Esempio n. 1
0
        # print(f'New ranking: {all_new}')
        # print(f'Correct items: {all_correct[f]}')
        # print()

    # Calculating all metrics
    if len(all_correct) > 0:
        # print_rerank_count(all_old, all_new)
        # all_old, all_new, all_correct[f] = filter_sames(all_old, all_new, all_correct[f])
        # print_rerank_count(all_old, all_new)
        # if metrics_positive_only:
        #     all_correct[f], all_old, all_new = keep_pos_only(all_correct[f], all_old, all_new)

        if metric_to_use == 'MAP':
            for l in lambdas:
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[0]}_initial'].append(
                    mapk(all_old, all_correct[f], metrics_sizes[0]))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[0]}_rerank'].append(
                    mapk(all_new[l], all_correct[f], metrics_sizes[0]))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[1]}_initial'].append(
                    mapk(all_old, all_correct[f], metrics_sizes[1]))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[1]}_rerank'].append(
                    mapk(all_new[l], all_correct[f], metrics_sizes[1]))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[2]}_initial'].append(
                    mapk(all_old, all_correct[f], test_item_amount))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[2]}_rerank'].append(
                    mapk(all_new[l], all_correct[f], test_item_amount))
        elif metric_to_use == 'NDCG':
            for l in lambdas:
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[0]}_initial'].append(
                    ndcg_at(all_old, all_correct[f], metrics_sizes[0]))
                measures_lambda[l][f'{metric_to_use}_{metrics_sizes[0]}_rerank'].append(
Esempio n. 2
0
            for i, r in enumerate(initial_pred_list[f]):
                save_correct_items(f, r)
                re_rank(extract_predictions(r), fold_item_init_dist[f][i],
                        rerank_size)

            print(
                f'{input_rec_path}-{len(all_old)}-{len(all_new[1])}-{len(all_correct)}'
            )

            # Calculating all metrics
            if len(all_correct) > 0:
                if metric_to_use == 'MAP':
                    for l in lambdas:
                        measures_lambda[l][
                            f'{metric_to_use}_{metrics_sizes[0]}_initial'].append(
                                mapk(all_old, all_correct[f],
                                     metrics_sizes[0]))
                        measures_lambda[l][
                            f'{metric_to_use}_{metrics_sizes[0]}_rerank'].append(
                                mapk(all_new[l], all_correct[f],
                                     metrics_sizes[0]))
                        measures_lambda[l][
                            f'{metric_to_use}_{metrics_sizes[1]}_initial'].append(
                                mapk(all_old, all_correct[f],
                                     metrics_sizes[1]))
                        measures_lambda[l][
                            f'{metric_to_use}_{metrics_sizes[1]}_rerank'].append(
                                mapk(all_new[l], all_correct[f],
                                     metrics_sizes[1]))
                        measures_lambda[l][
                            f'{metric_to_use}_{metrics_sizes[2]}_initial'].append(
                                mapk(all_old, all_correct[f], rerank_size))
Esempio n. 3
0
            correct_items = []
            for xx in initial_pred['correctItems']:
                correct_items.append([int(x) for x in xx.split(';')])

            predictions = []
            for index, row in initial_pred.iterrows():
                cntr = 1
                pred = []
                while cntr <= test_item_amount:
                    if type(row[f'p{cntr}']) is str:
                        pred.append(int(row[f'p{cntr}'].split(';')[0]))
                    cntr = cntr + 1

                predictions.append(pred)

            map_10.append(mapk(predictions, correct_items, 10))
            map_25.append(mapk(predictions, correct_items, 25))
            prec_10.append(precision_at(predictions, correct_items, 10))
            prec_25.append(precision_at(predictions, correct_items, 25))
            ndcg_10.append(ndcg_at(predictions, correct_items, 10))
            ndcg_25.append(ndcg_at(predictions, correct_items, 25))

        final_df['test_amount'].append(test_item_amount)
        final_df['MAP_10'].append(mean(map_10))
        final_df['MAP_25'].append(mean(map_25))
        final_df['Prec_10'].append(mean(prec_10))
        final_df['Prec_25'].append(mean(prec_25))
        final_df['NDCG_10'].append(mean(ndcg_10))
        final_df['NDCG_25'].append(mean(ndcg_25))

    pd.DataFrame.from_dict(final_df).to_csv(