "../../" + outfname)  #Input Variable Linear Correlation Coefficients
    TMVA.variables("../../" + outfname)  #Input variables (training sample)
    #TMVA.mvas( "../../"+outfname ) #Classifier Output Distributions (test and training samples superimposed)
    #gROOT.ProcessLine( ".x ../../mvas.C(\"%s\",3)" % ("../../"+outfname) ) #Classifier Output Distributions (test and training samples superimposed)
    if not gROOT.IsBatch(): TMVA.TMVAGui("../../" + outfname)
    #     os.chdir('plots')
    #     try: os.system('convert CorrelationMatrixS.eps CorrelationMatrixS_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert CorrelationMatrixB.eps CorrelationMatrixB_'+Note+'.png')
    #     except: pass
    #     #try: os.system('convert invBeffvsSeff.eps invBeffvsSeff_'+Note+'.png')
    #     #except: pass
    #     try: os.system('convert mva_'+Note.split('_')[0]+'.eps mva_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert mvaeffs_'+Note.split('_')[0]+'.eps mvaeffs_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert overtrain_'+Note.split('_')[0]+'.eps overtrain_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert rejBvsS.eps rejBvsS_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c1.eps variables_id_c1_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c2.eps variables_id_c2_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c3.eps variables_id_c3_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c4.eps variables_id_c4_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c5.eps variables_id_c5_'+Note+'.png')
    #     except: pass
    #     try: os.system('convert variables_id_c6.eps variables_id_c6_'+Note+'.png')
    #     except: pass
    #     os.system('rm *.eps')
    print "DONE"
    dataloader, TMVA.Types.kBDT, "BDTG",
    "!H:!V:NTrees=1000:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.20:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=6"
)

factory.BookMethod(
    dataloader, TMVA.Types.kBDT, "BDT",
    "!H:!V:NTrees=1000:MinNodeSize=2.5%:MaxDepth=6:BoostType=AdaBoost:AdaBoostBeta=0.3:UseBaggedBoost:BaggedSampleFraction=0.3:SeparationType=GiniIndex:nCuts=20"
)

factory.BookMethod(
    dataloader, TMVA.Types.kBDT, "BDTB",
    "!H:!V:NTrees=1000:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20")

factory.BookMethod(
    dataloader, TMVA.Types.kBDT, "BDTD",
    "!H:!V:NTrees=1000:MinNodeSize=2.5%:MaxDepth=6:BoostType=AdaBoost:AdaBoostBeta=0.7:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate"
)

# Run training, test and evaluation
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()

# Save output
print("""
		==> Wrote root file: {} \n
		==> TMVAClassification is done!\n
	  """).format(output.GetName())

TMVA.TMVAGui(output)
Esempio n. 3
0
def main():

    try:
        # retrive command line options
        shortopts  = "m:i:t:o:vh?"
        longopts   = ["methods=", "inputfile=", "inputtrees=", "outputfile=", "verbose", "help", "usage"]
        opts, args = getopt.getopt( sys.argv[1:], shortopts, longopts )

    except getopt.GetoptError:
        # print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infname     = DEFAULT_INFNAME
    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    outfname    = DEFAULT_OUTFNAME
    methods     = DEFAULT_METHODS
    verbose     = False
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-i", "--inputfile"):
            infname = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit( ' ' )
            trees.sort()
            trees.reverse()
            if len(trees)-trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)
            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True

    # Print methods
    mlist = methods.replace(' ',',').split(',')
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut
    
    # check ROOT version, give alarm if 5.18 
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)
        
    # Import TMVA classes from ROOT
    from ROOT import TMVA
    TMVA.Tools.Instance()

    # Output file
    outputFile = TFile( outfname, 'RECREATE' )
    
    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in 
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory( "TMVAClassification", outputFile, 
                            "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" )

    # Set verbosity
    factory.SetVerbose( verbose )

    dataloader = TMVA.DataLoader("dataset")

    # If you wish to modify default settings 
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    #    gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory"

    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
    dataloader.AddVariable( "myvar1 := var1+var2", 'F' )
    dataloader.AddVariable( "myvar2 := var1-var2", "Expression 2", "", 'F' )
    dataloader.AddVariable( "var3",                "Variable 3", "units", 'F' )
    dataloader.AddVariable( "var4",                "Variable 4", "units", 'F' )

    # You can add so-called "Spectator variables", which are not used in the MVA training, 
    # but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the 
    # input variables, the response values of all trained MVAs, and the spectator variables
    #dataloader.AddSpectator( "spec1 := var1*2",  "Spectator 1", "units", 'F' );
    #dataloader.AddSpectator( "spec2 := var1*3",  "Spectator 2", "units", 'F' );

    # Read input data
    if gSystem.AccessPathName( infname ) != 0: gSystem.Exec( "wget http://root.cern.ch/files/" + infname )
        
    input = TFile.Open( infname )

    # Get the signal and background trees for training
    signal      = input.Get( treeNameSig )
    background  = input.Get( treeNameBkg )
    
    # Global event weights (see below for setting event-wise weights)
    signalWeight     = 1.0
    backgroundWeight = 1.0

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    dataloader.AddSignalTree    ( signal,     signalWeight     )
    dataloader.AddBackgroundTree( background, backgroundWeight )

    # To give different trees for training and testing, do as follows:
    #    factory.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    factory.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )
    
    # Use the following code instead of the above two or four lines to add signal and background 
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input 
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #    
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #    
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================    
            
    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : factory.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: factory.SetBackgroundWeightExpression("weight1*weight2");
    dataloader.SetBackgroundWeightExpression( "weight" )

    # Apply additional cuts on the signal and background sample. 
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )
    mycutSig = TCut( "" ) 
    mycutBkg = TCut( "" ) 
    
    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    dataloader.PrepareTrainingAndTestTree( mycutSig, mycutBkg,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation
    if "Cuts" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCuts, "Cuts",
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" )

    if "CutsD" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCuts, "CutsD",
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" )

    if "CutsPCA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCuts, "CutsPCA",
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" )

    if "CutsGA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCuts, "CutsGA",
                            "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" )

    if "CutsSA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCuts, "CutsSA",
                            "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" )

    # Likelihood ("naive Bayes estimator")
    if "Likelihood" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLikelihood, "Likelihood",
                            "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" )

    # Decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLikelihood, "LikelihoodD",
                            "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" )

    # PCA-transformed likelihood
    if "LikelihoodPCA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLikelihood, "LikelihoodPCA",
                            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" ) 

    # Use a kernel density estimator to approximate the PDFs
    if "LikelihoodKDE" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLikelihood, "LikelihoodKDE",
                            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" ) 

    # Use a variable-dependent mix of splines and kernel density estimator
    if "LikelihoodMIX" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLikelihood, "LikelihoodMIX",
                            "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" ) 

    # Test the multi-dimensional probability density estimator
    # here are the options strings for the MinMax and RMS methods, respectively:
    #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
    #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
    if "PDERS" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kPDERS, "PDERS",
                            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" )

    if "PDERSD" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kPDERS, "PDERSD",
                            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" )

    if "PDERSPCA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kPDERS, "PDERSPCA",
                             "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" )

   # Multi-dimensional likelihood estimator using self-adapting phase-space binning
    if "PDEFoam" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kPDEFoam, "PDEFoam",
                            "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" )

    if "PDEFoamBoost" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kPDEFoam, "PDEFoamBoost",
                            "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" )

    # K-Nearest Neighbour classifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kKNN, "KNN",
                            "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" )

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kHMatrix, "HMatrix", "!H:!V" )

    # Linear discriminant (same as Fisher discriminant)
    if "LD" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" )

    # Fisher discriminant (same as LD)
    if "Fisher" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFisher, "Fisher", "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" )

    # Fisher with Gauss-transformed input variables
    if "FisherG" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFisher, "FisherG", "H:!V:VarTransform=Gauss" )

    # Composite classifier: ensemble (tree) of boosted Fisher classifiers
    if "BoostedFisher" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFisher, "BoostedFisher", 
                            "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2" )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_MC",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );

    if "FDA_GA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_GA",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );

    if "FDA_SA" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_SA",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );

    if "FDA_MT" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_MT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

    if "FDA_GAMT" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_GAMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

    if "FDA_MCMT" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kFDA, "FDA_MCMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" )

    if "MLPBFGS" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" )

    if "MLPBNN" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ) # BFGS training with bayesian regulators

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ) # n_cycles:#nodes:#nodes:...  

    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ) # n_cycles:#nodes:#nodes:...

    # Support Vector Machine
    if "SVM" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" )

    # Boosted Decision Trees
    if "BDTG" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kBDT, "BDTG",
                            "!H:!V:NTrees=1000:MinNodeSize=1.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2" )                        

    if "BDT" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kBDT, "BDT",
                           "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20" )

    if "BDTB" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kBDT, "BDTB",
                           "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20" )

    if "BDTD" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kBDT, "BDTD",
                           "!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate" )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod( dataloader, TMVA.Types.kRuleFit, "RuleFit",
                            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" )

    # --------------------------------------------------------------------------------------------------
            
    # ---- Now you can tell the factory to train, test, and evaluate the MVAs. 

    # Train MVAs
    factory.TrainAllMethods()
    
    # Test MVAs
    factory.TestAllMethods()
    
    # Evaluate MVAs
    factory.EvaluateAllMethods()    
    
    # Save the output.
    outputFile.Close()
    
    print "=== wrote root file %s\n" % outfname
    print "=== TMVAClassification is done!\n"
    
    # open the GUI for the result macros    
    TMVA.TMVAGui(outfname)
    
    # keep the ROOT thread running
    gApplication.Run() 
Esempio n. 4
0
    def launch_gui(self):
        '''Launch the TMVA GUI.'''

        self.cd_weightsdir()
        return TMVA.TMVAGui(self.outputfile)
def main():
    # Default settings for command line arguments
    DEFAULT_OUTFNAME = "TMVAXi2.root"
    DEFAULT_INFNAME = "MC_Xic0_2015_filtered.root"
    DEFAULT_TREESIG = "DecayTree"
    DEFAULT_TREEBKG = "DecayTree"
    DEFAULT_METHODS = "Cuts,CutsD,CutsPCA,CutsGA,CutsSA,Likelihood,LikelihoodD,LikelihoodPCA,LikelihoodKDE,LikelihoodMIX,PDERS,PDERSD,PDERSPCA,PDEFoam,PDEFoamBoost,KNN,LD,Fisher,FisherG,BoostedFisher,HMatrix,FDA_GA,FDA_SA,FDA_MC,FDA_MT,FDA_GAMT,FDA_MCMT,MLP,MLPBFGS,MLPBNN,CFMlpANN,TMlpANN,SVM,BDT,BDTD,BDTG,BDTB,RuleFit"

    import argparse
    argparser = argparse.ArgumentParser()
    argparser.add_argument("-m",
                           "--methods",
                           default=repr(DEFAULT_METHODS.split(',')))
    argparser.add_argument("-o", "--outputfile", default=DEFAULT_OUTFNAME)
    argparser.add_argument('--variables')
    argparser.add_argument('-s', '--spectators', default='()')
    argparser.add_argument('--signalfile', default=DEFAULT_INFNAME)
    argparser.add_argument('--signaltree', default=DEFAULT_TREESIG)
    argparser.add_argument('--signalsel', default='')
    argparser.add_argument('--signalweight', default='')
    argparser.add_argument('--bkgfile', default=DEFAULT_INFNAME)
    argparser.add_argument('--bkgtree', default=DEFAULT_TREEBKG)
    argparser.add_argument('--bkgsel', default='')
    argparser.add_argument('--bkgweight', default='')
    argparser.add_argument('--factoryname', default="TMVAClassification")
    argparser.add_argument('-v',
                           '--verbose',
                           action='store_true',
                           default=False)
    argparser.add_argument('--weightsdir', default='weights')
    argparser.add_argument('--datasetname', default='dataset')

    args = argparser.parse_args()

    weightsdir = args.weightsdir
    ROOT.TMVA.Config.Instance().GetIONames().fWeightFileDir = weightsdir

    # Print methods
    mlist = eval(args.methods)
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    if os.path.exists('./TMVAlogon.C'):
        gROOT.Macro("./TMVAlogon.C")

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Output file
    outputFile = TFile(args.outputfile, 'RECREATE')

    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory(
        args.factoryname, outputFile,
        "!V:!Silent:Color:!DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification"
    )

    # Set verbosity
    factory.SetVerbose(args.verbose)

    # If you wish to modify default settings
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    #    gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory"

    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]

    # For ROOT v6 compatibility.
    root6 = not hasattr(factory, 'AddVariable')
    if root6:
        dataloader = ROOT.TMVA.DataLoader(args.datasetname)
    else:
        dataloader = factory

    for var in eval(args.variables):
        if not isinstance(var, (tuple, list)):
            var = (var, )
        try:
            dataloader.AddVariable(*var)
        except:
            print 'Failed to call dataloader.AddVariable with args', var
            raise
    # dataloader.AddVariable( "myvar1 := var1+var2", 'F' )
    # dataloader.AddVariable( "myvar2 := var1-var2", "Expression 2", "", 'F' )
    # dataloader.AddVariable( "var3",                "Variable 3", "units", 'F' )
    # dataloader.AddVariable( "var4",                "Variable 4", "units", 'F' )

    # You can add so-called "Spectator variables", which are not used in the MVA training,
    # but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
    # input variables, the response values of all trained MVAs, and the spectator variables
    for var in eval(args.spectators):
        if not isinstance(var, (tuple, list)):
            var = (var, )
        try:
            dataloader.AddSpectator(*var)
        except:
            print 'Failed to call dataloader.AddSpectator with args', var
            raise
    # dataloader.AddSpectator( "spec1:=var1*2",  "Spectator 1", "units", 'F' )
    # dataloader.AddSpectator( "spec2:=var1*3",  "Spectator 2", "units", 'F' )

    # Read input data
    # if gSystem.AccessPathName( infname ) != 0: gSystem.Exec( "wget http://root.cern.ch/files/" + infname )

    # input = TFile.Open( infname )

    # # Get the signal and background trees for training
    # signal      = input.Get( treeNameSig )
    # background  = input.Get( treeNameBkg )

    signalfile = TFile.Open(args.signalfile)
    if signalfile.IsZombie():
        raise OSError("Couldn't find signal file " + repr(args.signalfile))
    signal = signalfile.Get(args.signaltree)
    if not signal:
        raise ValueError("Couldn't find signal TTree " +
                         repr(args.signaltree) + " in file " +
                         repr(args.signalfile))

    bkgfile = TFile.Open(args.bkgfile)
    if bkgfile.IsZombie():
        raise OSError("Couldn't find bkg file " + repr(args.bkgfile))
    background = bkgfile.Get(args.bkgtree)
    if not background:
        raise ValueError("Couldn't find bkg TTree " + repr(args.bkgtree) +
                         " in file " + repr(args.bkgfile))

    # Global event weights (see below for setting event-wise weights)
    signalWeight = 1.0
    backgroundWeight = 1.0

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    dataloader.AddSignalTree(signal, signalWeight)
    dataloader.AddBackgroundTree(background, backgroundWeight)

    # To give different trees for training and testing, do as follows:
    #    dataloader.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    dataloader.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )

    # Use the following code instead of the above two or four lines to add signal and background
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================

    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : dataloader.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: dataloader.SetBackgroundWeightExpression("weight1*weight2");
    if args.signalweight:
        dataloader.SetSignalWeightExpression(args.signalweight)
    if args.bkgweight:
        dataloader.SetBackgroundWeightExpression(args.bkgweight)

    # Apply additional cuts on the signal and background sample.
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )
    mycutSig = TCut(args.signalsel)
    mycutBkg = TCut(args.bkgsel)

    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    dataloader.PrepareTrainingAndTestTree(
        mycutSig, mycutBkg,
        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V"
    )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation
    if root6:
        # Bit of an ugly hack, but does the job.
        factory._BookMethod = factory.BookMethod

        # Don't know why 'self' isn't passed here?
        def BookMethod(*args):
            factory._BookMethod(dataloader, *args)

        factory.BookMethod = BookMethod

    if "Cuts" in mlist:
        factory.BookMethod(
            TMVA.Types.kCuts, "Cuts",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart")

    if "CutsD" in mlist:
        factory.BookMethod(
            TMVA.Types.kCuts, "CutsD",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate"
        )

    if "CutsPCA" in mlist:
        factory.BookMethod(
            TMVA.Types.kCuts, "CutsPCA",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA"
        )

    if "CutsGA" in mlist:
        factory.BookMethod(
            TMVA.Types.kCuts, "CutsGA",
            "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95"
        )

    if "CutsSA" in mlist:
        factory.BookMethod(
            TMVA.Types.kCuts, "CutsSA",
            "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    # Likelihood ("naive Bayes estimator")
    if "Likelihood" in mlist:
        factory.BookMethod(
            TMVA.Types.kLikelihood, "Likelihood",
            "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50"
        )

    # Decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod(
            TMVA.Types.kLikelihood, "LikelihoodD",
            "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate"
        )

    # PCA-transformed likelihood
    if "LikelihoodPCA" in mlist:
        factory.BookMethod(
            TMVA.Types.kLikelihood, "LikelihoodPCA",
            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA"
        )

    # Use a kernel density estimator to approximate the PDFs
    if "LikelihoodKDE" in mlist:
        factory.BookMethod(
            TMVA.Types.kLikelihood, "LikelihoodKDE",
            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50"
        )

    # Use a variable-dependent mix of splines and kernel density estimator
    if "LikelihoodMIX" in mlist:
        factory.BookMethod(
            TMVA.Types.kLikelihood, "LikelihoodMIX",
            "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50"
        )

    # Test the multi-dimensional probability density estimator
    # here are the options strings for the MinMax and RMS methods, respectively:
    #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
    #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
    if "PDERS" in mlist:
        factory.BookMethod(
            TMVA.Types.kPDERS, "PDERS",
            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600"
        )

    if "PDERSD" in mlist:
        factory.BookMethod(
            TMVA.Types.kPDERS, "PDERSD",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate"
        )

    if "PDERSPCA" in mlist:
        factory.BookMethod(
            TMVA.Types.kPDERS, "PDERSPCA",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA"
        )

# Multi-dimensional likelihood estimator using self-adapting phase-space binning
    if "PDEFoam" in mlist:
        factory.BookMethod(
            TMVA.Types.kPDEFoam, "PDEFoam",
            "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T"
        )

    if "PDEFoamBoost" in mlist:
        factory.BookMethod(
            TMVA.Types.kPDEFoam, "PDEFoamBoost",
            "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T"
        )

    # K-Nearest Neighbour classifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod(
            TMVA.Types.kKNN, "KNN",
            "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim"
        )

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod(TMVA.Types.kHMatrix, "HMatrix", "!H:!V")

    # Linear discriminant (same as Fisher discriminant)
    if "LD" in mlist:
        factory.BookMethod(
            TMVA.Types.kLD, "LD",
            "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher discriminant (same as LD)
    if "Fisher" in mlist:
        factory.BookMethod(
            TMVA.Types.kFisher, "Fisher",
            "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher with Gauss-transformed input variables
    if "FisherG" in mlist:
        factory.BookMethod(TMVA.Types.kFisher, "FisherG",
                           "H:!V:VarTransform=Gauss")

    # Composite classifier: ensemble (tree) of boosted Fisher classifiers
    if "BoostedFisher" in mlist:
        factory.BookMethod(
            TMVA.Types.kFisher, "BoostedFisher",
            "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2"
        )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_MC",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1"
        )

    if "FDA_GA" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_GA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1"
        )

    if "FDA_SA" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_SA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    if "FDA_MT" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_MT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch"
        )

    if "FDA_GAMT" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_GAMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim"
        )

    if "FDA_MCMT" in mlist:
        factory.BookMethod(
            TMVA.Types.kFDA, "FDA_MCMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20"
        )

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod(
            TMVA.Types.kMLP, "MLP",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator"
        )

    if "MLPBFGS" in mlist:
        factory.BookMethod(
            TMVA.Types.kMLP, "MLPBFGS",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator"
        )

    if "MLPBNN" in mlist:
        factory.BookMethod(
            TMVA.Types.kMLP, "MLPBNN",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator"
        )  # BFGS training with bayesian regulators

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod(TMVA.Types.kCFMlpANN, "CFMlpANN",
                           "!H:!V:NCycles=2000:HiddenLayers=N+1,N"
                           )  # n_cycles:#nodes:#nodes:...

    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod(
            TMVA.Types.kTMlpANN, "TMlpANN",
            "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"
        )  # n_cycles:#nodes:#nodes:...

    # Support Vector Machine
    if "SVM" in mlist:
        factory.BookMethod(TMVA.Types.kSVM, "SVM",
                           "Gamma=0.25:Tol=0.001:VarTransform=Norm")

    # Boosted Decision Trees
    if "BDTG" in mlist:
        factory.BookMethod(
            TMVA.Types.kBDT, "BDTG",
            "!H:!V:NTrees=1000:MinNodeSize=1.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:MaxDepth=2"
        )

    if "BDT" in mlist:
        factory.BookMethod(
            TMVA.Types.kBDT, "BDT",
            "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20"
        )

    if "BDTB" in mlist:
        factory.BookMethod(
            TMVA.Types.kBDT, "BDTB",
            "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20"
        )

    if "BDTD" in mlist:
        factory.BookMethod(
            TMVA.Types.kBDT, "BDTD",
            "!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate"
        )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod(
            TMVA.Types.kRuleFit, "RuleFit",
            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02"
        )

    # --------------------------------------------------------------------------------------------------

    # ---- Now you can tell the factory to train, test, and evaluate the MVAs.

    # Train MVAs
    factory.TrainAllMethods()

    # Test MVAs
    factory.TestAllMethods()

    # Evaluate MVAs
    factory.EvaluateAllMethods()

    # Save the output.
    outputFile.Close()

    print "=== wrote root file %s\n" % outputFile.GetName()
    print "=== TMVAClassification is done!\n"

    # open the GUI for the result macros
    if not ROOT.gROOT.IsBatch():
        if hasattr(TMVA, 'TMVAGui'):
            TMVA.TMVAGui(outputFile.GetName())
            raw_input('Hit enter to quit.')
        elif 'ROOTSYS' in os.environ:
            tmvaguipath = os.path.join(os.environ['ROOTSYS'], 'tutorials',
                                       'tmva')
            if os.path.exists(os.path.join(tmvaguipath, 'TMVAGui.C')):
                gROOT.SetMacroPath(tmvaguipath)
                gROOT.LoadMacro("TMVAGui.C")
                try:
                    gROOT.ProcessLine("TMVAGui(\"%s\")" % outputFile.GetName())
                    raw_input('Hit enter to quit.')
                except RuntimeError:
                    print "Couldn't run TMVAGui!"

    outputfilename = outputFile.GetName()
    weightsfiles = dict(
        (m,
         os.path.join(weightsdir, args.factoryname + '_' + m + '.weights.xml'))
        for m in mlist)
    classfiles = dict(
        (m, os.path.join(weightsdir, args.factoryname + '_' + m + '.class.C'))
        for m in mlist)

    # keep the ROOT thread running (this makes the function hang).
    #gApplication.Run()

    # TMVA disables unused branches when copying the trees then doesn't change them back.
    background.SetBranchStatus('*', 1)
    signal.SetBranchStatus('*', 1)
    if 'signalfile' in locals():
        signalfile.Close()
    if 'bkgfile' in locals():
        bkgfile.Close()
    return locals()
Esempio n. 6
0
def TMVAClassification(methods,
                       sigfname,
                       bkgfname,
                       optname,
                       channel,
                       trees,
                       verbose=False):  #="DecayTree,DecayTree"
    # Print methods
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Define trees
    trees = trees.split(",")
    if len(trees) - trees.count('') != 2:
        print "ERROR: need to give two trees (each one for signal and background)"
        print trees
        sys.exit(1)
    treeNameSig = trees[0]
    treeNameBkg = trees[1]

    # Print output file and directory
    outfname = "TMVA_%s_%s.root" % (channel, optname)
    myWeightDirectory = "weights_%s_%s" % (channel, optname)
    print "=== TMVAClassification: output will be written to:"
    print "=== %s" % outfname
    print "=== %s" % myWeightDirectory

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    #gROOT.SetMacroPath( "./" )
    #gROOT.Macro       ( "./tmva/test/TMVAlogon.C" )
    #gROOT.LoadMacro   ( "./tmva/test/TMVAGui.C" ) ###Is this really necessary??

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Setup TMVA
    TMVA.Tools.Instance()

    # Output file
    outputFile = TFile(outfname, 'RECREATE')

    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory(
        "TMVAClassification", outputFile,
        "!V:!Silent:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification"
    )

    # Set verbosity
    factory.SetVerbose(verbose)

    # Load data
    dataloader = TMVA.DataLoader("dataset")

    # If you wish to modify default settings
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    (TMVA.gConfig().GetIONames()).fWeightFileDir = myWeightDirectory
    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]

    print "*** Training on channel:"
    print "*** %s" % channel
    print "***"
    '''
    if channel == "1":
        #dataloader.AddVariable( "pplus_ProbNNp",                      "Prob(p^{+})",                             "",     'F' );
        #dataloader.AddVariable( "Kminus_ProbNNk",                     "Prob(K^{-})",                             "",     'F' );

        dataloader.AddVariable( "pplus_PT",                           "P_{T}(p^{+})",                             "MeV", 'F' );
        dataloader.AddVariable( "Kminus_PT",                          "P_{T}(K^{-})",                             "MeV", 'F' );
        dataloader.AddVariable( "gamma_PT",                           "P_{T}(#gamma)",                            "MeV", 'F' );
        dataloader.AddVariable( "Lambda_1520_0_PT",                   "P_{T}(#Lambda(1520))",                     "MeV", 'F' );
        dataloader.AddVariable( "B_PT",                               "P_{T}(#Lambda_{b})",                       "MeV", 'F' );

        dataloader.AddVariable( "beta:=(-gamma_P+Kminus_P+pplus_P)/(gamma_P+Kminus_P+pplus_P)","#beta",             "MeV", 'F' );
        dataloader.AddVariable( "MomCons1:=-B_P+gamma_P+Lambda_1520_0_P","P_{tot,1}",                               "MeV", 'F' );
        dataloader.AddVariable( "MomCons2:=-Lambda_1520_0_P+Kminus_P+pplus_P","P_{tot,2}",                          "MeV", 'F' );

        dataloader.AddVariable( "Sum_Kminus_p_eta:=atanh(pplus_PZ/pplus_P)+atanh(Kminus_PZ/Kminus_P)","#eta(K^{-})+#eta(p^{+})","MeV", 'F' );
        dataloader.AddVariable( "Diff_Kminus_p_eta:=atanh(Kminus_PZ/Kminus_P)-atanh(pplus_PZ/pplus_P)","#eta(K^{-})-#eta(p^{+})","MeV", 'F' );

        dataloader.AddVariable( "pplus_IPCHI2_OWNPV",                 "#chi^{2}_{IP}(p^{+})",                       ""  ,  'F' );
        dataloader.AddVariable( "Kminus_IPCHI2_OWNPV",                "#chi^{2}_{IP}(K^{-})",                       ""  ,  'F' );
        dataloader.AddVariable( "B_IPCHI2_OWNPV",                     "#chi^{2}_{IP}(#Lambda_{b})",                 ""  ,  'F' );
        #dataloader.AddVariable( "gamma_IPCHI2_OWNPV",                 "IP #chi^{2}(#gamma)",                       ""  ,  'F' );
        #dataloader.AddVariable( "Lambda_1520_0_IP_OWNPV",             "IP(#Lambda(1520))",                        "mm",  'F' );
        #dataloader.AddVariable( "Lambda_1520_0_IPCHI2_OWNPV",         "IP#chi^{2}(#Lambda(1520))",               "",    'F' );
        
        dataloader.AddVariable( "Lambda_1520_0_OWNPV_CHI2",           "#chi^{2}_{vertex}(#Lambda(1520))",           ""  ,  'F' );
        dataloader.AddVariable( "B_OWNPV_CHI2",                       "#chi^{2}_{vertex}(#Lambda_{b})",             ""  ,  'F' );
        dataloader.AddVariable( "B_DIRA_OWNPV",                       "DIRA(#Lambda_{b})",                          ""  ,  'F' );
        
        #dataloader.AddVariable( "Lambda_1520_0_FDCHI2_OWNPV",         "FD #chi^{2}(#Lambda(1520))",               "",    'F' );
        dataloader.AddVariable( "B_FDCHI2_OWNPV",                     "#chi^{2}_{FD}(#Lambda_{b})",                 "",    'F' );
    '''

    if channel == "2":
        dataloader.AddVariable("pplus_PT", "P_{T}(p^{+})", "MeV", 'F')
        dataloader.AddVariable("Kminus_PT", "P_{T}(K^{-})", "MeV", 'F')
        dataloader.AddVariable("gamma_PT", "P_{T}(#gamma)", "MeV", 'F')
        dataloader.AddVariable("Lambda_1520_0_PT", "P_{T}(#Lambda*)", "MeV",
                               'F')
        dataloader.AddVariable("B_PT", "P_{T}(#Lambda_{b})", "MeV", 'F')

        dataloader.AddVariable(
            "beta:=(-gamma_P+Kminus_P+pplus_P)/(gamma_P+Kminus_P+pplus_P)",
            "#beta", "", 'F')
        #ok
        #dataloader.AddVariable( "MomCons1:=-B_P+gamma_P+Lambda_1520_0_P","P_{tot,1}",                               "MeV", 'F' );#BDT learned Mass check1
        dataloader.AddVariable("MomCons2:=-Lambda_1520_0_P+Kminus_P+pplus_P",
                               "P_{tot,2}", "MeV", 'F')
        #ok

        #dataloader.AddVariable( "Sum_Kminus_p_eta:=atanh(pplus_PZ/pplus_P)+atanh(Kminus_PZ/Kminus_P)","#eta(K^{-})+#eta(p^{+})","", 'F' );#99correlationL_eta
        dataloader.AddVariable(
            "Diff_Kminus_p_eta:=atanh(Kminus_PZ/Kminus_P)-atanh(pplus_PZ/pplus_P)",
            "#eta(K^{-})-#eta(p^{+})", "", 'F')
        dataloader.AddVariable(
            "Lambda_1520_0_eta:=atanh(Lambda_1520_0_PZ/Lambda_1520_0_P)",
            "#eta(#Lambda*)", "", 'F')
        dataloader.AddVariable("gamma_eta:=atanh(gamma_PZ/gamma_P)",
                               "#eta(#gamma)", "", 'F')

        dataloader.AddVariable("pplus_IPCHI2_OWNPV", "#chi^{2}_{IP}(p^{+})",
                               "", 'F')
        #dataloader.AddVariable( "Kminus_IPCHI2_OWNPV",                "#chi^{2}_{IP}(K^{-})",                       ""  ,  'F' );
        dataloader.AddVariable("B_IPCHI2_OWNPV", "#chi^{2}_{IP}(#Lambda_{b})",
                               "", 'F')
        dataloader.AddVariable("Lambda_1520_0_IPCHI2_OWNPV",
                               "#chi^{2}_{IP}(#Lambda*)", "", 'F')

        dataloader.AddVariable("Lambda_1520_0_OWNPV_CHI2",
                               "#chi^{2}_{vertex}(#Lambda*)", "", 'F')
        dataloader.AddVariable("B_OWNPV_CHI2",
                               "#chi^{2}_{vertex}(#Lambda_{b})", "", 'F')
        #dataloader.AddVariable( "B_BMassFit_chi2/B_BMassFit_nDOF",    "#chi^{2}_{DTF}/n_{dof}",                     ""  ,  'F' );#BDT learned Mass check1
        #dataloader.AddVariable( "B_PVFit_chi2/B_PVFit_nDOF",          "#chi^{2}_{DTF}/n_{dof}",                     ""  ,  'F' );#put it out because array

        #dataloader.AddVariable( "B_DIRA_OWNPV",                       "DIRA(#Lambda_{b})",                          ""  ,  'F' ); #not used by BDT
        #dataloader.AddVariable( "Lambda_1520_0_DIRA_OWNPV",           "DIRA(#Lambda*)",                        ""  ,  'F' ); #not used
        #dataloader.AddVariable( "Lambda_1520_0_FDCHI2_OWNPV",         "FD #chi^{2}(#Lambda*)",               "",    'F' ); #not used
        #dataloader.AddVariable( "B_FDCHI2_OWNPV",                     "#chi^{2}_{FD}(#Lambda_{b})",                 "",    'F' ); #not used

    # Add Spectator Variables: not used for Training but written in final TestTree
    #dataloader.AddSpectator( "B_M",                                   "M(#Lambda_{b})",                           "MeV");
    #dataloader.AddSpectator( "Lambda_1520_0_M",                       "M(#Lambda*)",                         "MeV");

    # Read input data
    if gSystem.AccessPathName(sigfname) != 0:
        print "Can not find %s" % sigfname
    if gSystem.AccessPathName(bkgfname) != 0:
        print "Can not find %s" % bkgfname

    inputSig = TFile.Open(sigfname)
    inputBkg = TFile.Open(bkgfname)

    # Get the signal and background trees for training
    signal = inputSig.Get(treeNameSig)
    background = inputBkg.Get(treeNameBkg)

    # Global event weights (see below for setting event-wise weights)
    signalWeight = 1.0
    backgroundWeight = 1.0

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    dataloader.AddSignalTree(signal, signalWeight)
    dataloader.AddBackgroundTree(background, backgroundWeight)

    # To give different trees for training and testing, do as follows:
    #    dataloader.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    dataloader.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )

    # Use the following code instead of the above two or four lines to add signal and background
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================

    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : dataloader.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: dataloader.SetBackgroundWeightExpression("weight1*weight2");
    #dataloader.SetBackgroundWeightExpression( "weight" )

    # Apply additional cuts on the signal and background sample.
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )

    mycutSig = TCut(
        ""
    )  #"pplus_ProbNNp>0.2 && Kminus_ProbNNk>0.2 && B_PT>4000 && Lambda_1520_0_PT>1500 && gamma_PT>3000 && pplus_PT>1000 && B_FDCHI2_OWNPV>100 && pplus_IPCHI2_OWNPV>50 && Kminus_IPCHI2_OWNPV>40")# B_BKGCAT==0 directly applied in root sample
    #print(sigfname + str( mycutSig ) + treeNameSig)

    mycutBkg = TCut(
        "B_M>6120"
    )  #"pplus_ProbNNp>0.2 && Kminus_ProbNNk>0.2 && B_PT>4000 && Lambda_1520_0_PT>1500 && gamma_PT>3000 && pplus_PT>1000 && B_FDCHI2_OWNPV>100 && pplus_IPCHI2_OWNPV>50 && Kminus_IPCHI2_OWNPV>40 && B_M>6120")#(B_M>6120 || B_M<5120)" )
    #print(bkgfname + str( mycutBkg ) + treeNameBkg)

    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    dataloader.PrepareTrainingAndTestTree(
        mycutSig, mycutBkg,
        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V"
    )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation
    if "Cuts" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "Cuts",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart")

    if "CutsD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsD",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate"
        )

    if "CutsPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsPCA",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA"
        )

    if "CutsGA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsGA",
            "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95"
        )

    if "CutsSA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsSA",
            "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    # Likelihood ("naive Bayes estimator")
    if "Likelihood" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "Likelihood",
            "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50"
        )

    # Decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodD",
            "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate"
        )

    # PCA-transformed likelihood
    if "LikelihoodPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodPCA",
            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA"
        )

    # Use a kernel density estimator to approximate the PDFs
    if "LikelihoodKDE" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodKDE",
            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50"
        )

    # Use a variable-dependent mix of splines and kernel density estimator
    if "LikelihoodMIX" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodMIX",
            "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50"
        )

    # Test the multi-dimensional probability density estimator
    # here are the options strings for the MinMax and RMS methods, respectively:
    #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
    #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
    if "PDERS" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERS",
            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600"
        )

    if "PDERSD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERSD",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate"
        )

    if "PDERSPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERSPCA",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA"
        )

# Multi-dimensional likelihood estimator using self-adapting phase-space binning
    if "PDEFoam" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDEFoam, "PDEFoam",
            "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T"
        )

    if "PDEFoamBoost" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDEFoam, "PDEFoamBoost",
            "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T"
        )

    # K-Nearest Neighbour classifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kKNN, "KNN",
            "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim"
        )

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kHMatrix, "HMatrix", "!H:!V")

    # Linear discriminant (same as Fisher discriminant)
    if "LD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLD, "LD",
            "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher discriminant (same as LD)
    if "Fisher" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFisher, "Fisher",
            "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher with Gauss-transformed input variables
    if "FisherG" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kFisher, "FisherG",
                           "H:!V:VarTransform=Gauss")

    # Composite classifier: ensemble (tree) of boosted Fisher classifiers
    if "BoostedFisher" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFisher, "BoostedFisher",
            "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2"
        )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MC",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1"
        )

    if "FDA_GA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_GA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1"
        )

    if "FDA_SA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_SA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    if "FDA_MT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch"
        )

    if "FDA_GAMT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_GAMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim"
        )

    if "FDA_MCMT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MCMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20"
        )

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod(
            dataloader,
            TMVA.Types.kMLP,
            "MLP",
            #"!H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+3:TestRate=5:!UseRegulator" )#Try
            "!H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator"
        )  #Old

    if "MLPBFGS" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kMLP, "MLPBFGS",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator"
        )

    if "MLPBNN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kMLP, "MLPBNN",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator"
        )  # BFGS training with bayesian regulators

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kCFMlpANN, "CFMlpANN",
                           "!H:!V:NCycles=2000:HiddenLayers=N+1,N"
                           )  # n_cycles:#nodes:#nodes:...

    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kTMlpANN, "TMlpANN",
            "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"
        )  # n_cycles:#nodes:#nodes:...

    # Support Vector Machine
    if "SVM" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kSVM, "SVM",
                           "Gamma=0.25:Tol=0.001:VarTransform=Norm")

    # Boosted Decision Trees
    if "BDTG" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTG",
            "!H:!V:NTrees=600:BoostType=Grad:Shrinkage=0.1:UseBaggedGrad:GradBaggingFraction=0.73:SeparationType=GiniIndex:nCuts=15:MaxDepth=2"
        )  #Settings3
        #"!H:!V:NTrees=300:BoostType=Grad:Shrinkage=0.11:UseBaggedGrad:GradBaggingFraction=0.73:SeparationType=GiniIndex:nCuts=17:MaxDepth=4" )#AnaNote
        #"!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5" )#Old

    if "BDT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDT",
            "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning"
        )

    if "BDTB" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTB",
            "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning"
        )

    if "BDTD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTD",
            "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate"
        )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kRuleFit, "RuleFit",
            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02"
        )

    # --------------------------------------------------------------------------------------------------

    # ---- Now you can tell the factory to train, test, and evaluate the MVAs.

    # Train MVAs
    print("FLAG 0")
    factory.TrainAllMethods()

    # Test MVAs
    factory.TestAllMethods()

    # Evaluate MVAs
    factory.EvaluateAllMethods()

    # Save the output.
    outputFile.Close()

    print "=== wrote root file %s\n" % outfname
    print "=== TMVAClassification is done!\n"

    # open the GUI for the result macros
    if not gROOT.IsBatch(): TMVA.TMVAGui(outfname)