Esempio n. 1
0
    def Evaluate(self, evaluationData, doTopN, n=10, verbose=True):
        metrics = {}
        # Compute accuracy
        if (verbose):
            print("Evaluating accuracy...")
        self.algorithm.fit(evaluationData.GetTrainSet())
        predictions = self.algorithm.test(evaluationData.GetTestSet())
        metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        metrics["MAE"] = RecommenderMetrics.MAE(predictions)

        if (doTopN):
            # Evaluate top-10 with Leave One Out testing
            if (verbose):
                print("Evaluating top-N with leave-one-out...")
            self.algorithm.fit(evaluationData.GetLOOCVTrainSet())
            leftOutPredictions = self.algorithm.test(
                evaluationData.GetLOOCVTestSet())
            # Build predictions for all ratings not in the training set
            allPredictions = self.algorithm.test(
                evaluationData.GetLOOCVAntiTestSet())
            # Compute top 10 recs for each user
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
            if (verbose):
                print("Computing hit-rate and rank metrics...")
            # See how often we recommended a movie the user actually rated
            metrics["HR"] = RecommenderMetrics.HitRate(topNPredicted,
                                                       leftOutPredictions)
            # See how often we recommended a movie the user actually liked
            metrics["cHR"] = RecommenderMetrics.CumulativeHitRate(
                topNPredicted, leftOutPredictions)
            # Compute ARHR
            metrics["ARHR"] = RecommenderMetrics.AverageReciprocalHitRank(
                topNPredicted, leftOutPredictions)

            #Evaluate properties of recommendations on full training set
            if (verbose):
                print("Computing recommendations with full data set...")
            self.algorithm.fit(evaluationData.GetFullTrainSet())
            allPredictions = self.algorithm.test(
                evaluationData.GetFullAntiTestSet())
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
            if (verbose):
                print("Analyzing coverage, diversity, and novelty...")
            # Print user coverage with a minimum predicted rating of 4.0:
            metrics["Coverage"] = RecommenderMetrics.UserCoverage(
                topNPredicted,
                evaluationData.GetFullTrainSet().n_users,
                ratingThreshold=4.0)
            # Measure diversity of recommendations:
            metrics["Diversity"] = RecommenderMetrics.Diversity(
                topNPredicted, evaluationData.GetSimilarities())

            # Measure novelty (average popularity rank of recommendations):
            metrics["Novelty"] = RecommenderMetrics.Novelty(
                topNPredicted, evaluationData.GetPopularityRankings())

        if (verbose):
            print("Analysis complete.")

        return metrics
Esempio n. 2
0
    def Evaluate(self, evaluationData, doTopN, n=10, verbose=True):
        metrics = {}
        # Compute accuracy
        if (verbose):
            print("Evaluating accuracy...")
        self.algorithm.fit(evaluationData.GetTrainSet())
        predictions = self.algorithm.test(evaluationData.GetTestSet())
        metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        metrics["MAE"] = RecommenderMetrics.MAE(predictions)

        if (doTopN):
            # Evaluate top-10 with Leave One Out testing
            if (verbose):
                print("leave-one-out法でtop-Nを計算...")
            self.algorithm.fit(evaluationData.GetLOOCVTrainSet())
            leftOutPredictions = self.algorithm.test(
                evaluationData.GetLOOCVTestSet())
            # 訓練データではない方で
            allPredictions = self.algorithm.test(
                evaluationData.GetLOOCVAntiTestSet())
            # 各ユーザーに10個の表示を行う
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
            if (verbose):
                print("Computing hit-rate and rank metrics...")
            # HitRate: どのくらいの頻度で、ユーザーが評価しうているかの指標
            metrics["HR"] = RecommenderMetrics.HitRate(topNPredicted,
                                                       leftOutPredictions)
            # cHitRate: ユーザーが実際にlikedしたかを確認する
            metrics["cHR"] = RecommenderMetrics.CumulativeHitRate(
                topNPredicted, leftOutPredictions)
            # ARHR
            metrics["ARHR"] = RecommenderMetrics.AverageReciprocalHitRank(
                topNPredicted, leftOutPredictions)

            #すべての訓練データセットでのレコメンデーションの特徴量を評価する
            if (verbose):
                print("すべてのデータセットでレコメンドの計算をしています...")
            self.algorithm.fit(evaluationData.GetFullTrainSet())
            allPredictions = self.algorithm.test(
                evaluationData.GetFullAntiTestSet())
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
            if (verbose):
                print("Analyzing coverage, diversity, and novelty...")
            # 4.0を閾値として表示する
            metrics["Coverage"] = RecommenderMetrics.UserCoverage(
                topNPredicted,
                evaluationData.GetFullTrainSet().n_users,
                ratingThreshold=4.0)
            # レコメンドの多様性の測定
            metrics["Diversity"] = RecommenderMetrics.Diversity(
                topNPredicted, evaluationData.GetSimilarities())

            # レコメンドされた人気の高い評価の平均値を計算する
            metrics["Novelty"] = RecommenderMetrics.Novelty(
                topNPredicted, evaluationData.GetPopularityRankings())

        if (verbose):
            print("Analysis complete.")

        return metrics
Esempio n. 3
0
def get_hit_rates(trainSet, testSet, simsMatrix, num_nearest_neighbors=10):
    # Build up dict to lists of (int(movieID), predictedrating) pairs
    topN = defaultdict(list)
    k = num_nearest_neighbors
    for uiid in range(trainSet.n_users):
        # Get top N similar users to this one
        similarityRow = simsMatrix[uiid]

        similarUsers = []
        for innerID, score in enumerate(similarityRow):
            if (innerID != uiid):
                similarUsers.append((innerID, score))

        kNeighbors = heapq.nlargest(k, similarUsers, key=lambda t: t[1])

        # Get the stuff they rated, and add up ratings for each item, weighted by user similarity
        candidates = defaultdict(float)
        for similarUser in kNeighbors:
            innerID = similarUser[0]
            userSimilarityScore = similarUser[1]
            theirRatings = trainSet.ur[innerID]
            for rating in theirRatings:
                candidates[rating[0]] += (rating[1] /
                                          5.0) * userSimilarityScore

        # Build a dictionary of stuff the user has already seen
        watched = {}
        for itemID, rating in trainSet.ur[uiid]:
            watched[itemID] = 1

        # Get top-rated items from similar users:
        pos = 0
        for itemID, ratingSum in sorted(candidates.items(),
                                        key=itemgetter(1),
                                        reverse=True):
            if not itemID in watched:
                movieID = trainSet.to_raw_iid(itemID)
                topN[int(trainSet.to_raw_uid(uiid))].append(
                    (int(movieID), 0.0))
                pos += 1
                if (pos > 40):
                    break
    HR = RecommenderMetrics.HitRate(topN, testSet)
    CHR = RecommenderMetrics.CumulativeHitRate(topN, testSet, ratingCutoff=4.0)
    RHR = RecommenderMetrics.RatingHitRate(topN, testSet)
    ARHR = RecommenderMetrics.AverageReciprocalHitRank(topN, testSet)
    return HR, CHR, RHR, ARHR
    def Evaluate(self, evaluationData, doTopN, n=10, verbose=True):
        metrics = {}

        # Compute accuracy
        if (verbose):
            print("Evaluating: ", self.name)

        self.algorithm.fit(evaluationData.GetTrainSet())
        predictions = self.algorithm.test(evaluationData.GetTestSet())
        metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        metrics["MAE"] = RecommenderMetrics.MAE(predictions)

        if (doTopN):
            # Evaluate top-10 with Leave One Out testing
            self.algorithm.fit(evaluationData.GetLOOCVTrainSet())
            leftOutPredictions = self.algorithm.test(
                evaluationData.GetLOOCVTestSet())

            # Build predictions for all ratings not in the training set
            allPredictions = self.algorithm.test(
                evaluationData.GetLOOCVAntiTestSet())

            # Compute top 10 recs for each user
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)

            # See how often we recommended a movie the user actually rated
            metrics["HR"] = RecommenderMetrics.HitRate(topNPredicted,
                                                       leftOutPredictions)

            #Evaluate properties of recommendations on full training set
            self.algorithm.fit(evaluationData.GetFullTrainSet())
            allPredictions = self.algorithm.test(
                evaluationData.GetFullAntiTestSet())

            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)

            # Print user coverage with a minimum predicted rating of 6.0:
            metrics["Coverage"] = RecommenderMetrics.UserCoverage(
                topNPredicted,
                evaluationData.GetFullTrainSet().n_users,
                ratingThreshold=7.0)

            # Measure novelty (average popularity rank of recommendations):
            metrics["Novelty"] = RecommenderMetrics.Novelty(
                topNPredicted, evaluationData.GetPopularityRankings())

        return metrics
Esempio n. 5
0
fullTrainSet = data.build_full_trainset()
sim_options = {'name': 'pearson_baseline', 'user_based': False}
simsAlgo = KNNBaseline(sim_options=sim_options)
simsAlgo.fit(fullTrainSet)

print("\nBuilding recommendation model...")
trainSet, testSet = train_test_split(data, test_size=.25, random_state=1)

algo = SVD(random_state=10)
algo.fit(trainSet)

print("\nComputing recommendations...")
predictions = algo.test(testSet)

print("\nEvaluating accuracy of model...")
print("RMSE: ", RecommenderMetrics.RMSE(predictions))
print("MAE: ", RecommenderMetrics.MAE(predictions))

print("\nEvaluating top-10 recommendations...")

# Set aside one rating per user for testing
LOOCV = LeaveOneOut(n_splits=1, random_state=1)

for trainSet, testSet in LOOCV.split(data):
    print("Computing recommendations with leave-one-out...")

    # Train model without left-out ratings
    algo.fit(trainSet)

    # Predicts ratings for left-out ratings only
    print("Predict ratings for left-out set...")
Esempio n. 6
0
    def Evaluate(self, evaluationData, doTopN, n=10, verbose=True, load=False):
        metrics = {}
        # Compute accuracy
        if (verbose):
            print("Evaluating accuracy...")
        pr = None
        alg = None
        if load:
            file_name = self.name + '_acc'
            pr, alg, _ = MyDump.Load(file_name, 1)
        if pr == None or alg == None:
            self.algorithm.fit(evaluationData.GetTrainSet())  # 75%
            predictions = self.algorithm.test(evaluationData.GetTestSet())
            if load:
                MyDump.Save(file_name, predictions, self.algorithm, None, 1)
        else:
            self.algorithm = alg
            predictions = pr
        metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        metrics["MAE"] = RecommenderMetrics.MAE(predictions)
        # if load:
        #     MyDump.Save(file_name, predictions, self.algorithm, None, 1)

        if (doTopN):
            # if False:
            # Evaluate top-10 with Leave One Out testing
            if (verbose):
                print("Evaluating top-N with leave-one-out...")

            pr_top = None
            alg_top = None
            if load:
                file_name = self.name + '_top' + str(n)
                pr_top, alg_top, _ = MyDump.Load(file_name, 1)
            if pr_top == None or alg_top == None:
                self.algorithm.fit(evaluationData.GetLOOCVTrainSet())
                leftOutPredictions = self.algorithm.test(
                    evaluationData.GetLOOCVTestSet())
                # Build predictions for all ratings not in the training set
                allPredictions = self.algorithm.test(
                    evaluationData.GetLOOCVAntiTestSet())
                # Compute top 10 recs for each user
                topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)

                pr_data = {
                    'leftOutPredictions': leftOutPredictions,
                    'topNPredicted': topNPredicted
                }
                if load:
                    MyDump.Save(file_name, pr_data, self.algorithm, None, 1)
            else:
                self.algorithm = alg_top
                leftOutPredictions = pr_top['leftOutPredictions']
                topNPredicted = pr_top['topNPredicted']

            if (verbose):
                print("Computing hit-rate and rank metrics...")
            # See how often we recommended a movie the user actually rated
            metrics["HR"] = RecommenderMetrics.HitRate(topNPredicted,
                                                       leftOutPredictions)
            # See how often we recommended a movie the user actually liked
            metrics["cHR"] = RecommenderMetrics.CumulativeHitRate(
                topNPredicted, leftOutPredictions)
            # Compute ARHR
            metrics["ARHR"] = RecommenderMetrics.AverageReciprocalHitRank(
                topNPredicted, leftOutPredictions)

            #Evaluate properties of recommendations on full training set
            if (verbose):
                print("Computing recommendations with full data set...")

            pr_top = None
            alg_top = None
            if load:
                file_name = self.name + '_fulldata'
                pr_top, alg_top, _ = MyDump.Load(file_name, 1)
            if pr_top == None or alg_top == None:
                self.algorithm.fit(evaluationData.GetFullTrainSet())
                allPredictions = self.algorithm.test(
                    evaluationData.GetFullAntiTestSet())
                topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
                pr_data = {
                    'allPredictions': allPredictions,
                    'topNPredicted': topNPredicted
                }
                if load:
                    MyDump.Save(file_name, pr_data, self.algorithm, None, 1)
            else:
                self.algorithm = alg_top
                allPredictions = pr_top['allPredictions']
                topNPredicted = pr_top['topNPredicted']

            if (verbose):
                print("Analyzing coverage, diversity, and novelty...")
            # Print user coverage with a minimum predicted rating of 4.0:
            metrics["Coverage"] = RecommenderMetrics.UserCoverage(
                topNPredicted,
                evaluationData.GetFullTrainSet().n_users,
                ratingThreshold=4.0)
            # Measure diversity of recommendations:
            metrics["Diversity"] = RecommenderMetrics.Diversity(
                topNPredicted, evaluationData.GetSimilarities())

            # Measure novelty (average popularity rank of recommendations):
            metrics["Novelty"] = RecommenderMetrics.Novelty(
                topNPredicted, evaluationData.GetPopularityRankings())

        if (verbose):
            print("Analysis complete.")

        # SaveAlg()

        return metrics
    kNeighbors = heapq.nlargest(k, similarUsers, key=lambda t: t[1])
    
    # Get the stuff they rated, and add up ratings for each item, weighted by user similarity
    candidates = defaultdict(float)
    for similarUser in kNeighbors:
        innerID = similarUser[0]
        userSimilarityScore = similarUser[1]
        theirRatings = trainSet.ur[innerID]
        for rating in theirRatings:
            candidates[rating[0]] += (rating[1] / 5.0) * userSimilarityScore
        
    # Build a dictionary of stuff the user has already seen
    watched = {}
    for itemID, rating in trainSet.ur[uiid]:
        watched[itemID] = 1
        
    # Get top-rated items from similar users:
    pos = 0
    for itemID, ratingSum in sorted(candidates.items(), key=itemgetter(1), reverse=True):
        if not itemID in watched:
            movieID = trainSet.to_raw_iid(itemID)
            topN[int(trainSet.to_raw_uid(uiid))].append( (int(movieID), 0.0) )
            pos += 1
            if (pos > 40):
                break
    
# Measure
print("HR", RecommenderMetrics.HitRate(topN, leftOutTestSet))   


Esempio n. 8
0
ml = MovieLens()

print('\nLoading movie ratings...')
data = ml.loadMovieLensLatestSmall()

print('\nBuilding Recommendation model...')
trainSet, testSet = train_test_split(data, test_size = .25, random_state = 1)

algo = SVD(random_state = 10)
algo.fit(trainSet)

print('\nComputing Recommendations...')
predictions = algo.test(testSet)

print('\nEvaluating accuracy of the recommendation model...')
print('\n 1. RMSE (Root Mean Squared Error): {}'.format(RecommenderMetrics.RMSE(predictions)))
print('2. MAE (Mean Absolute Error): {}'.format(RecommenderMetrics.MAE(predictions)))

print('\nEvaluating top 10 recommendations...')

LOOCV = LeaveOneOut(n_splits=1, random_state=1)

for trainSet, testSet in LOOCV.split(data):
    print('\nComputing Recommendation with LOOCV...')

    algo.fit(trainSet)
    leftOutPredictions = algo.test(testSet)

    bigTestSet = trainSet.build_anti_testset()
    allPredictions = algo.test(bigTestSet)
Esempio n. 9
0
    candidates = defaultdict(float)
    for itemID, rating in kNeighbors:
        similarityRow = simsMatrix[itemID]
        for innerID, score in enumerate(similarityRow):
            candidates[innerID] += score * (rating / 5.0)

    # Build a dictionary of stuff the user has already seen
    watched = {}
    for itemID, rating in trainSet.ur[uiid]:
        watched[itemID] = 1

    # Get top-rated items from similar users:
    pos = 0
    for itemID, ratingSum in sorted(candidates.items(),
                                    key=itemgetter(1),
                                    reverse=True):
        if not itemID in watched:
            productID = trainSet.to_raw_iid(itemID)
            topN[int(trainSet.to_raw_uid(uiid))].append((int(productID), 0.0))
            pos += 1
            if (pos > 40):
                break

# Measure
print("HR", RecommenderMetrics.HitRate(topN, leftOutTestSet))
print("ARHR",
      RecommenderMetrics.AverageReciprocalHitRank(topN, leftOutTestSet))
print("Coverage", RecommenderMetrics.UserCoverage(topN, 100))
#print("Diversity", RecommenderMetrics.Diversity(topN,simsAlgo))
print("Novelty", RecommenderMetrics.Novelty(topN, rankings))
Esempio n. 10
0
print(BeginGREEN + "Building recommendation model..." + EndGREEN)
trainSet, testSet = train_test_split(data, test_size=.25, random_state=1)

algo = SVD(random_state=10)
algo.fit(trainSet)

print(BeginGREEN + "Computing recommendations..." + EndGREEN)
predictions = algo.test(testSet)

print(BeginGREEN + "Evaluating accuracy of model...\n" + EndGREEN)
print(BeginBgBLUE +
      "# Root Mean Squared Error. Lower values mean better accuracy. #" +
      EndBgBLUE)
print(BeginBLUE + "RMSE: " + EndBLUE, BeginYELLO + "",
      RecommenderMetrics.RMSE(predictions), "" + EndYELLO)
print(BeginBgBLUE +
      "# Mean Absolute Error. Lower values mean better accuracy. #" +
      EndBgBLUE)
print(BeginBLUE + "MAE: " + EndBLUE, BeginYELLO + "",
      RecommenderMetrics.MAE(predictions), "" + EndYELLO)

print(BeginGREEN + "\nEvaluating top-10 recommendations..." + EndGREEN)

LOOCV = LeaveOneOut(n_splits=1, random_state=1)

for trainSet, testSet in LOOCV.split(data):
    print(BeginGREEN + "Computing recommendations with leave-one-out..." +
          EndGREEN)

    # Train model without left-out ratings
Esempio n. 11
0
from EvaluationData import EvaluationData

class EvaluatedAlgorithm:
    
    def __init__(self, algorithm, name):
        self.algorithm = algorithm
        self.name = name
        
    def Evaluate(self, evaluationData, doTopN, n=10, verbose=True):
        metrics = {}
        # Compute accuracy
        if (verbose):
            print("Evaluating accuracy...")
        self.algorithm.fit(evaluationData.GetTrainSet())
        predictions = self.algorithm.test(evaluationData.GetTestSet())
        metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        metrics["MAE"] = RecommenderMetrics.MAE(predictions)
        
        if (doTopN):
            # Evaluate top-10 with Leave One Out testing
            if (verbose):
                print("Evaluating top-N with leave-one-out...")
            self.algorithm.fit(evaluationData.GetLOOCVTrainSet())
            leftOutPredictions = self.algorithm.test(evaluationData.GetLOOCVTestSet())        
            # Build predictions for all ratings not in the training set
            allPredictions = self.algorithm.test(evaluationData.GetLOOCVAntiTestSet())
            # Compute top 10 recs for each user
            topNPredicted = RecommenderMetrics.GetTopN(allPredictions, n)
            if (verbose):
                print("Computing hit-rate and rank metrics...")
            # See how often we recommended a movie the user actually rated
Esempio n. 12
0
    # Get the stuff they rated, and add up ratings for each item, weighted by user similarity
    candidates = defaultdict(float)
    for similarUser in kNeighbors:
        innerID = similarUser[0]
        userSimilarityScore = similarUser[1]
        theirRatings = trainSet.ur[innerID]
        for rating in theirRatings:
            candidates[rating[0]] += (rating[1] / 5.0) * userSimilarityScore

    # Build a dictionary of stuff the user has already seen
    watched = {}
    for itemID, rating in trainSet.ur[uiid]:
        watched[itemID] = 1

    # Get top-rated items from similar users:
    pos = 0
    for itemID, ratingSum in sorted(candidates.items(),
                                    key=itemgetter(1),
                                    reverse=True):
        if not itemID in watched:
            productID = trainSet.to_raw_iid(itemID)
            topN[int(trainSet.to_raw_uid(uiid))].append((int(productID), 0.0))
            pos += 1
            if (pos > 40):
                break

# Measure
print("HR", RecommenderMetrics.HitRate(topN, leftOutTestSet))
print("ARHR",
      RecommenderMetrics.AverageReciprocalHitRank(topN, leftOutTestSet))
Esempio n. 13
0
    def Evaluate(self,
                 evaluationData,
                 doTopN,
                 n=10,
                 verbose=True,
                 sample_topN_for_userIDs=[]):
        sample_topN = {}
        self.evaluated_metrics = {}
        self.N = n
        output = {}

        self.recommender_data = evaluationData

        # sample_TopN_all = {}
        # sample_TopN_user = []

        # # creating dictionary like: userID -> algorithms -> Top N
        # for userID in sample_topN_for_userIDs:
        #     algos = {}
        #     for algorithm, name in self.algo_comparison_set:
        #         algos.update({name: [])
        #     sample_TopN_all[userID] = algos

        # Use train-test-split dataset for RMSE and MAE scores
        self.recommender_algorithm.fit(self.recommender_data.GetTrainSet())
        predictions = self.recommender_algorithm.test(
            self.recommender_data.GetTestSet())
        self.evaluated_metrics["RMSE"] = RecommenderMetrics.RMSE(predictions)
        self.evaluated_metrics["MAE"] = RecommenderMetrics.MAE(predictions)

        # do only if we want top N recommendations. Compute intensive operation
        if (doTopN):
            # use Leave one out algorithm
            self.recommender_algorithm.fit(
                self.recommender_data.GetLOOCVTrainSet())
            leftout_predictions = self.recommender_algorithm.test(
                self.recommender_data.GetLOOCVTestSet())
            predictions_all_minus_train = self.recommender_algorithm.test(
                self.recommender_data.GetLOOCVAntiTestSet())
            topN_predictions = RecommenderMetrics.GetTopN(
                predictions_all_minus_train, self.N, minimumRating=4.0)

            self.evaluated_metrics["HitRate"] = RecommenderMetrics.HitRate(
                topN_predictions, leftout_predictions)
            self.evaluated_metrics[
                "CumulativeHitRate"] = RecommenderMetrics.CumulativeHitRate(
                    topN_predictions, leftout_predictions)
            # self.evaluated_metrics["RatingHitRate"] = RecommenderMetrics.RatingHitRate(topN_predictions, leftout_predictions)
            self.evaluated_metrics[
                "AverageReciprocalHitRank"] = RecommenderMetrics.AverageReciprocalHitRank(
                    topN_predictions, leftout_predictions)

        # use full dataset for these metrics: UserCoverage, Diversity, Novelty
        trainset_full = self.recommender_data.GetFullTrainSet()
        self.recommender_algorithm.fit(trainset_full)
        predictions_all = self.recommender_algorithm.test(
            self.recommender_data.GetFullAntiTestSet())
        topN_predictions = RecommenderMetrics.GetTopN(predictions_all, self.N)

        if len(sample_topN_for_userIDs) != 0:
            sample_topN = self.FilterTopN(topN_predictions,
                                          sample_topN_for_userIDs)

        self.evaluated_metrics[
            "UserCoverage"] = RecommenderMetrics.UserCoverage(
                topN_predictions, trainset_full.n_users, ratingThreshold=4.0)

        # Diversity uses the similarity matrix
        self.evaluated_metrics["Diversity"] = RecommenderMetrics.Diversity(
            topN_predictions, self.recommender_data.GetSimilarities())

        # Novelty uses the Popularity rankings
        self.evaluated_metrics["Novelty"] = RecommenderMetrics.Novelty(
            topN_predictions, self.recommender_data.GetPopularityRankings())

        # format: {Algorithm: {evaluated metrics}}
        output[self.recommender_name] = {"metrics": self.evaluated_metrics}

        if len(sample_topN_for_userIDs) != 0:
            # format: {TopN: {userID: {Algorithm: [Sample_TopN movies recommended]}}}
            output[self.recommender_name].update({"sample_topn": sample_topN})

        return output