def mmi_model_Mood_LTA_gamma_wo_RT_p0_beta(subj_input_dir,subj_out_dir,sid):
    # import some useful libraries
    import numpy as np                # numerical analysis linear algebra
    import pandas as pd               # efficient tables
    #import matplotlib.pyplot as plt   # plotting
    from scipy import stats

    from RunDEMC.density import kdensity
    from RunDEMC import Model, Param, dists, calc_bpic, joint_plot

    from mmi_mood_LTA_gamma_wo_RT_p0_beta import MMIModel, load_mmi_data

    from joblib import Parallel, delayed

    import pickle
    from pathlib import Path

    try:
        import scoop
        from scoop import futures
    except ImportError:
        print("Error loading scoop, reverting to joblib.")
        scoop = None


    # ## Load and examine data


    subj_input_dir=Path(subj_input_dir)
    subj_out_dir=Path(subj_out_dir)
    
    
    pattern=f'*{sid}*.xlsx'
    input_file=list(subj_input_dir.glob(pattern))
    print(input_file[0])
    dat = load_mmi_data(input_file[0])


    # In[4]:


    #dat.at[2, 'Choice']=='Gamble'


    # In[5]:


    # find the minimum RT for the param range
    min_RT = dat.loc[dat.RT>0, 'RT'].min()
    print('Min RT:', min_RT)


    # ## Use RunDEMC to fit the model to a participant's data
    # define model evaluation functions for RunDEMC
    def eval_mod(params, param_names, bdat=None):
        # use global dat if none based in
        if bdat is None:
            bdat = dat

        # turn param list into dict
        mod_params = {x: params[n]
                      for n, x in enumerate(param_names)}
    #     try:
    #         print(mod_params['lambda'])
    #     except:
    #         print("Problems")
        if mod_params['lambda']<0 or mod_params['lambda']>=1 :
            return np.log(0), np.log(0)

        if mod_params['gamma']<0 or mod_params['gamma']>=np.inf :
            return np.log(0), np.log(0)

#         if mod_params['beta']<0 or mod_params['beta']>1 :
#             return np.log(0), np.log(0)

#         if mod_params['p0']<0 or mod_params['p0']>1 :
#             return np.log(0), np.log(0)

        if mod_params['w_LTA']<0 or mod_params['w_LTA']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['w_RPE']<0 or mod_params['w_RPE']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['b']<=-np.inf or mod_params['b']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['s_v']<=0 or mod_params['s_v']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['c']<0 or mod_params['c']>=np.inf :
            return np.log(0), np.log(0) 


        ## calculate the log_likes and mood_log_likes 
        mod_res = MMIModel(params=mod_params, 
                      ignore_non_resp=True).proc_trials(bdat.copy())
        ll = mod_res.log_like.sum()
        mood_ll = mod_res.mood_log_like.sum()

        return ll,mood_ll

    # this is the required def for RunDEMC
    def eval_fun(pop, *args):
        bdat = args[0]
        pnames = args[1]
        if scoop and scoop.IS_RUNNING:
            res_tups = list(futures.map(eval_mod, [indiv for indiv in pop],
                                     [pnames]*len(pop), [bdat]*len(pop)))
        else:
            res_tups= Parallel(n_jobs=-1)(delayed(eval_mod)(indiv,pnames, bdat)
                                      for indiv in pop)

            likes = np.array([rt[0] for rt in res_tups])
            mood_likes = np.array([rt[1] for rt in res_tups])


        return likes, mood_likes


    
    def get_best_fit(m, burnin=250, verbose=True):
        best_ind = m.weights[burnin:].argmax()
        if verbose:
            print("Weight:", m.weights[burnin:].ravel()[best_ind])
        indiv = [m.particles[burnin:,:,i].ravel()[best_ind] 
                 for i in range(m.particles.shape[-1])]
        pp = {}
        for p,v in zip(m.param_names,indiv):
            pp[p] = v
            if verbose:
                print('"%s": %f,'%(p,v))
        return pp


    # ### Base  model

    # In[20]:


        # set up model params
    params = [Param(name='gamma',
                    display_name=r'$\gamma$',
                    prior=dists.gamma(1.5, 0.5),
                    ),
              Param(name='c',
                    display_name=r'$c$',
                    prior=dists.gamma(1.5, 0.5),
                    ),
#               Param(name='beta',
#                     display_name=r'$\beta$',
#                     prior=dists.normal(0, 1.4),
#                     transform=dists.invlogit
#                     ),
    #           Param(name='w',
    #                 display_name=r'$w$',
    #                 prior=dists.normal(0, 1.4),
    #                 transform=dists.invlogit
    #                 ),
    #           Param(name='a',
    #                 display_name=r'$a$',
    #                 prior=dists.gamma(2.0, 0.5),
    #                 ),
    #           Param(name='t0',
    #                 display_name=r'$t_0$',
    #                 prior=dists.normal(0, 1.4),
    #                 transform=lambda x: dists.invlogit(x)*min_RT,
    #                 ),
#               Param(name='p0',
#                     display_name=r'$p_0$',
#                     prior=dists.normal(0, 1.4),
#                     transform=dists.invlogit
#                     ),
              Param(name='lambda',
                    display_name=r'$lambda',
                    prior=dists.normal(0, 1.4),
                    transform=dists.invlogit
                    ),
    #           Param(name='lambda',
    #                 display_name=r'$lambda',
    #                 prior=dists.beta(0.5, 0.5)
    #                 ),
              Param(name='w_LTA',
                    display_name=r'w_{LTA}',
                    prior=dists.normal(0, 1),
                    transform=np.exp,
                    inv_transform=np.log),
    #           Param(name='w_EG',
    #                 display_name=r'w_{EG}',
    #                 prior=dists.normal(0, 1),
    #                 transform=np.exp,
    #                 inv_transform=np.log),
              Param(name='w_RPE',
                    display_name=r'w_{RPE}',
                    prior=dists.normal(0, 1),
                    transform=np.exp,
                    inv_transform=np.log),
              Param(name='b',
                    display_name=r'b',
                    prior=dists.normal(0, 3)),
              Param(name='s_v',
                    display_name=r's_v',
                    prior=dists.exp(3))
            ]
    
    
    # grab the param names
    pnames = [p.name for p in params]
    m = Model('mmi', params=params,
              like_fun=eval_fun,
              like_args=(dat, pnames),
              init_multiplier=3,
              # num_chains=gsize,
              verbose=True)

    # do some burnin
    times = m.sample(150, burnin=True)

    # now map the posterior
    times = m.sample(650, burnin=False)
    
    
     # show the chains are mixing and converging
    #plt.plot(m.weights[30:], alpha=.3);
    pickle_name=subj_out_dir / f'mWgt_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.weights, pickle_out)
    pickle_out.close()

    #print("Best fitting params:")
    #pp = get_best_fit(m, burnin=250, verbose=True)
    print("Best fitting params:")
    pp = get_best_fit(m, burnin=250, verbose=True)
    pickle_name=subj_out_dir / f'mBFprm_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(pp, pickle_out)
    pickle_out.close()

    # In[42]:
    #### BPIC calculations
    burnin=250
    
    log_like_prior = m.weights - m.log_likes
    #print(log_like_prior)
    weight_mood = m.posts + log_like_prior #m.posts is log_like_Mood
    #print(weight_mood)
    print("Mood_BPIC :",calc_bpic(weight_mood[burnin:])['bpic'])
    Mood_BPIC=calc_bpic(weight_mood[burnin:])['bpic']
    pickle_name=subj_out_dir / f'Mood_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(Mood_BPIC, pickle_out)
    pickle_out.close()

    log_like_RT = m.log_likes - m.posts
    weight_RT = log_like_RT + log_like_prior
    print("RT_BPIC :",calc_bpic(weight_RT[burnin:])['bpic'])
    RT_BPIC=calc_bpic(weight_RT[burnin:])['bpic']
    pickle_name=subj_out_dir / f'RT_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(RT_BPIC, pickle_out)
    pickle_out.close()

   
    print(calc_bpic(m.weights[burnin:])['bpic'])  
    mBPIC=calc_bpic(m.weights[burnin:])['bpic']
    pickle_name=subj_out_dir / f'Total_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(mBPIC, pickle_out)
    pickle_out.close()




    # In[46]:


    # plot the param distributions (note, we did not get full posteriors, yet)
#     plt.figure(figsize=(12,10))
#     burnin=30
#     for i in range(len(m.param_names)):
#         plt.subplot(3,4,i+1)
#         plt.hist(m.particles[burnin:, :, i].flatten(), bins='auto', alpha=.5, density=True);
#         plt.title(m.param_names[i])


    # In[ ]:

    pickle_name=subj_out_dir / f'mParticles_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.particles, pickle_out)
    pickle_out.close()
                        
    pickle_name=subj_out_dir / f'mParams_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.param_names, pickle_out)
    pickle_out.close()                    
Esempio n. 2
0
    weights = np.log(dists.normal(mean=0.0, std=pop[:, 3]).pdf(sse))

    # see if return both weights and predicted vals
    if save_posts:
        return weights, pred
    else:
        return weights


# set up the data
xData = np.array([5.357, 9.861, 5.457, 5.936, 6.161, 6.731])
yData = np.array([0.376, 7.104, 0.489, 1.049, 1.327, 2.077])

# set up the parameters
params = [
    Param(name='a', prior=dists.uniform(-100, 100)),
    Param(name='b', prior=dists.uniform(-100, 100)),
    Param(name='c', prior=dists.uniform(-100, 100)),
    Param(
        name='delta',
        display_name=r'$\mathbf{\delta}$',
        prior=dists.exp(20),
        init_prior=dists.uniform(0, 10),
    ),
]

# set up mod
mod = Model(name='fun',
            params=params,
            like_fun=eval_fun,
            like_args=(xData, yData),
Esempio n. 3
0
    ddat = {}
    for c in ['+', '=', '~']:
        ind = (dat.condition == c) & (dat.rt < max_rt)
        d = {
            'rt': np.log(np.array(dat[ind].rt) + log_shift),
            'resp': np.array(~dat[ind]['correct'], dtype=np.int)
        }
        ddat[c] = d

    # store minimum RT
    min_rt = dat[(dat['rt'] >= 0.)]['rt'].min()

    # define priors
    params = [
        Param(name='r',
              display_name=r'$r$',
              prior=dists.normal(-2.0, 1.0),
              transform=lambda x: dists.invlogit(x) * (20. - 0.) + (0.)),
        Param(name='p',
              display_name=r'$p$',
              prior=dists.normal(-0.8, 1.2),
              transform=lambda x: dists.invlogit(x) * (20. - 0.) + (0.)),
        Param(name='sd0',
              display_name=r'$\sigma_0$',
              prior=dists.normal(-1.0, 1.2),
              transform=lambda x: dists.invlogit(x) * (30. - 0.1) + (0.1)),
        Param(name='K',
              display_name=r'$K$',
              prior=dists.normal(0.0, 1.4),
              transform=dists.invlogit),
        Param(name='L',
              display_name=r'$L$',
Esempio n. 4
0
        left_coherence = data.at[i, 'left_coherence']
        right_coherence = data.at[i, 'right_coherence']
        if left_coherence > right_coherence:
            data.at[i, 'coherence'] = str(right_coherence) + ', ' + str(
                left_coherence)
        elif right_coherence >= left_coherence:
            data.at[i, 'coherence'] = str(left_coherence) + ', ' + str(
                right_coherence)
    # loop through each participant
    for s in data.subj.unique():
        subj_ind = data['subj'] == s
        min_rt = data[subj_ind]['rt'].min()

        # set up the params
        params = [
            Param(name='a',
                  prior=dists.trunc_normal(5.0, 20.0, lower=0.0, upper=50.0)),
            Param(name='b', prior=dists.normal(0.0, 5.0)),
            Param(name='c',
                  prior=dists.trunc_normal(5.0, 10.0, lower=0.0, upper=30.0)),
            Param(name='kappa',
                  prior=dists.normal(0.0, 1.4),
                  transform=dists.invlogit),
            Param(name='beta',
                  prior=dists.normal(0.0, 1.4),
                  transform=dists.invlogit),
            Param(name='alpha',
                  prior=dists.trunc_normal(2.5, 10.0, lower=0.0, upper=30.0)),
            Param(name='t0', prior=dists.uniform(0., min_rt))
        ]
        pnames = [p.name for p in params]
        # instantiate model object
Esempio n. 5
0
nchains = 25
hyper_mu = HyperParam(name='mu',
                      mu=0.0,
                      sigma=10.0,
                      alpha=4,
                      beta=10,
                      nchains=nchains)
hyper_sd = HyperParam(name='sd',
                      mu=np.log(1.0),
                      sigma=1.0,
                      alpha=4,
                      beta=10,
                      nchains=nchains)
hparams = [hyper_mu, hyper_sd]

params = [Param(name='mu', prior=hyper_mu,),  # init_prior=dists.uniform(-20,20)),
          # init_prior=dists.uniform(0,20)),
          Param(name='sd', prior=hyper_sd,),
          ]

# set up abc
models = [DEMC(params, eval_fun, eval_args=(subj_num,),
               num_groups=1, group_size=nchains,
               proposal_gen=DE(gamma_best=None, rand_base=True),
               migration_prob=0.0, initial_zeros_ok=False,
               use_priors=True, save_posts=False, verbose=False)
          for subj_num in range(nsubj)]

hier = Hierarchy(hparams, models)

Esempio n. 6
0
def eval_fun(abc, pop, *args):

    res = Parallel(n_jobs=n_jobs)(delayed(eval_prop)(indiv, args[0])
                                  for indiv in pop)

    weights = np.asarray(res)

    if abc._save_posts:
        return weights, None
    else:
        return weights


# set up the parameters
params = [
    Param(name='mu', prior=dists.uniform(-20, 20)),
    Param(name='sd', prior=dists.uniform(0, 20)),
]

burnin = 50
iterations = 500

# set up abc
do_true = True
abc_true = DEMC(params,
                eval_fun,
                eval_args=(do_true, ),
                num_groups=1,
                group_size=25,
                proposal_gen=DE(gamma_best=None, rand_base=True),
                migration_prob=0.0,
Esempio n. 7
0
pdf will randomly pick from hyperparam chains and provide the pdf from
the supplied distribution.

log_prior: convenience method for looping over params for a proposal
and calling each param's pdf to get the log_like for that param.


"""

from RunDEMC import Model, HyperPrior, Hierarchy, Param, dists

# set up the hyper priors
h_alpha = HyperPrior(name='h_alpha',
                     dist=dists.normal,
                     params=[
                         Param(name='mu', prior=dists.normal(1, .5)),
                         Param(name='sigma', prior=dists.invgamma(4, 10))
                     ])

h_beta = HyperPrior(name='h_beta',
                    dist=dists.normal,
                    params=[
                        Param(name='mu', prior=dists.normal(1, .5)),
                        Param(name='sigma', prior=dists.invgamma(4, 10))
                    ])

# set up lower level (i.e., subject)


def subj_like(pop, *args):
    return np.log(dists.beta(pop[:, 0], pop[:, 1]).pdf(args[0]))
Esempio n. 8
0
        for d in dat[sub]
    ])

    for s in dat.keys():
        # Append a new model, note the use of the hyperpriors
        params = [

            # sig_b is the sigmoid transition point
            #Param(name='sig_b',
            #                prior=dists.uniform(0., 15.0), # change to number of tau stars
            #                ),

            # new item strength
            Param(
                name='alpha',
                display_name=r'$\alpha$',
                prior=dists.uniform(0, 10.0),
                #init_prior=dists.trunc_normal(mean=.25,std=.5,lower=0,upper=5)
            ),
            Param(
                name='nu',
                display_name=r'$\nu$',
                prior=dists.uniform(0, 10.0),
                #init_prior=dists.trunc_normal(mean=.25,std=.5,lower=0,upper=5)
            ),
            # threshold
            Param(
                name='a',
                display_name=r'$a$',
                prior=dists.uniform(0, 10.0),
                #init_prior=dists.trunc_normal(mean=.25,std=.5,lower=0,upper=5)
            ),
Esempio n. 9
0
 ]
 r_r = list(set(list(balloon_frame['range'])))
 ranges = []
 for r in gg:
     if r == r_r[0]:
         ranges.append(0)
     elif r == r_r[1]:
         ranges.append(1)
     else:
         ranges.append(2)
 ranges = np.asarray(ranges, dtype=np.int16)
 # priors
 params = [
     Param(name='alpha',
           display_name=r'$\alpha$',
           prior=dists.trunc_normal(mean=0.5,
                                    std=5.0,
                                    lower=0,
                                    upper=1.)),
     Param(name='beta',
           display_name=r'$\beta$',
           prior=dists.trunc_normal(mean=5.,
                                    std=5.,
                                    lower=-10.,
                                    upper=10.)),
     Param(name='gamma',
           display_name=r'$\gamma$',
           prior=dists.trunc_normal(mean=1.0,
                                    std=5.,
                                    lower=0.,
                                    upper=2.)),
     Param(name='gamma_n',
Esempio n. 10
0
    # get the subject's RTs
    RTs = data_sub['resp_rt']
    # select RTs greater than 350 ms
    RTs_x = RTs[RTs > .35]
    # get minimum RT (that is greater than 350 ms) -- this is needed for t0 prior
    min_RT = np.min(RTs_x)
    print('*** subject ', s)

    # get name of output file
    out_file = 'cab_' + s[:-4] + '.tgz'

    # define model parameters and priors
    params = [
        Param(name='lambda',
              display_name=r'$\lambda$',
              prior=dists.trunc_normal(.5, 2, 0, 5)),
        #
        Param(name='alpha',
              display_name=r'$\alpha$',
              prior=dists.trunc_normal(1., 4, 0, 10)),
        Param(name='omega',
              display_name=r'$\omega$',
              prior=dists.normal(mean=0, std=1.4),
              transform=dists.invlogit),
        Param(
            name='delta',
            display_name=r'$\delta$',
            prior=dists.trunc_normal(1., 10, 0, 20.0),
        ),
        Param(name='sigma',
Esempio n. 11
0
    # all proposals
    log_like = -0.5 * np.sum(np.log(2 * np.pi * sigma[:, np.newaxis]**2) +
                             (ydata - y_model)**2 / sigma[:, np.newaxis]**2,
                             axis=1)

    return log_like


# set up the parameters
gsize = None  # None will let model figure out a good number

# Fixed slope across participants
# Using a custom uniform prior
beta = Param(name='beta',
             display_name=r'$\beta$',
             prior=dists.CustomDist(
                 pdf=lambda x: np.exp(-1.5 * np.log(1 + x**2)),
                 rvs=dists.laplace(0, 5).rvs))
# Fixed noise across subjects
# Using a custom Jeffreys' prior
sigma = Param(name='sigma',
              display_name=r'$\sigma$',
              prior=dists.CustomDist(pdf=lambda x: np.exp(-np.log(x)),
                                     rvs=dists.dists.invgamma(1, 1).rvs))

# Hyperprior over intercept using a normal distribution
halpha = HyperPrior('alpha',
                    dists.normal,
                    params=[
                        Param(name='mu', prior=dists.uniform(-50, 50)),
                        Param(name='sig', prior=dists.invgamma(1, 1))