def test_time_broadcast(): obs = '1061313128_99bl_1pol_half_time' insfile = os.path.join(DATA_PATH, f'{obs}_SSINS.h5') out_prefix = os.path.join(DATA_PATH, f'{obs}_test') match_outfile = f'{out_prefix}_SSINS_match_events.yml' ins = INS(insfile) # Mock a simple metric_array and freq_array ins.metric_array[:] = 1 ins.weights_array = np.copy(ins.metric_array) ins.weights_square_array = np.copy(ins.weights_array) ins.metric_ms = ins.mean_subtract() ins.sig_array = np.ma.copy(ins.metric_ms) # Arbitrarily flag enough data in channel 10 sig_thresh = {'narrow': 5} mf = MF(ins.freq_array, sig_thresh, streak=False, tb_aggro=0.5) ins.metric_array[4:, 9] = np.ma.masked ins.metric_array[4:, 10] = np.ma.masked # Put in an outlier so it gets to samp_thresh_test ins.metric_array[2, 9] = 100 ins.metric_array[1, 10] = 100 ins.metric_ms = ins.mean_subtract() bool_ind = np.zeros(ins.metric_array.shape, dtype=bool) bool_ind[:, 10] = 1 bool_ind[:, 9] = 1 mf.apply_match_test(ins, event_record=True, time_broadcast=True) print(ins.match_events) test_match_events = [ (slice(1, 2), slice(10, 11), 'narrow_%.3fMHz' % (ins.freq_array[10] * 10**(-6))), (slice(0, ins.Ntimes), slice(10, 11), 'time_broadcast_narrow_%.3fMHz' % (ins.freq_array[10] * 10**(-6))), (slice(2, 3), slice(9, 10), 'narrow_%.3fMHz' % (ins.freq_array[9] * 10**(-6))), (slice(0, ins.Ntimes), slice(9, 10), 'time_broadcast_narrow_%.3fMHz' % (ins.freq_array[9] * 10**(-6))) ] # Test stuff assert np.all( ins.metric_array.mask == bool_ind), "The right flags were not applied" for i, event in enumerate(test_match_events): assert ins.match_events[ i][:-1] == event, "The events weren't appended correctly" # Test that writing with samp_thresh flags is OK ins.write(out_prefix, output_type='match_events') test_match_events_read = ins.match_events_read(match_outfile) os.remove(match_outfile) assert ins.match_events == test_match_events_read # Test that exception is raised when tb_aggro is too high with pytest.raises(ValueError): mf = MF(ins.freq_array, {'narrow': 5, 'streak': 5}, tb_aggro=100) mf.apply_samp_thresh_test(ins, (slice(1, 2), slice(10, 11), 'narrow'))
def test_samp_thresh(): obs = '1061313128_99bl_1pol_half_time' insfile = os.path.join(DATA_PATH, '%s_SSINS.h5' % obs) out_prefix = os.path.join(DATA_PATH, '%s_test' % obs) match_outfile = '%s_SSINS_match_events.yml' % out_prefix ins = INS(insfile) # Mock a simple metric_array and freq_array ins.metric_array = np.ma.ones([10, 20, 1]) ins.weights_array = np.copy(ins.metric_array) ins.metric_ms = ins.mean_subtract() ins.sig_array = np.ma.copy(ins.metric_ms) ins.freq_array = np.zeros([1, 20]) ins.freq_array = np.arange(20) # Arbitrarily flag enough data in channel 10 sig_thresh = {'narrow': 5} mf = MF(ins.freq_array, sig_thresh, streak=False, N_samp_thresh=5) ins.metric_array[3:, 10] = np.ma.masked ins.metric_array[3:, 9] = np.ma.masked # Put in an outlier so it gets to samp_thresh_test ins.metric_array[0, 11] = 10 ins.metric_ms = ins.mean_subtract() bool_ind = np.zeros(ins.metric_array.shape, dtype=bool) bool_ind[:, 10] = 1 bool_ind[:, 9] = 1 bool_ind[0, 11] = 1 mf.apply_match_test(ins, event_record=True, apply_samp_thresh=True) test_match_events = [(0, slice(11, 12), 'narrow')] test_match_events += [(ind, slice(9, 10), 'samp_thresh') for ind in range(3)] test_match_events += [(ind, slice(10, 11), 'samp_thresh') for ind in range(3)] # Test stuff assert np.all( ins.metric_array.mask == bool_ind), "The right flags were not applied" for i, event in enumerate(test_match_events): assert ins.match_events[ i][:-1] == event, "The events weren't appended correctly" # Test that writing with samp_thresh flags is OK ins.write(out_prefix, output_type='match_events') test_match_events_read = ins.match_events_read(match_outfile) os.remove(match_outfile) assert ins.match_events == test_match_events_read # Test that exception is raised when N_samp_thresh is too high with pytest.raises(ValueError): mf = MF(ins.freq_array, {'narrow': 5, 'streak': 5}, N_samp_thresh=100) mf.apply_samp_thresh_test(ins)
xticks=xticks, yticks=yticks, xticklabels=xticklabels, yticklabels=yticklabels, data_cmap=cm.plasma, ms_vmin=-5, ms_vmax=5, title=args.obsid, xlabel='Frequency (Mhz)', ylabel='Time (UTC)') # Try to save memory - hope for garbage collector del ss # Set up MF flagging for routine shapes shape_dict = {'TV6': [1.74e8, 1.81e8], 'TV7': [1.81e8, 1.88e8], 'TV8': [1.88e8, 1.95e8], 'TV9': [1.95e8, 2.02e8]} sig_thresh = {shape: 5 for shape in shape_dict} sig_thresh['narrow'] = 5 sig_thresh['streak'] = 8 mf = MF(ins.freq_array, sig_thresh, shape_dict=shape_dict, N_samp_thresh=len(ins.time_array) // 2) mf.apply_match_test(ins, apply_samp_thresh=False) mf.apply_samp_thresh_test(ins, event_record=True) Catalog_Plot.INS_plot(ins, '%s_flagged' % prefix, xticks=xticks, yticks=yticks, xticklabels=xticklabels, yticklabels=yticklabels, data_cmap=cm.plasma, ms_vmin=-5, ms_vmax=5, title=args.obsid, xlabel='Frequency (Mhz)', ylabel='Time (UTC)') ins.write(prefix, output_type='mask') uvd = UVData() uvd.read(args.uvd, phase_to_pointing_center=True, correct_cable_len=True) uvf = UVFlag(uvd, mode='flag', waterfall=True) uvf.flag_array = ins.mask_to_flags() utils.apply_uvflag(uvd, uvf, inplace=True) if np.any(uvd.nsample_array == 0): uvd.nsample_array[uvd.nsample_array == 0] = args.nsample_default
def execbody(ins_filepath): slash_ind = ins_filepath.rfind('/') obsid = ins_filepath[slash_ind + 1:slash_ind + 11] ins = INS(ins_filepath) ins.select(times=ins.time_array[3:-3]) ins.metric_ms = ins.mean_subtract() shape_dict = { 'TV6': [1.74e8, 1.81e8], 'TV7': [1.81e8, 1.88e8], 'TV8': [1.88e8, 1.95e8], 'TV9': [1.95e8, 2.02e8] } sig_thresh = {shape: 5 for shape in shape_dict} sig_thresh['narrow'] = 5 sig_thresh['streak'] = 8 mf = MF(ins.freq_array, sig_thresh, shape_dict=shape_dict, N_samp_thresh=len(ins.time_array) // 2) ins.metric_array[ins.metric_array == 0] = np.ma.masked ins.metric_ms = ins.mean_subtract() ins.sig_array = np.ma.copy(ins.metric_ms) #write plots if command flagged to do so if args.plots: prefix = '%s/%s_trimmed_zeromask' % (args.outdir, obsid) freqs = np.arange(1.7e8, 2e8, 5e6) xticks, xticklabels = util.make_ticks_labels(freqs, ins.freq_array, sig_fig=0) yticks = [0, 20, 40] yticklabels = [] for tick in yticks: yticklabels.append( Time(ins.time_array[tick], format='jd').iso[:-4]) Catalog_Plot.INS_plot(ins, prefix, xticks=xticks, yticks=yticks, xticklabels=xticklabels, yticklabels=yticklabels, data_cmap=cm.plasma, ms_vmin=-5, ms_vmax=5, title=obsid, xlabel='Frequency (Mhz)', ylabel='Time (UTC)') if args.verbose: print("wrote trimmed zeromask plot for " + obsid) mf.apply_match_test(ins, apply_samp_thresh=False) mf.apply_samp_thresh_test(ins, event_record=True) flagged_prefix = '%s/%s_trimmed_zeromask_MF_s8' % (args.outdir, obsid) #write data/mask/match/ if command flagged to do so if args.write: ins.write(flagged_prefix, output_type='data', clobber=True) ins.write(flagged_prefix, output_type='mask', clobber=True) ins.write(flagged_prefix, output_type='match_events') if args.verbose: print("wrote data/mask/match files for " + obsid) #write plots if command flagged to do so if args.plots: Catalog_Plot.INS_plot(ins, flagged_prefix, xticks=xticks, yticks=yticks, xticklabels=xticklabels, yticklabels=yticklabels, data_cmap=cm.plasma, ms_vmin=-5, ms_vmax=5, title=obsid, xlabel='Frequency (Mhz)', ylabel='Time (UTC)') if args.verbose: print("wrote trimmed zeromask (w/ match filter) for " + obsid) #a hardcoded csv generator for occ_csv if args.gencsv is not None: csv = "" + obsid + "," + flagged_prefix + "_SSINS_data.h5," + flagged_prefix + "_SSINS_mask.h5," + flagged_prefix + "_SSINS_match_events.yml\n" with open(args.gencsv, "a") as csvfile: csvfile.write(csv) print("wrote entry for " + obsid)