Esempio n. 1
0
noisyTrainSpectra = distort.add_noise(trainSpectra, level=noiseLevel, seed=0)
noisyTestSpectra = distort.add_noise(testSpectra, level=noiseLevel, seed=numSpecsTotal)
for i in range(3):
    noisyTrainSpectra = distort.add_distortions(noisyTrainSpectra, level=noiseLevel*2, seed=i * numSpecsTotal)
    noisyTestSpectra = distort.add_ghost_peaks(noisyTestSpectra, level=noiseLevel*2, seed=2*i * numSpecsTotal)
    noisyTestSpectra = distort.add_distortions(noisyTestSpectra, level=noiseLevel*2, seed=2*i * numSpecsTotal)
    noisyTrainSpectra = distort.add_ghost_peaks(noisyTrainSpectra, level=noiseLevel*2, seed=i * numSpecsTotal)
print(f'Distorting spectra took {round(time.time()-t0, 2)} seconds')

trainSpectra = prepareSpecSet(trainSpectra, addDimension=False)
testSpectra = prepareSpecSet(testSpectra, addDimension=False)
noisyTrainSpectra = prepareSpecSet(noisyTrainSpectra, addDimension=False)
noisyTestSpectra = prepareSpecSet(noisyTestSpectra, addDimension=False)

rec: Reconstructor = getDenseReconstructor(dropout=0.0)

t0 = time.time()
history = rec.fit(noisyTrainSpectra, trainSpectra,
                  epochs=10,
                  validation_data=(noisyTestSpectra, testSpectra),
                  batch_size=32, shuffle=True)
print(f"Training took {round(time.time()-t0, 2)} seconds.")

t0 = time.time()
reconstructedSpecs = rec.call(noisyTestSpectra)
print(f'reconstruction took {round(time.time()-t0, 2)} seconds')
# histPLot = out.getHistPlot(history.history, annotate=True)
specPlot, boxPlot = out.getSpectraComparisons(testSpectra, noisyTestSpectra, reconstructedSpecs,
                                              includeSavGol=False,
                                              randomIndSeed=9,
Esempio n. 2
0
noisyTrainSpectra = distort.add_noise(trainSpectra, level=noiseLevel, seed=0)
noisyTestSpectra = distort.add_noise(testSpectra, level=noiseLevel, seed=numSpecsTotal)
for i in range(3):
    noisyTrainSpectra = distort.add_distortions(noisyTrainSpectra, level=noiseLevel*2, seed=i * numSpecsTotal)
    noisyTestSpectra = distort.add_ghost_peaks(noisyTestSpectra, level=noiseLevel*2, seed=2*i * numSpecsTotal)
    noisyTestSpectra = distort.add_distortions(noisyTestSpectra, level=noiseLevel*2, seed=2*i * numSpecsTotal)
    noisyTrainSpectra = distort.add_ghost_peaks(noisyTrainSpectra, level=noiseLevel*2, seed=i * numSpecsTotal)

print(f'Distorting spectra took {round(time.time()-t0, 2)} seconds')

trainSpectra = prepareSpecSet(trainSpectra, addDimension=False)
testSpectra = prepareSpecSet(testSpectra, addDimension=False)
noisyTrainSpectra = prepareSpecSet(noisyTrainSpectra, addDimension=False)
noisyTestSpectra = prepareSpecSet(noisyTestSpectra, addDimension=False)

rec: Reconstructor = getDenseReconstructor(dropout=0.0 if randomShuffle else 0.00)

t0 = time.time()
history = rec.fit(noisyTrainSpectra, trainSpectra,
                  epochs=10,
                  validation_data=(noisyTestSpectra, testSpectra),
                  batch_size=32, shuffle=True)
print(f"Training took {round(time.time()-t0, 2)} seconds.")

t0 = time.time()
reconstructedSpecs = rec.call(noisyTestSpectra)
print(f'reconstruction took {round(time.time()-t0, 2)} seconds')

noisyTestSpectraEncoded = rec.encoder(noisyTestSpectra)
noisyTrainSpectraEncoded = rec.encoder(noisyTrainSpectra)
corrPlot = out.getCorrelationPCAPlot(noisyTestSpectraEncoded, reconstructedSpecs, testSpectra, noisyTrainSpectraEncoded)
Esempio n. 3
0
np.random.seed(42)
for i in range(3):
    noisyTrainSpectra = distort.add_noise(trainSpectra,
                                          level=noiseLevel * (i + 1) * 0.5)
    noisyTrainSpectra = distort.add_distortions(noisyTrainSpectra,
                                                level=noiseLevel * (i + 1) * 2)
    noisyTrainSpectra = distort.add_ghost_peaks(noisyTrainSpectra,
                                                level=noiseLevel * (i + 1) * 2)
print(f'Distorting spectra took {round(time.time()-t0, 2)} seconds')

trainSpectra = prepareSpecSet(trainSpectra)
testSpectra = prepareSpecSet(cleanSpecs, transpose=False)
noisyTrainSpectra = prepareSpecSet(noisyTrainSpectra)
noisyTestSpectra = prepareSpecSet(noisySpecs, transpose=False)

rec = getDenseReconstructor(dropout=0.5)
history = rec.fit(noisyTrainSpectra,
                  trainSpectra,
                  epochs=10,
                  validation_data=(noisyTestSpectra, testSpectra),
                  batch_size=32,
                  shuffle=True)

reconstructedSpecs = rec.call(noisyTestSpectra)
specPlot, boxPlot = out.getSpectraComparisons(testSpectra,
                                              noisyTestSpectra,
                                              reconstructedSpecs,
                                              includeSavGol=False,
                                              wavenumbers=wavenums,
                                              title=experimentTitle)