class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights(self.critic_local.model.get_weights()) self.actor_target.model.set_weights(self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0 self.exploration_theta = 0.15 self.exploration_sigma = 0.2 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.99 # discount factor self.tau = 0.01 # for soft update of target parameters # Score tracker and learning parameters #self.count = 0 #self.score = 0 #self.total_reward = 0 #self.best_w = None #self.best_score = -np.inf #self.noise_scale = 0.1 def reset_episode(self): #self.count = 0 #self.score = 0 #self.total_reward = 0 self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) #self.count += 1 #self.total_reward += reward # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state def act(self, state): """Returns actions for given state(s) as per current policy.""" state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] self.noise.sample() return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack([e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class Agent: def __init__(self, env, sess): # Environment self.n_state = env.observation_space.shape[0] self.n_action = env.action_space.shape[0] # Neural Networks self.sess = sess self.actor = Actor(self.sess, self.n_state, self.n_action) self.critic = Critic(self.sess, self.n_state, self.n_action) # Replay Buffer self.replay_buffer = ReplayBuffer(BUFFER_SIZE) # Ornstein-Uhlenbeck Noise self.exploration_noise = OUNoise(self.n_action) def noise_action(self, state): '''Get action with noise''' return self.action(state) + self.exploration_noise.noise() def action(self, state): '''Get action from online actor''' return self.actor.action(state) def train(self): '''Train Networks''' # Draw sample from Replay Buffer minibatch = self.replay_buffer.get_batch(BATCH_SIZE) state_batch = np.asarray([d[0] for d in minibatch]) action_batch = np.asarray([d[1] for d in minibatch]) reward_batch = np.asarray([d[2] for d in minibatch]) next_state_batch = np.asarray([d[3] for d in minibatch]) done_batch = np.asarray([d[4] for d in minibatch]) # Train Critic next_action_batch = self.actor.target_actions(next_state_batch) target_q_value_batch = self.critic.target_q(next_state_batch, next_action_batch) # q = r if done else r+gamma*target_q q_batch = reward_batch.reshape( (BATCH_SIZE, 1)) + (1. - done_batch.reshape( BATCH_SIZE, 1).astype(float)) * GAMMA * target_q_value_batch self.critic.train(q_batch, state_batch, action_batch) # Train Actor action_batch_grads = self.actor.actions(state_batch) q_grads_batch = self.critic.gradients(state_batch, action_batch_grads) self.actor.train(q_grads_batch, state_batch) # Slowly update Target Networks self.actor.update_target() self.critic.update_target() def perceive(self, state, action, reward, next_state, done): '''Add transition to replay buffer and train if there are sufficient amount of transitions''' # Add samples self.replay_buffer.add(state, action, reward, next_state, done) # Train if there are sufficient number of samples if self.replay_buffer.count() > REPLAY_START: self.train() # Reset the noise for next episode if done: self.exploration_noise.reset()