Esempio n. 1
0
def plotPulls(optunf="Bayes",
              ntest=10,
              leff=True,
              loufl=False,
              optfun="exp",
              opttfun="",
              gmean=-1.0,
              nrebin=4):

    if opttfun == "":
        opttfun = optfun

    if optfun == "blobel":
        gmean = 0.0

    funttxt, funtxt = funtxts(opttfun, optfun, leff, loufl)

    global histos, canv, canv2
    histos = []

    canv = TCanvas("canv", "thruth vs reco pulls", 600, 800)
    canv.Divide(1, 3)
    canv2 = TCanvas("canv2", "P(chi^2)", 600, 800)
    canv2.Divide(2, 3)

    if optunf == "BasisSplines":
        bininfo = BinInfo(nrebin)
        unfoldtester = UnfoldTester(optunf, nrebin)
    else:
        bininfo = BinInfo()
        unfoldtester = UnfoldTester(optunf)
    trainer = Trainer(bininfo, opttfun, optfun)
    tester = Tester(bininfo, optfun)
    hbininfo = bininfo.create(optfun)
    dx = hbininfo["mhi"]
    for sigma, ipad in [[0.01 * dx, 1], [0.03 * dx, 2], [0.1 * dx, 3]]:
        txt = optunf + ", smear mu, s.d.= " + str(gmean) + ", " + str(
            sigma) + ", train: " + funttxt + ", test: " + funtxt + ", " + str(
                ntest) + " tests"
        hPulls = TProfile("pulls", txt, hbininfo["tbins"], hbininfo["tlo"],
                          hbininfo["thi"])
        hPulls.SetErrorOption("s")
        hPulls.SetYTitle("Thruth reco pull")
        histos.append(hPulls)
        hChisq = TH1D("chisq", "P(chi^2) rec " + txt, 10, 0.0, 1.0)
        hChisqm = TH1D("chisqm", "P(chi^2) mea " + txt, 10, 0.0, 1.0)
        histos.append(hChisq)
        histos.append(hChisqm)
        measurement = createMeasurement(gmean, sigma, leff, optfun)
        response = trainer.train(measurement, loufl=loufl)
        for itest in range(ntest):
            print "Test", itest
            unfold, hTrue, hMeas = unfoldtester.rununfoldtest(
                tester, measurement, response)
            unfold.PrintTable(cout, hTrue, 2)
            hReco = unfold.Hreco(2)
            nbin = hReco.GetNbinsX()
            if hbininfo["nrebin"] > 1:
                hTrue = hTrue.Rebin(nrebin)
            for ibin in range(nbin + 1):
                truevalue = hTrue.GetBinContent(ibin)
                recvalue = hReco.GetBinContent(ibin)
                error = hReco.GetBinError(ibin)
                if error > 0.0:
                    pull = (recvalue - truevalue) / error
                    hPulls.Fill(hReco.GetBinCenter(ibin), pull)
            chisq = unfold.Chi2(hTrue, 2)
            hChisq.Fill(TMath.Prob(chisq, hTrue.GetNbinsX()))
            chisqm = unfold.Chi2measured()
            pchisqm = TMath.Prob(chisqm, hMeas.GetNbinsX() - hReco.GetNbinsX())
            print "Chisq measured=", chisqm, "P(chi^2)=", pchisqm
            hChisqm.Fill(pchisqm)

        canv.cd(ipad)
        gStyle.SetErrorX(0)
        hPulls.SetMinimum(-3.0)
        hPulls.SetMaximum(3.0)
        hPulls.SetMarkerSize(1.0)
        hPulls.SetMarkerStyle(20)
        hPulls.SetStats(False)
        hPulls.Draw()
        canv2.cd(ipad * 2 - 1)
        hChisq.Draw()
        canv2.cd(ipad * 2)
        hChisqm.Draw()

    fname = "RooUnfoldTestPulls_" + optunf + "_" + opttfun + "_" + optfun
    if loufl:
        fname += "_oufl"
    canv.Print(fname + ".pdf")
    fname = "RooUnfoldTestChisq_" + optunf + "_" + opttfun + "_" + optfun
    if loufl:
        fname += "_oufl"
    canv2.Print(fname + ".pdf")

    return
Esempio n. 2
0
def dqm_getSingleHist_json(server, run, dataset, hist, rootContent=False):
    postfix = "?rootcontent=1" if rootContent else ""
    datareq = urllib2.Request(('%s/jsonfairy/archive/%s/%s/%s%s') % (server, run, dataset, hist, postfix))
    datareq.add_header('User-agent', ident)
    # Get data
    data = eval(re.sub(r"\bnan\b", "0", urllib2.build_opener(X509CertOpen()).open(datareq).read()),
               { "__builtins__": None }, {})
    histo = data['hist']
    # Now convert into real ROOT histogram object
    if 'TH1' in histo['type']:
        # The following assumes a TH1F object
        contents = histo['bins']['content']
        nbins = len(contents)
        xmin = histo['xaxis']['first']['value']
        xmax = histo['xaxis']['last']['value']
        roothist = TH1F(histo['stats']['name'],histo['title'],nbins,xmin,xmax)
        for xx in range(1,nbins+1):
            roothist.SetBinContent(xx, contents[xx-1])
            roothist.SetBinError(xx, histo['bins']['error'][xx-1])
        roothist.SetEntries(histo['stats']['entries']) 
        stats=array('d')
        stats.append(histo['stats']['entries'])
        stats.append(histo['stats']['entries'])
        stats.append(histo['stats']['entries']*histo['stats']['mean']['X']['value'])
        stats.append((histo['stats']['rms']['X']['value']*histo['stats']['rms']['X']['value']+histo['stats']['mean']['X']['value']*histo['stats']['mean']['X']['value'])*histo['stats']['entries'])
        roothist.PutStats(stats)
    elif(histo['type']=='TProfile'):
        contents = histo['bins']['content']
        nbins = len(contents)
        xmin = histo['xaxis']['first']['value']
        xmax = histo['xaxis']['last']['value']
        roothist = TProfile(histo['stats']['name'],histo['title'],nbins,xmin,xmax)
        roothist.SetErrorOption("g")
        for xx in range(0,nbins):
            if(histo['bins']['error'][xx]!=0):
                ww=1./(histo['bins']['error'][xx]*histo['bins']['error'][xx])
            else:
                ww=0.
            roothist.Fill(xmin+(2*xx+1)*((xmax-xmin)/(nbins*2.0)), contents[xx],ww)
#            roothist.SetBinContent(xx, contents[xx-1])
#            roothist.SetBinError(xx, histo['bins']['error'][xx-1])
        roothist.SetEntries(histo['stats']['entries']) 
        stats=array('d')
        for i in range(0,6):
            stats.append(i)
        roothist.GetStats(stats)
        stats[0]=(histo['stats']['entries'])
        stats[1]=(histo['stats']['entries'])
        stats[2]=(histo['stats']['entries']*histo['stats']['mean']['X']['value'])
        stats[3]=((histo['stats']['rms']['X']['value']*histo['stats']['rms']['X']['value']+histo['stats']['mean']['X']['value']*histo['stats']['mean']['X']['value'])*histo['stats']['entries'])
        roothist.PutStats(stats)
    elif 'TH2' in histo['type']:
        contents = histo['bins']['content']
        nbinsx = histo['xaxis']['last']['id']
        xmin = histo['xaxis']['first']['value']
        xmax = histo['xaxis']['last']['value']
        nbinsy = histo['yaxis']['last']['id']
        ymin = histo['yaxis']['first']['value']
        ymax = histo['yaxis']['last']['value']
        roothist = TH2F(histo['stats']['name'],histo['title'],nbinsx,xmin,xmax,nbinsy,ymin,ymax)
        for xx in range(1,nbinsx+1):
            for yy in range(1,nbinsy+1):
                roothist.SetBinContent(xx,yy, contents[yy-1][xx-1])
        roothist.SetEntries(histo['stats']['entries']) 
        stats=array('d')
        stats.append(histo['stats']['entries'])
        stats.append(histo['stats']['entries'])
        stats.append(histo['stats']['entries']*histo['stats']['mean']['X']['value'])
        stats.append((histo['stats']['rms']['X']['value']*histo['stats']['rms']['X']['value']+histo['stats']['mean']['X']['value']*histo['stats']['mean']['X']['value'])*histo['stats']['entries'])
        stats.append(histo['stats']['entries']*histo['stats']['mean']['Y']['value'])
        stats.append((histo['stats']['rms']['Y']['value']*histo['stats']['rms']['Y']['value']+histo['stats']['mean']['Y']['value']*histo['stats']['mean']['Y']['value'])*histo['stats']['entries'])
        roothist.PutStats(stats)

    elif(histo['type']=='TProfile2D'):
        contents = histo['bins']['content']
        nbinsx = histo['xaxis']['last']['id']
        xmin = histo['xaxis']['first']['value']
        xmax = histo['xaxis']['last']['value']
        nbinsy = histo['yaxis']['last']['id']
        ymin = histo['yaxis']['first']['value']
        ymax = histo['yaxis']['last']['value']
        roothist = TProfile2D(histo['stats']['name'],histo['title'],nbinsx,xmin,xmax,nbinsy,ymin,ymax)
        for xx in range(0,nbinsx):
            for yy in range(0,nbinsy):
                roothist.Fill(xmin+(2*xx+1)*((xmax-xmin)/(nbinsx*2.0)),ymin+(2*yy+1)*((ymax-ymin)/(nbinsy*2.0)),0,1)
        for xx in range(1,nbinsx+1):
            for yy in range(1,nbinsy+1):
                roothist.SetBinContent(xx,yy, contents[yy-1][xx-1])
                roothist.SetEntries(histo['stats']['entries']) 

    return roothist
Esempio n. 3
0
def main(network_name, do_weights, general_weights, electron_weights,
         muon_weights, data_files, no_true_comp, nbins, veto_all_jets,
         require_jets, WorkingP_List, Independant_Variable_List,
         Histogram_Variable_List, Profile_List, TH2D_List):

    TH1.SetDefaultSumw2()

    ## First we check that you havent vetoed and requested jets
    if veto_all_jets and require_jets:
        print("\n\n\nYOU CANT ASK FOR NONE YET SOME JETS\n\n\n")
        return 0

    for data_dir, data_set_name in data_files:
        OUTPUT_dir = os.path.join(os.environ["HOME_DIRECTORY"], "Output")
        DATA_dir = os.path.join(os.environ["HOME_DIRECTORY"], "Data")
        data_base_dir = os.path.join(DATA_dir, data_dir)
        print("\n\n" + data_set_name)
        """
         ____    ____    _____   ____       _      ____       _      _____   ___    ___    _   _
        |  _ \  |  _ \  | ____| |  _ \     / \    |  _ \     / \    |_   _| |_ _|  / _ \  | \ | |
        | |_) | | |_) | |  _|   | |_) |   / _ \   | |_) |   / _ \     | |    | |  | | | | |  \| |
        |  __/  |  _ <  | |___  |  __/   / ___ \  |  _ <   / ___ \    | |    | |  | |_| | | |\  |
        |_|     |_| \_\ |_____| |_|     /_/   \_\ |_| \_\ /_/   \_\   |_|   |___|  \___/  |_| \_|

        """

        ## The list of matrices
        Indp_output = [None for var in Independant_Variable_List]
        TH1D_output = [[None for wp in WorkingP_List]
                       for var in Histogram_Variable_List]
        Tail_output = [[None for wp in WorkingP_List]
                       for var in Histogram_Variable_List]
        Prof_output = [[None for wp in WorkingP_List] for var in Profile_List]
        TH2D_output = [[None for wp in WorkingP_List] for var in TH2D_List]

        ## Open the root file
        root_file = TFile.Open(os.path.join(data_base_dir, data_set_name))

        ## Loading the tree containing the working point information
        wpt_tree = root_file.Get("wpt_tree")

        ## Making the wpt_tree and the other trees friends so that they can be compared
        wpt_tree.AddFriend(network_name, root_file)
        wpt_tree.AddFriend("alt_tree", root_file)
        wpt_tree.AddFriend("var_tree", root_file)

        ## Creating a string of all the weights to be applied
        event_weights = []
        if "SR" in data_dir: event_weights += general_weights
        if "ee" in data_dir: event_weights += electron_weights
        if "mumu" in data_dir: event_weights += muon_weights

        if veto_all_jets:
            event_weights += ["(var_tree.Jets_Loose_SumET==0)"]
        if require_jets:
            event_weights += ["(var_tree.Jets_Loose_SumET>0)"]

        if do_weights: weight_string = " * ".join(event_weights)
        else: weight_string = ""

        if len(weight_string):
            print("Events are weighted using: {}".format(weight_string))

        ## The strings to call up the Truth Values
        if no_true_comp:
            True_Et = "0"
            True_Ex = "0"
            True_Ey = "0"
            True_Phi = "0"
        else:
            True_Et = "WP_Truth_ET"
            True_Ex = "WP_Truth_X"
            True_Ey = "WP_Truth_Y"
            True_Phi = "WP_Truth_Phi"
        """
         ____    ____       _     __        __  ___   _   _    ____
        |  _ \  |  _ \     / \    \ \      / / |_ _| | \ | |  / ___|
        | | | | | |_) |   / _ \    \ \ /\ / /   | |  |  \| | | |  _
        | |_| | |  _ <   / ___ \    \ V  V /    | |  | |\  | | |_| |
        |____/  |_| \_\ /_/   \_\    \_/\_/    |___| |_| \_|  \____|

        """

        ## Before the workingpoint loop, the independant variables are drawn
        for v, var in enumerate(Independant_Variable_List):
            print(" -- {}".format(var.name))

            ## Creating the histogram which will be filled
            hist_name = var.name
            myhist = TH1D(hist_name, hist_name, var.nbins, var.xmin, var.xmax)
            myhist.SetStats(True)
            myhist.StatOverflows(True)

            ## Get Maths Function from variable
            maths_string = var.tree + "." + var.branch

            ## Drawing the tree and saving the hist to the matrix
            execution = "{}>>{}".format(maths_string, hist_name)
            wpt_tree.Draw(execution, weight_string, "goff")

            ## Saving the Histogram to the Matrix
            myhist.SetDirectory(0)
            Indp_output[v] = myhist

        ## First we select the working point and create the correct strings
        for w, wp in enumerate(WorkingP_List):
            print(" -- {}:".format(wp.name))

            Rec_Et = wp.Et
            Rec_Ex = wp.Ex
            Rec_Ey = wp.Ey
            Rec_Phi = wp.Phi
            if wp.tree == "ann_tree":
                Rec_Et = network_name + "." + Rec_Et
                Rec_Ex = network_name + "." + Rec_Ex
                Rec_Ey = network_name + "." + Rec_Ey

            rec_and_truth_vars = [
                Rec_Et, Rec_Ex, Rec_Ey, Rec_Phi, True_Et, True_Ex, True_Ey,
                True_Phi
            ]

            ## Drawing the 1D histograms
            for v, var in enumerate(Histogram_Variable_List):
                print(" -- -- {}".format(var.name))

                ## Creating the histogram which will be filled
                hist_name = "{}_{}".format(var.name, wp.name)
                myhist = TH1D(hist_name, hist_name, var.nbins, var.xmin,
                              var.xmax)
                myhist.SetStats(True)
                myhist.StatOverflows(True)

                ## Individual special plots
                if var.name == "XY":
                    ## Plot the X histogram
                    maths_string = Evaluation.TH1D_Maths_String(
                        "X", *rec_and_truth_vars)
                    execution = "{} >> {}".format(maths_string, hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff")

                    ## Add the y histogram
                    maths_string = Evaluation.TH1D_Maths_String(
                        "Y", *rec_and_truth_vars)
                    execution = "{} >> +{}".format(maths_string, hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff")

                else:
                    ## Get Maths Function from variable
                    maths_string = Evaluation.TH1D_Maths_String(
                        var.name, *rec_and_truth_vars)

                    ## Drawing the tree and saving the hist to the matrix
                    execution = "{} >> {}".format(maths_string, hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff")

                ## Saving the Histogram to the Matrix
                myhist.SetDirectory(0)
                TH1D_output[v][w] = myhist

            ## Drawing the Profiles
            for v, (vx, vy) in enumerate(Profile_List):
                print(" -- -- {} vs {}".format(vx.name, vy.name))

                ## Creating the profile which will be filled
                hist_name = "{}_vs_{}_{}".format(vx.name, vy.name, wp.name)
                myhist = TProfile(hist_name, hist_name, vx.nbins, vx.xmin,
                                  vx.xmax)

                if vy.reso: myhist.SetErrorOption('s')

                ## The x variable is called from its branch in the correct tree
                x_string = vx.tree + "." + vx.branch

                ## Individual special plots
                if vy.name == "XY":
                    y_string = Evaluation.TH1D_Maths_String(
                        "X", *rec_and_truth_vars)
                    execution = "{}:{} >> {}".format(y_string, x_string,
                                                     hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff prof")

                    y_string = Evaluation.TH1D_Maths_String(
                        "Y", *rec_and_truth_vars)
                    execution = "{}:{} >>+{}".format(y_string, x_string,
                                                     hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff prof")

                elif vy.name == "AZ":
                    z_x = "(alt_tree.ll_px)"
                    z_y = "(alt_tree.ll_py)"
                    z_pt = "(alt_tree.ll_pt)"

                    x_string = z_pt
                    y_string = "({rx}*{zx} + {ry}*{zy})/{zpt}".format(
                        rx=Rec_Ex, ry=Rec_Ey, zx=z_x, zy=z_y, zpt=z_pt)
                    execution = "{}:{} >> {}".format(y_string, x_string,
                                                     hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff prof")

                else:
                    y_string = Evaluation.TH1D_Maths_String(
                        vy.name, *rec_and_truth_vars)
                    execution = "{}:{} >> {}".format(y_string, x_string,
                                                     hist_name)
                    wpt_tree.Draw(execution, weight_string, "goff prof")

                ## Saving the Histogram to the Matrix
                myhist.SetDirectory(0)
                Prof_output[v][w] = myhist

            if wp.name not in ["Network", "Tight"]:
                continue

            ## Drawing the TH2Ds
            for v, (vx, vy) in enumerate(TH2D_List):
                print(" -- -- {} vs {}".format(vx.name, vy.name))

                ## Creating the profile which will be filled
                hist_name = "2D_{}_vs_{}_{}".format(vx.name, vy.name, wp.name)
                myhist = TH2D(hist_name, hist_name, vx.nbins2d, vx.xmin2d,
                              vx.xmax2d, vy.nbins2d, vy.xmin2d, vy.xmax2d)

                x_string = Evaluation.TH1D_Maths_String(
                    vx.name, *rec_and_truth_vars)
                y_string = Evaluation.TH1D_Maths_String(
                    vy.name, *rec_and_truth_vars)

                ## The x variable is called from its branch in the correct tree
                if x_string is None:
                    x_string = vx.tree + "." + vx.branch

                execution = "{}:{} >> {}".format(y_string, x_string, hist_name)
                wpt_tree.Draw(execution, weight_string, "goff")

                ## Saving the Histogram to the Matrix
                myhist.SetDirectory(0)
                TH2D_output[v][w] = myhist

        root_file.Close()
        """
         _____   ____    ___   _____   ___   _   _    ____
        | ____| |  _ \  |_ _| |_   _| |_ _| | \ | |  / ___|
        |  _|   | | | |  | |    | |    | |  |  \| | | |  _
        | |___  | |_| |  | |    | |    | |  | |\  | | |_| |
        |_____| |____/  |___|   |_|   |___| |_| \_|  \____|

        """

        ## We now go through the 1D histograms and make them include overflow and underflow
        for v, var in enumerate(Histogram_Variable_List):
            for w, wp in enumerate(WorkingP_List):

                ## Include the overflow
                last_bin = TH1D_output[v][w].GetBinContent(nbins)
                overflow = TH1D_output[v][w].GetBinContent(nbins + 1)
                TH1D_output[v][w].SetBinContent(nbins, last_bin + overflow)
                TH1D_output[v][w].SetBinContent(nbins + 1, 0)

                ## Include the underflow
                first_bin = TH1D_output[v][w].GetBinContent(1)
                underflow = TH1D_output[v][w].GetBinContent(0)
                TH1D_output[v][w].SetBinContent(1, first_bin + underflow)
                TH1D_output[v][w].SetBinContent(0, 0)

                ## We create a tail distrobution if it is requested
                if var.tail:
                    tail_temp = TH1D_output[v][w].GetCumulative(False)
                    tail_temp.Scale(1 / tail_temp.GetBinContent(1))
                    Tail_output[v][w] = tail_temp

        ## We go through the resolution profiles and replace their entries with the RMSE for each bin
        for v, (vx, vy) in enumerate(Profile_List):

            if not vy.reso:
                continue

            for w, wp in enumerate(WorkingP_List):

                old_prof = Prof_output[v][w]
                bin_width = old_prof.GetBinWidth(1)

                name = "{}_vs_{}_{}_res".format(vx.name, vy.name, wp.name)
                new_prof = TGraphErrors(vx.nbins)
                new_prof.SetName(name)
                new_prof.SetTitle(name)

                new_prof.SetLineWidth(2)

                for b_idx in range(vx.nbins):
                    new_prof.SetPoint(b_idx, old_prof.GetBinCenter(b_idx + 1),
                                      old_prof.GetBinError(b_idx + 1))
                    new_prof.SetPointError(b_idx, bin_width / 2, 0)

                Prof_output[v][w] = new_prof
        """
         ____       _     __     __  ___   _   _    ____
        / ___|     / \    \ \   / / |_ _| | \ | |  / ___|
        \___ \    / _ \    \ \ / /   | |  |  \| | | |  _
         ___) |  / ___ \    \ V /    | |  | |\  | | |_| |
        |____/  /_/   \_\    \_/    |___| |_| \_|  \____|

        """

        ## Creating the output directory
        output_dir = os.path.join(OUTPUT_dir, network_name, data_set_name[:-5])
        if veto_all_jets:
            output_dir = output_dir + "_NOJETS"
        if require_jets:
            output_dir = output_dir + "_SOMEJETS"

        ## Check that the file can be saved
        if not os.path.exists(output_dir):
            os.system("mkdir -p " + output_dir)

        ## We create an output file for the histograms
        output_file = TFile(os.path.join(output_dir, "histograms.root"),
                            "update")
        gFile = output_file

        ## We save the independants
        for v, var in enumerate(Independant_Variable_List):
            Indp_output[v].Write("", TObject.kOverwrite)

        ## We save the TH1Ds and tails
        for v, var in enumerate(Histogram_Variable_List):
            for w in range(len(WorkingP_List)):
                TH1D_output[v][w].Write("", TObject.kOverwrite)
                if var.tail:
                    Tail_output[v][w].Write("", TObject.kOverwrite)

        ## We save the profiles
        for v in range(len(Profile_List)):
            for w in range(len(WorkingP_List)):
                Prof_output[v][w].Write("", TObject.kOverwrite)

        ## We save the TH2Ds
        for v in range(len(TH2D_List)):
            for w in range(len(WorkingP_List[:2])):
                TH2D_output[v][w].Write("", TObject.kOverwrite)

        output_file.Close()
    return 0