Esempio n. 1
0
def _model(model_name):
    if model_name == 'motion':
        from STM.models.model_fusai import STM

    elif model_name == 'aspp':
        from STM.models.model_fusai_aspp import STM
        model = STM()
        # model.eval()
        # model.Decoder.train()
    elif model_name == 'enhanced':
        from STM.models.model_enhanced import STM
        model = STM()
        model.eval()
        model.KV_Q.train()
    elif model_name == 'standard':
        from STM.models.model import STM
        model = STM()
    elif model_name == 'enhanced_motion':
        from STM.models.model_enhanced_motion import STM
        model = STM()
    elif model_name == 'varysize':
        from STM.models.model_enhanced_varysize import STM
        model = STM()
    elif model_name == 'sp':
        from STM.models.model_fusai_spatial_prior import STM
        model = STM()
        # model.eval()
        # model.Decoder.Aspp.train()
    elif model_name == 'hkf':
        from STM.model_hkf import STM
        model = STM()

    return model
Esempio n. 2
0
def init_stm_model(model_name, model_path):
    if model_name == 'motion':
        from STM.models.model_fusai import STM
        model = STM()
    elif model_name == 'aspp':
        from STM.models.model_fusai_aspp import STM
        model = STM()
    elif model_name == 'enhanced':
        from STM.models.model_enhanced import STM
        model = STM()
    elif model_name == 'enhanced_motion':
        from STM.models.model_enhanced_motion import STM
        model = STM()
    elif model_name == 'standard':
        from STM.models.model import STM
        model = STM()
    elif model_name == 'varysize':
        from STM.models.model_enhanced_varysize import STM
        model = STM()
    elif model_name == 'sp':
        from STM.models.model_fusai_spatial_prior import STM
        model = STM()
    else:
        raise ValueError

     # turn-off BN

    print('Loading weights:', model_path)
    model_ = torch.load(model_path, map_location=torch.device('cpu'))
    if 'state_dict' in model_.keys():
        state_dict = model_['state_dict']
    else:
        state_dict = model_

    d = {}
    for k, v in state_dict.items():
        d.setdefault(k.replace('module.', ''), v)
    state_dict = d

    model.load_state_dict(state_dict)
    model.eval()
    model.to(ipex.DEVICE)

    return model