Esempio n. 1
0
	def __init__(self, estimates, S):
		
		self.estimates = estimates
		
		self.Delta = np.vstack( [ self._H(s) for s in S ] )
		
		#self.varphi = svm( data=self.Delta, Lambda=.00005, gamma=[.125,.25,.5,1,2,4,8,16] )
		self.varphi = svm( data=self.Delta, Lambda=.0000005, gamma=[16,32,64,128,256,512] )
Esempio n. 2
0
def single():

    fig = plt.figure()
    xrange = (-3.0, 9.0)
    yrange = (-3.0, 9.0)
    xstep = 0.1
    ystep = 0.1

    samples1 = np.vstack(
        [
            np.random.multivariate_normal(mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([50])),
            np.random.multivariate_normal(mean=np.array([0, 6]), cov=np.array(np.identity(2)), size=np.array([50])),
        ]
    )
    phi_1 = svm(samples1, Lambda=0.05, gamma=[0.125, 0.25, 0.5, 1, 2, 4, 8, 16])
    a = fig.add_subplot(2, 2, 1)
    phi_1.contourPlot(fig=a, xrange=xrange, yrange=yrange, xstep=xstep, ystep=ystep)

    samples2 = np.vstack(
        [
            np.random.multivariate_normal(mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([50])),
            np.random.multivariate_normal(mean=np.array([6, 0]), cov=np.array(np.identity(2)), size=np.array([50])),
        ]
    )
    phi_2 = svm(samples2, Lambda=0.05, gamma=[0.125, 0.25, 0.5, 1, 2, 4, 8, 16])
    b = fig.add_subplot(2, 2, 2)
    phi_2.contourPlot(fig=b, xrange=xrange, yrange=yrange, xstep=xstep, ystep=ystep)

    samples = list()
    for i in range(10):
        samples.append(
            np.vstack(
                [
                    np.random.multivariate_normal(
                        mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([50])
                    ),
                    np.random.multivariate_normal(
                        mean=np.array([6, 0]), cov=np.array(np.identity(2)), size=np.array([50])
                    ),
                ]
            )
        )
        samples.append(
            np.vstack(
                [
                    np.random.multivariate_normal(
                        mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([50])
                    ),
                    np.random.multivariate_normal(
                        mean=np.array([0, 6]), cov=np.array(np.identity(2)), size=np.array([50])
                    ),
                ]
            )
        )
    for i in range(10):
        samples.append(
            np.vstack(
                [
                    np.random.multivariate_normal(
                        mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([5])
                    ),
                    np.random.multivariate_normal(
                        mean=np.array([6, 0]), cov=np.array(np.identity(2)), size=np.array([5])
                    ),
                ]
            )
        )
        samples.append(
            np.vstack(
                [
                    np.random.multivariate_normal(
                        mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([5])
                    ),
                    np.random.multivariate_normal(
                        mean=np.array([0, 6]), cov=np.array(np.identity(2)), size=np.array([5])
                    ),
                ]
            )
        )
    e = engine(estimates=(phi_1, phi_2), S=samples)

    test1 = np.vstack(
        [np.random.multivariate_normal(mean=np.array([0, 0]), cov=np.array(np.identity(2)), size=np.array([10]))]
    )
    c = fig.add_subplot(2, 2, 3)
    e.contourPlot(
        S=test1, fig=c, xrange=xrange, yrange=yrange, xstep=xstep, ystep=ystep, title="derived distribution 1"
    )
    # e.varphi.contourPlot( c, xrange=(-.1,0.), yrange=(-.1,0.), xstep=.005,ystep=.005 )
    # e.varphiPlot(c)
    # c.hist(e.varphi.pdf( e.Delta ) )

    test2 = np.vstack(
        [np.random.multivariate_normal(mean=np.array([0, 6]), cov=np.array(np.identity(2)), size=np.array([10]))]
    )
    c = fig.add_subplot(2, 2, 4)
    e.contourPlot(
        S=test2, fig=c, xrange=xrange, yrange=yrange, xstep=xstep, ystep=ystep, title="derived distribution 2"
    )

    plt.show()