def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.sparse.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in ['F', 'E'], ("projType must be 'F' for faces or 'E'" " for edges") if prop is None: prop = np.ones(self.nC) if invProp: prop = 1./prop if Utils.isScalar(prop): prop = prop*np.ones(self.nC) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == 'CYL': n_elements = np.sum(getattr(self, 'vn'+projType).nonzero()) else: n_elements = self.dim # Isotropic? or anisotropic? if prop.size == self.nC: Av = getattr(self, 'ave'+projType+'2CC') Vprop = self.vol * Utils.mkvc(prop) M = n_elements * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC*self.dim: Av = getattr(self, 'ave'+projType+'2CCV') # if cyl, then only certain components are relevant due to symmetry # for faces, x, z matters, for edges, y (which is theta) matters if self._meshType == 'CYL': if projType == 'E': prop = prop[:, 1] # this is the action of a projection mat elif projType == 'F': prop = prop[:, [0, 2]] V = sp.kron(sp.identity(n_elements), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.sparse.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in ["F", "E"], "projType must be 'F' for faces or 'E'" " for edges" if prop is None: prop = np.ones(self.nC) if invProp: prop = 1.0 / prop if Utils.isScalar(prop): prop = prop * np.ones(self.nC) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == "CYL": n_elements = np.sum(getattr(self, "vn" + projType).nonzero()) else: n_elements = self.dim # Isotropic? or anisotropic? if prop.size == self.nC: Av = getattr(self, "ave" + projType + "2CC") Vprop = self.vol * Utils.mkvc(prop) M = n_elements * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC * self.dim: Av = getattr(self, "ave" + projType + "2CCV") # if cyl, then only certain components are relevant due to symmetry # for faces, x, z matters, for edges, y (which is theta) matters if self._meshType == "CYL": if projType == "E": prop = prop[:, 1] # this is the action of a projection mat elif projType == "F": prop = prop[:, [0, 2]] V = sp.kron(sp.identity(n_elements), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in ['F', 'E'], "projType must be 'F' for faces or 'E' for edges" tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) if tensorType == 0: Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) ones = sp.csr_matrix((np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC,1)) if not invMat and not invProp: dMdprop = self.dim * Av.T * V * ones elif invMat and invProp: dMdprop = self.dim * Utils.sdiag(MI.diagonal()**2) * Av.T * V * ones * Utils.sdiag(1./prop**2) if tensorType == 1: Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = self.dim * Av.T * V elif invMat and invProp: dMdprop = self.dim * Utils.sdiag(MI.diagonal()**2) * Av.T * V * Utils.sdiag(1./prop**2) if tensorType == 2: # anisotropic Av = getattr(self, 'ave'+projType+'2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if not invMat and not invProp: dMdprop = Av.T * V elif invMat and invProp: dMdprop = Utils.sdiag(MI.diagonal()**2) * Av.T * V * Utils.sdiag(1./prop**2) if dMdprop is not None: def innerProductDeriv(v=None): if v is None: print 'Depreciation Warning: TensorMesh.innerProductDeriv. You should be supplying a vector. Use: sdiag(u)*dMdprop' return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None
def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in [ 'F', 'E' ], "projType must be 'F' for faces or 'E' for edges" if prop is None: prop = np.ones(self.nC) if invProp: prop = 1. / prop if Utils.isScalar(prop): prop = prop * np.ones(self.nC) if prop.size == self.nC: Av = getattr(self, 'ave' + projType + '2CC') Vprop = self.vol * Utils.mkvc(prop) M = self.dim * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC * self.dim: Av = getattr(self, 'ave' + projType + '2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in ['F', 'E'], "projType must be 'F' for faces or 'E' for edges" if prop is None: prop = np.ones(self.nC) if invProp: prop = 1./prop if Utils.isScalar(prop): prop = prop*np.ones(self.nC) if prop.size == self.nC: Av = getattr(self, 'ave'+projType+'2CC') Vprop = self.vol * Utils.mkvc(prop) M = self.dim * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC*self.dim: Av = getattr(self, 'ave'+projType+'2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in [ 'F', 'E' ], "projType must be 'F' for faces or 'E' for edges" tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) if tensorType == 0: Av = getattr(self, 'ave' + projType + '2CC') V = Utils.sdiag(self.vol) ones = sp.csr_matrix( (np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC, 1)) if not invMat and not invProp: dMdprop = self.dim * Av.T * V * ones elif invMat and invProp: dMdprop = self.dim * Utils.sdiag( MI.diagonal()**2) * Av.T * V * ones * Utils.sdiag( 1. / prop**2) if tensorType == 1: Av = getattr(self, 'ave' + projType + '2CC') V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = self.dim * Av.T * V elif invMat and invProp: dMdprop = self.dim * Utils.sdiag( MI.diagonal()**2) * Av.T * V * Utils.sdiag(1. / prop**2) if tensorType == 2: # anisotropic Av = getattr(self, 'ave' + projType + '2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if not invMat and not invProp: dMdprop = Av.T * V elif invMat and invProp: dMdprop = Utils.sdiag(MI.diagonal()** 2) * Av.T * V * Utils.sdiag(1. / prop**2) if dMdprop is not None: def innerProductDeriv(v=None): if v is None: print 'Depreciation Warning: TensorMesh.innerProductDeriv. You should be supplying a vector. Use: sdiag(u)*dMdprop' return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in ['F', 'E'], ("projType must be 'F' for faces or 'E'" " for edges") tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat or invProp: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == 'CYL': n_elements = np.sum(getattr(self, 'vn'+projType).nonzero()) else: n_elements = self.dim if tensorType == 0: # isotropic, constant Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) ones = sp.csr_matrix((np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC, 1)) if not invMat and not invProp: dMdprop = n_elements * Av.T * V * ones elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal()**2) * Av.T * V * ones * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(- 1./prop**2) elif invMat: dMdprop = n_elements * (Utils.sdiag(- MI.diagonal()**2) * Av.T * V) elif tensorType == 1: # isotropic, variable in space Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = n_elements * Av.T * V elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal()**2) * Av.T * V * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1./prop**2) elif invMat: dMdprop = n_elements * (Utils.sdiag(- MI.diagonal()**2) * Av.T * V) elif tensorType == 2: # anisotropic Av = getattr(self, 'ave'+projType+'2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if self._meshType == 'CYL': Zero = sp.csr_matrix((self.nC, self.nC)) Eye = sp.eye(self.nC) if projType == 'E': P = sp.hstack([Zero, Eye, Zero]) # print P.todense() elif projType == 'F': P = sp.vstack([sp.hstack([Eye, Zero, Zero]), sp.hstack([Zero, Zero, Eye])]) # print P.todense() else: P = sp.eye(self.nC*self.dim) if not invMat and not invProp: dMdprop = Av.T * P * V elif invMat and invProp: dMdprop = (Utils.sdiag(MI.diagonal()**2) * Av.T * P * V * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = Av.T * P * V * Utils.sdiag(-1./prop**2) elif invMat: dMdprop = Utils.sdiag(- MI.diagonal()**2) * Av.T * P * V if dMdprop is not None: def innerProductDeriv(v=None): if v is None: warnings.warn("Depreciation Warning: " "TensorMesh.innerProductDeriv." " You should be supplying a vector. " "Use: sdiag(u)*dMdprop", FutureWarning) return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in ["F", "E"], "projType must be 'F' for faces or 'E'" " for edges" tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat or invProp: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == "CYL": n_elements = np.sum(getattr(self, "vn" + projType).nonzero()) else: n_elements = self.dim if tensorType == 0: # isotropic, constant Av = getattr(self, "ave" + projType + "2CC") V = Utils.sdiag(self.vol) ones = sp.csr_matrix((np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC, 1)) if not invMat and not invProp: dMdprop = n_elements * Av.T * V * ones elif invMat and invProp: dMdprop = n_elements * ( Utils.sdiag(MI.diagonal() ** 2) * Av.T * V * ones * Utils.sdiag(1.0 / prop ** 2) ) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = n_elements * (Utils.sdiag(-MI.diagonal() ** 2) * Av.T * V) elif tensorType == 1: # isotropic, variable in space Av = getattr(self, "ave" + projType + "2CC") V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = n_elements * Av.T * V elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal() ** 2) * Av.T * V * Utils.sdiag(1.0 / prop ** 2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = n_elements * (Utils.sdiag(-MI.diagonal() ** 2) * Av.T * V) elif tensorType == 2: # anisotropic Av = getattr(self, "ave" + projType + "2CCV") V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if self._meshType == "CYL": Zero = sp.csr_matrix((self.nC, self.nC)) Eye = sp.eye(self.nC) if projType == "E": P = sp.hstack([Zero, Eye, Zero]) # print(P.todense()) elif projType == "F": P = sp.vstack([sp.hstack([Eye, Zero, Zero]), sp.hstack([Zero, Zero, Eye])]) # print(P.todense()) else: P = sp.eye(self.nC * self.dim) if not invMat and not invProp: dMdprop = Av.T * P * V elif invMat and invProp: dMdprop = Utils.sdiag(MI.diagonal() ** 2) * Av.T * P * V * Utils.sdiag(1.0 / prop ** 2) elif invProp: dMdprop = Av.T * P * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = Utils.sdiag(-MI.diagonal() ** 2) * Av.T * P * V if dMdprop is not None: def innerProductDeriv(v=None): if v is None: warnings.warn( "Depreciation Warning: " "TensorMesh.innerProductDeriv." " You should be supplying a vector. " "Use: sdiag(u)*dMdprop", FutureWarning, ) return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None