Esempio n. 1
0
    def testBootstrapAccuracy(self):
        if IGNORE_TEST:
            return
        model = """
            J1: S1 -> S2; k1*S1
            J2: S2 -> S3; k2*S2
           
            S1 = 1; S2 = 0; S3 = 0;
            k1 = 0; k2 = 0; 
        """
        columns = ["S1", "S3"]
        fitter = ModelFitter(model,
                             BENCHMARK_PATH, ["k1", "k2"],
                             selectedColumns=columns,
                             isPlot=IS_PLOT)
        fitter.fitModel()
        print(fitter.reportFit())
        print(fitter.getParameterMeans())

        fitter.bootstrap(numIteration=1000, reportInterval=500)
        #calcObservedFunc=ModelFitter.calcObservedTSNormal, std=0.01)
        fitter.plotParameterEstimatePairs(['k1', 'k2'], markersize=2)
        print("Mean: %s" % str(fitter.getParameterMeans()))
        print("Std: %s" % str(fitter.getParameterStds()))
        fitter.reportBootstrap()
Esempio n. 2
0
    def evaluate(self, stdResiduals:float=0.1, relError:float=0.1,
          endTime:float=10.0, numPoint:int=30,
          fractionParameterDeviation:float=0.5,
          numIteration=NUM_BOOTSTRAP_ITERATION):
        """
        Evaluates model fitting accuracy and bootstrapping for model
 
        Parameters
        ----------
        stdResiduals: Standard deviations of variable used in constructing reiduals
        relError: relative error of parameter used in evaluation
        endTime: ending time of the simulation
        numPoint: number of points in the simulatin
        fractionParameterDeviation: fractional amount that the parameter can vary
        """
        # Construct synthetic observations
        if self.selectedColumns is None:
            data = self.roadRunner.simulate(0, endTime, numPoint)
        else:
            allColumns = list(self.selectedColumns)
            if not TIME in allColumns:
                allColumns.append(TIME)
            data = self.roadRunner.simulate(0, endTime, numPoint, allColumns)
        bracketTime = "[%s]" % TIME
        if bracketTime in data.colnames:
            # Exclude any column named '[time]'
            idx = data.colnames.index(bracketTime)
            dataArr = np.delete(data, idx, axis=1)
            colnames = list(data.colnames)
            colnames.remove(bracketTime)
            colnames = [s[1:-1] if s != TIME else s for s in colnames]
            simTS = NamedTimeseries(array=dataArr, colnames=colnames)
        else:
            simTS = NamedTimeseries(namedArray=data)
        synthesizer = ObservationSynthesizerRandomErrors(
              fittedTS=simTS, std=stdResiduals)
        observedTS = synthesizer.calculate()
        # Construct the parameter ranges
        parameterDct = {}
        for name in self.parameterValueDct.keys():
            lower = self.parameterValueDct[name]*(1 - fractionParameterDeviation)
            upper = self.parameterValueDct[name]*(1 + fractionParameterDeviation)
            value = np.random.uniform(lower, upper)
            parameterDct[name] = (lower, upper, value)
        # Create the fitter
        fitter = ModelFitter(self.roadRunner, observedTS,
              selectedColumns=self.selectedColumns, parameterDct=parameterDct,
              **self.kwargs)
        msg = "Fitting the parameters %s" % str(self.parameterValueDct.keys())
        self.logger.result(msg)
        # Evaluate the fit
        fitter.fitModel()
        self._recordResult(fitter.params, relError, self.fitModelResult)
        # Evaluate bootstrap
        fitter.bootstrap(numIteration=numIteration)
        if fitter.bootstrapResult is not None:
            if fitter.bootstrapResult.numSimulation > 0:
                self._recordResult(fitter.bootstrapResult.params,
                      relError, self.bootstrapResult)
Esempio n. 3
0
def main(numIteration):
    """
    Calculates the time to run iterations of the benchmark.

    Parameters
    ----------
    numIteration: int
    
    Returns
    -------
    float: time in seconds
    """
    logger = logs.Logger(logLevel=logs.LEVEL_MAX, logPerformance=IS_TEST)
    fitter = ModelFitter(MODEL, BENCHMARK_PATH,
          ["k1", "k2"], selectedColumns=['S1', 'S3'], isPlot=IS_PLOT,
          logger=logger)
    fitter.fitModel()
    startTime = time.time()
    fitter.bootstrap(numIteration=numIteration, reportInterval=numIteration)
    elapsedTime = time.time() - startTime
    if IS_TEST:
        print(fitter.logger.formatPerformanceDF())
    fitter.plotFitAll()
    return elapsedTime
Esempio n. 4
0
# time in days since volunteer exposure
# each line in the array is an individual volunteer

#SARS_CoV2_sputum.csv and SARS_CoV2_nasal.csv
# SARS-CoV-2 data - 9 patients,
# for each patient - viral loads from lungs (sputum) and from nasal cavity (swab)
# viral levels in log10(RNA copies / ml sputum), ...
# respectively log10(RNA copies / nasal swab)
# time in days since symptoms onset
# corresponding lines in the two arrays belong to an individual patient

#SARS.csv
# SARS data recorded from 12 patients;
# included them just for comparison, probably too few datapoints for model inference
# viral levels in log10(RNA copies / ml of nasopharingeal aspirate)
# time - only three samples per patient, at 5, 10 and 15 days post symptoms onset

# Fit parameters to ts1
from SBstoat.modelFitter import ModelFitter
fitter = ModelFitter(ANTIMONY_MODEL, "Influenza-1.txt",
                     ["beta", "kappa", "delta", "p", "c"])
fitter.fitModel()
print(fitter.reportFit())

fitter.plotFitAll(numRow=2, numCol=2)
fitter.plotResiduals(numRow=2, numCol=2)

# Get estimates of parameters
fitter.bootstrap(numIteration=2000, reportInterval=500)
print(fitter.getFittedParameterStds())