Esempio n. 1
0
def standardSuppression():
    print("===========================================================")
    print("================STANDARD SUPPRESSION========================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    predictions = f(c)
    print('predictions: ', predictions)
    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_Sup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
Esempio n. 2
0
def f_suppression_studyLate(pi):
    finalStructures = pi.evaluate()
    finalStates = StatePointOperations.flattenStatePoint(finalStructures)
    #print (finalStates)
    #get all realised epis with 'el' name
    statesForCaseEL = StatePointOperations.extractBasePointsFromFlattenedStatePoint(
        finalStates, name="el")
    #get all realised epis with 'elo' name
    statesForCaseELO = StatePointOperations.extractBasePointsFromFlattenedStatePoint(
        finalStates, name="elo")

    # find the set of responses that that the realised SCPs of 'el' could reach
    responsesEL = f_studyLateSingle(statesForCaseEL)
    # find the set of responses that that the realised SCPs of 'elo' could reach
    responsesELO = f_studyLateSingle(statesForCaseELO)

    #suppression has occured if there is a response in responsesEL which is NOT
    # in responsesELO
    """
    for r1 in responsesEL:
        if r1 not in responsesELO:
            print ("The response '{}' occurs for 'el', but not for 'elo'".format(r1))
            return "Suppression observed"
    return "Suppression not observed"
    """
    return {'el': responsesEL, 'elo': responsesELO}
def abducibleSuppression():
    print("===========================================================")
    print("=================ABDUCIBLE SUPPRESSION=====================")
    print("===========================================================")
    basePoint1 = epistemicState.epistemicState('el')
    delta1 = ["( l | e )"]
    S1 = ["( e <- T )"]
    delta1AsLogic = scpNotationParser.stringListToBasicLogic(delta1)
    S1AsLogic = scpNotationParser.stringListToBasicLogic(S1)
    basePoint1['S'] = S1AsLogic
    basePoint1['Delta'] = delta1AsLogic
    basePoint1['V'] = [e, l]

    #The elo case expressed as the addition of information to the el case
    basePoint2 = copy.deepcopy(basePoint1)
    basePoint2.setName('elo')
    #The possible starting states for the SCP
    extraConditional = ["( l | o )"]
    extraConditionalAsLogic = scpNotationParser.stringListToBasicLogic(
        extraConditional)
    basePoint2['Delta'] = basePoint2['Delta'] + extraConditionalAsLogic
    basePoint2['V'] = basePoint2['V'] + [o]

    #abducibs = [ '( l <- T )', '( l <- F )','( o <- T )', '( o <- F )']
    abducibs = ['( o <- T )', '( o <- F )']
    logAbducibs = scpNotationParser.stringListToBasicLogic(abducibs)
    basePoint1['R'] = {'abducibles': logAbducibs}
    basePoint2['R'] = {'abducibles': logAbducibs}
    #Create the first state point
    statePoints = [basePoint1, basePoint2]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)
    predictions = f(c)
    print('predictions: ', predictions)

    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_noSup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
 def s_satisfying(self, results):
     satisfyingResults = []
     for result in results:
         #print ("result is ",result)
         #print (self.f(result))
         predModelsGamma = StatePointOperations.predictionsModelsGamma_lenient(
             self.f(result), self.gamma)
         if predModelsGamma:
             satisfyingResults.append(result)
     return StatePointOperations.CTMtoSCP(satisfyingResults, self.f)
def mu_D7_example():
    print("\n>>Example for SCP that turns the cards: D, 7...")
    #create initial base point which has only a single epistemic state in it
    s_i = create_si_contra()

    #The final state dependent external evaluation function
    f = f_turnFunction_prefDoNoTurn

    #the turn responses which would we would like to achieve
    gamma_D7 = {
        'D': 'Turn Card',
        'K': 'Do Not Turn',
        '3': 'Do Not Turn',
        '7': 'Turn Card'
    }

    #This is a test SCP mu=(c,f()) which is known to work
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    #the set of possible observations which might need to be explained to see if we should
    # turn a card
    observations = ['D', 'K', '3', '7']

    #use the turn function to evaluate the ctm and see if the card should be turned
    # we prefer the 'Do Not Turn' response in this case
    predictions = f(c, observations)

    print("First state point is ", s_i)
    print("Example SCP is ", c.__repr__())
    #to print all final states uncomment the next line
    #print("Final State point is : ", c.evaluate())

    #the decisions made by f() for the SCP (c,f())
    print("Responses: ", predictions)
    #print True if mu|=gamma_D3
    print(
        "Lenient: mu|=gamma_D7 :",
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma_D7))
    print(
        "Strict:  mu|=gamma_D7 :",
        StatePointOperations.predictionsModelsGamma_strict(
            predictions, gamma_D7))
 def getTh(epi):
     tempCTM = CTM.CTM()
     tempCTM.si = [epi]
     tempCTM.appendm(m_th_simplified(target='W'))
     #guaranteed to be monotonic
     epi = StatePointOperations.flattenStatePoint(tempCTM.evaluate())[0]
     # 2) generateProcesses
     return epi
Esempio n. 7
0
 def getSiStructure(self):
     structure = []
     flattenedSi = StatePointOperations.flattenStatePoint(self.si)
     if not isinstance(flattenedSi, list):
         flattenedSi = [flattenedSi]
     #print ("FLATTENED si IS ", flattenedSi)
     for epi in flattenedSi:
         structure = structure + epi.getStructuralVariables()
     return list(dict.fromkeys(structure))
Esempio n. 8
0
def abducibleSuppression():
    print("===========================================================")
    print("=================ABDUCIBLE SUPPRESSION=====================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]

    #abducibs = [ '( l <- T )', '( l <- F )','( o <- T )', '( o <- F )']
    abducibs = ['( o <- T )', '( o <- F )']
    logAbducibs = scpNotationParser.stringListToBasicLogic(abducibs)
    basePoint_el['R'] = {'abducibles': logAbducibs}
    basePoint_elo['R'] = {'abducibles': logAbducibs}
    #Create the first state point
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)
    predictions = f(c)
    print('predictions: ', predictions)

    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
    print("f(pi) models gamma_noSup? : ",
          (StatePointOperations.predictionsModelsGamma_lenient(
              predictions, gamma)))
Esempio n. 9
0
def deletionSuppression():
    print("===========================================================")
    print("================DELETION SUPPRESSION=======================")
    print("===========================================================")
    print("===========================================================")
    basePoint_el = createBasePoint_el()
    basePoint_elo = createBasePoint_elo()
    statePoints = [basePoint_el, basePoint_elo]
    basePoint_el['R'] = {'delete': ["o", "e"]}
    basePoint_elo['R'] = {'delete': ["o", "e"]}

    #Create the first state point
    statePoints = [basePoint_el, basePoint_elo]
    s_i = statePoints

    #The external evaluation function
    f = f_suppression_studyLate
    #The desired output of the external evaluation function
    gamma = {
        'el': 'She will study late in the library',
        'elo': 'We are uncertain if she will study late in the library'
    }

    #test ctm
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(DELETE)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    predictions = f(c)
    print('predictions: ', predictions)
    print("Lenient Interp")
    print(
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma))
    print("Strict Interp")
    print(
        StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))
Esempio n. 10
0
def mu_D_example():
    #create initial base point which has only a single epistemic state in it
    s_i = create_si_noContra()
    #The final state dependent external evaluation function
    f = f_turnFunction_prefDoNoTurn
    #the turn responses which would we would like to achieve
    gamma_D = {
        'D': 'Turn Card',
        'K': 'Do Not Turn',
        '3': 'Do Not Turn',
        '7': 'Do Not Turn'
    }

    #This is a test SCP mu=(c,f()) which is known to work
    c = CTM.CTM()
    c.setSi(s_i)
    c.appendm(ADDAB)
    c.appendm(ABDUCIBLES)
    c.appendm(WC)
    c.appendm(SEMANTIC)

    #the set of possible observations which might need to be explained to see if we should
    # turn a card
    observations = ['D', 'K', '3', '7']

    #use the turn function to evaluate the ctm and see if the card should be turned
    # we prefer the 'Do Not Turn' response in this case
    predictions = f(c, observations)

    #print True if mu|=gamma_D3
    print("Responses: ", predictions)
    print(
        "Lenient: mu|=gamma_D :",
        StatePointOperations.predictionsModelsGamma_lenient(
            predictions, gamma_D))
    print(
        "Strict:  mu|=gamma_D :",
        StatePointOperations.predictionsModelsGamma_strict(
            predictions, gamma_D))
#print (deletionSuppression())

#test ctm
c = CTM.CTM()
c.setSi(s_i)
c.appendm(ADDAB)
#c.appendm(ABDUCIBLES)
c.appendm(DELETE)
c.appendm(WC)

c.appendm(SEMANTIC)

predictions = f(c)
print('predictions: ', predictions)

print("Lenient Interp")
print(StatePointOperations.predictionsModelsGamma_lenient(predictions, gamma))
print("Strict Interp")
print(StatePointOperations.predictionsModelsGamma_strict(predictions, gamma))

#print (c.evaluate())

searchResult = task.deNoveSearch()
print("\nSEARCH RESULTS:")
print(searchResult)
print("\n")

result1 = searchResult[0]

print("RESULT 1: IS\n", result1)
Esempio n. 12
0
def f_turn(pi, observation):

    finalStructures = pi.evaluate()
    finalStates = StatePointOperations.flattenStatePoint(finalStructures)

    if not isinstance(finalStates, list):
        finalStates = [finalStates]

    conditional = scpNotationParser.stringListToBasicLogic(
        ["( ( 3 | D ) or ( D' | 7 ) )"])
    # we are willing to turn the card if either the (3 | D) or the contrapositive case ( D' | 7 ) holds
    obs = scpNotationParser.stringListToBasicLogic(
        ['( {} <- T )'.format(observation)])

    responses = []
    for epi in finalStates:
        #print ("\n")
        #print (epi)

        basicLogic.setkbfromv(obs, epi['V'])

        #the conditional must be verified or falsified
        #the observation must be True
        allObsTrue = True
        for o in obs:
            if o.evaluate() != True:
                allObsTrue = False
        #allCondApplicable = True

        if allObsTrue:
            responses.append('observations hold')
        else:
            responses.append('observations do not')
    #now we need to find the minimal set of abducibles to turn the cards
    turnResponses = []
    #WE PREFER MINIMAL EXPLANATIONS
    for i in range(0, len(responses)):
        if responses[i] == 'observations hold':
            turnResponses.append(finalStates[i])
    minimalSubset = []

    for epi in turnResponses:
        #print ("epi is ", epi)
        #print (epi['R']['abducibles'])
        #print ("and then here")
        x = [
            StatePointOperations.properSubset(ot['R']['abducibles'],
                                              epi['R']['abducibles'])
            for ot in turnResponses
        ]
        #another least model is a subset of this one
        if True in x:
            pass
        else:
            minimalSubsetAsVariables = epi['V']
            minimalSubsetAsList = StatePointOperations.VtoTupleList(
                minimalSubsetAsVariables, ignoreNone=True)
            if minimalSubsetAsList not in minimalSubset:
                minimalSubset.append(minimalSubsetAsVariables)

    turns = []
    for mini in minimalSubset:
        allCondApplicable = True
        #this is done later
        basicLogic.setkbfromv(conditional, mini)
        #print ("mini is : ", mini)
        for cond in conditional:
            #print (cond, "Evaluates to ", cond.evaluate())
            if cond.evaluate() == None:

                #print ("evaluation was ", cond.evaluate())
                allCondApplicable = False
        #print ("cond is ",cond)

        if allCondApplicable:
            turns.append('Turn Card')
            #print ("1")
        else:
            turns.append('Do Not Turn')
            #print("2")

    return turns
 def s_exhaustive(self, results):
     return StatePointOperations.CTMtoSCP(results, self.f)