Esempio n. 1
0
    def setUp(self):

        cs = 25.
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hy, hz], x0="CCN")
        blkind0 = Utils.ModelBuilder.getIndicesSphere(
            np.r_[-100., -100., -200.], 75., mesh.gridCC
        )
        blkind1 = Utils.ModelBuilder.getIndicesSphere(
            np.r_[100., 100., -200.], 75., mesh.gridCC
        )
        sigma = np.ones(mesh.nC)*1e-2
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma)*1.
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.) & (mesh.vectorCCx < 155.)]
        y = mesh.vectorCCx[(mesh.vectorCCy > -155.) & (mesh.vectorCCy < 155.)]
        Aloc = np.r_[-200., 0., 0.]
        Bloc = np.r_[200., 0., 0.]
        M = Utils.ndgrid(x-25., y, np.r_[0.])
        N = Utils.ndgrid(x+25., y, np.r_[0.])

        times = np.arange(10)*1e-3 + 1e-3
        rx = SIP.Rx.Dipole(M, N, times)
        src = SIP.Src.Dipole([rx], Aloc, Bloc)
        survey = SIP.Survey([src])
        wires = Maps.Wires(('eta', mesh.nC), ('taui', mesh.nC))
        problem = SIP.Problem3D_N(
            mesh,
            sigma=sigma,
            etaMap=wires.eta,
            tauiMap=wires.taui
        )
        problem.Solver = Solver
        problem.pair(survey)
        mSynth = np.r_[eta, 1./tau]
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(
            maxIterLS=20, maxIter=10, tolF=1e-6,
            tolX=1e-6, tolG=1e-6, maxIterCG=6
        )
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Esempio n. 2
0
    def test_basic_inversion(self):
        """
        Test to see if inversion recovers model
        """

        h = [(2, 30)]
        meshObj = Mesh.TensorMesh((h, h, [(2, 10)]), x0='CCN')

        mod = 0.00025 * np.ones(meshObj.nC)
        mod[(meshObj.gridCC[:, 0] > -4.) & (meshObj.gridCC[:, 1] > -4.) &
            (meshObj.gridCC[:, 0] < 4.) & (meshObj.gridCC[:, 1] < 4.)] = 0.001

        times = np.logspace(-4, -2, 5)
        waveObj = VRM.WaveformVRM.SquarePulse(0.02)

        x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16))
        x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x))
        rxList = [VRM.Rx.Point(np.c_[x, y, z], times, 'dbdt', 'z')]

        txNodes = np.array([[-20, -20, 0.001], [20, -20,
                                                0.001], [20, 20, 0.001],
                            [-20, 20, 0.01], [-20, -20, 0.001]])
        txList = [VRM.Src.LineCurrent(rxList, txNodes, 1., waveObj)]

        Survey = VRM.Survey(txList)
        Problem = VRM.Problem_Linear(meshObj, refFact=2)
        Problem.pair(Survey)
        Survey.makeSyntheticData(mod)
        Survey.eps = 1e-11

        dmis = DataMisfit.l2_DataMisfit(Survey)
        W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25
        reg = Regularization.Simple(meshObj,
                                    alpha_s=0.01,
                                    alpha_x=1.,
                                    alpha_y=1.,
                                    alpha_z=1.,
                                    cell_weights=W)
        opt = Optimization.ProjectedGNCG(maxIter=20,
                                         lower=0.,
                                         upper=1e-2,
                                         maxIterLS=20,
                                         tolCG=1e-4)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        directives = [
            Directives.BetaSchedule(coolingFactor=2, coolingRate=1),
            Directives.TargetMisfit()
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)

        m0 = 1e-6 * np.ones(len(mod))
        mrec = inv.run(m0)

        dmis_final = np.sum(
            (dmis.W.diagonal() * (Survey.dobs - Problem.fields(mrec)))**2)
        mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod)
        mod_err_inf = np.max(np.abs(mrec - mod))

        self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6
                        and mod_err_inf < np.max(mod))
Esempio n. 3
0
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs):
    """
        Inversion module for MagneticsDiffSecondary

    """
    from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion
    prob = MagneticsDiffSecondary(mesh, model)

    miter = kwargs.get('maxIter', 10)

    if prob.ispaired:
        prob.unpair()
    if data.ispaired:
        data.unpair()
    prob.pair(data)

    # Create an optimization program
    opt = Optimization.InexactGaussNewton(maxIter=miter)
    opt.bfgsH0 = Solver(sp.identity(model.nP), flag='D')
    # Create a regularization program
    reg = Regularization.Tikhonov(model)
    # Create an objective function
    beta = Parameters.BetaSchedule(beta0=1e0)
    obj = ObjFunction.BaseObjFunction(data, reg, beta=beta)
    # Create an inversion object
    inv = Inversion.BaseInversion(obj, opt)

    return inv, reg
Esempio n. 4
0
 def test_GN_quadratic(self):
     GN = Optimization.GaussNewton()
     xopt = GN.minimize(getQuadratic(self.A, self.b), np.array([0, 0]))
     x_true = np.array([5., 5.])
     print('xopt: ', xopt)
     print('x_true: ', x_true)
     self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
Esempio n. 5
0
 def test_GN_Rosenbrock(self):
     GN = Optimization.GaussNewton()
     xopt = GN.minimize(Rosenbrock, np.array([0, 0]))
     x_true = np.array([1., 1.])
     print('xopt: ', xopt)
     print('x_true: ', x_true)
     self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
    def setUp(self, parallel=False):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = np.r_[1.]
        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        e = np.ones(n_sounding)
        mSynth = np.r_[e * np.log(1. / 100.), e * 20]

        x = np.arange(n_sounding)
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        wires = Maps.Wires(('sigma', n_sounding), ('h', n_sounding))
        expmap = Maps.ExpMap(nP=n_sounding)
        sigmaMap = expmap * wires.sigma

        survey = GlobalEM1DSurveyFD(rx_locations=rx_locations,
                                    src_locations=src_locations,
                                    frequency=frequency,
                                    offset=np.ones_like(frequency) * 8.,
                                    src_type="VMD",
                                    rx_type="ppm",
                                    field_type='secondary',
                                    topo=topo,
                                    half_switch=True)

        problem = GlobalEM1DProblemFD([],
                                      sigmaMap=sigmaMap,
                                      hMap=wires.h,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        mesh = Mesh.TensorMesh([int(n_sounding * 2)])
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth * 1.2
        self.survey = survey
        self.dmis = dmis
    def setUp(self, parallel=True):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = get_vertical_discretization_frequency(
            frequency, sigma_background=1./10.
        )

        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        mesh = Mesh.TensorMesh([hx, hz], x0='00')
        inds = mesh.gridCC[:, 1] < 25
        inds_1 = mesh.gridCC[:, 1] < 50
        sigma = np.ones(mesh.nC) * 1./100.
        sigma[inds_1] = 1./10.
        sigma[inds] = 1./50.
        sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten()
        mSynth = np.log(sigma_em1d)

        x = mesh.vectorCCx
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z-30.].astype(float)
        mapping = Maps.ExpMap(mesh)
        survey = GlobalEM1DSurveyFD(
            rx_locations=rx_locations,
            src_locations=src_locations,
            frequency=frequency,
            offset=np.ones_like(frequency) * 8.,
            src_type="VMD",
            rx_type="Hz",
            field_type='secondary',
            topo=topo
        )

        problem = GlobalEM1DProblemFD(
            [], sigmaMap=mapping, hz=hz,
            parallel=parallel, n_cpu=5
        )
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(
            maxIterLS=20, maxIter=10, tolF=1e-6,
            tolX=1e-6, tolG=1e-6, maxIterCG=6
        )
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Esempio n. 8
0
 def test_ProjGradient_quadraticBounded(self):
     PG = Optimization.ProjectedGradient(debug=True)
     PG.lower, PG.upper = -2, 2
     xopt = PG.minimize(getQuadratic(self.A, self.b), np.array([0, 0]))
     x_true = np.array([2., 2.])
     print('xopt: ', xopt)
     print('x_true: ', x_true)
     self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
Esempio n. 9
0
 def test_NewtonRoot(self):
     fun = lambda x, return_g=True: np.sin(x) if not return_g else ( np.sin(x), sdiag( np.cos(x) ) )
     x = np.array([np.pi-0.3, np.pi+0.1, 0])
     xopt = Optimization.NewtonRoot(comments=False).root(fun,x)
     x_true = np.array([np.pi,np.pi,0])
     print('Newton Root Finding')
     print('xopt: ', xopt)
     print('x_true: ', x_true)
     self.assertTrue(np.linalg.norm(xopt-x_true,2) < TOL, True)
Esempio n. 10
0
 def rootFinder(self):
     """Root-finding Algorithm"""
     if getattr(self, '_rootFinder', None) is None:
         self._rootFinder = Optimization.NewtonRoot(
             doLS=self.doNewton,
             maxIter=self.maxIterRootFinder,
             tol=self.tolRootFinder,
             Solver=self.Solver)
     return self._rootFinder
Esempio n. 11
0
 def test_ProjGradient_quadratic1Bound(self):
     myB = np.array([-5, 1])
     PG = Optimization.ProjectedGradient()
     PG.lower, PG.upper = -2, 2
     xopt = PG.minimize(getQuadratic(self.A, myB), np.array([0, 0]))
     x_true = np.array([2., -1.])
     print('xopt: ', xopt)
     print('x_true: ', x_true)
     self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
Esempio n. 12
0
def run(N=100, plotIt=True):

    np.random.seed(1)

    mesh = Mesh.TensorMesh([N])

    nk = 20
    jk = np.linspace(1., 60., nk)
    p = -0.25
    q = 0.25

    def g(k):
        return (np.exp(p * jk[k] * mesh.vectorCCx) *
                np.cos(np.pi * q * jk[k] * mesh.vectorCCx))

    G = np.empty((nk, mesh.nC))

    for i in range(nk):
        G[i, :] = g(i)

    mtrue = np.zeros(mesh.nC)
    mtrue[mesh.vectorCCx > 0.3] = 1.
    mtrue[mesh.vectorCCx > 0.45] = -0.5
    mtrue[mesh.vectorCCx > 0.6] = 0

    prob = Problem.LinearProblem(mesh, G=G)
    survey = Survey.LinearSurvey()
    survey.pair(prob)
    survey.makeSyntheticData(mtrue, std=0.01)

    M = prob.mesh

    reg = Regularization.Tikhonov(mesh, alpha_s=1., alpha_x=1.)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=60)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    directives = [
        Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        Directives.TargetMisfit()
    ]
    inv = Inversion.BaseInversion(invProb, directiveList=directives)
    m0 = np.zeros_like(survey.mtrue)

    mrec = inv.run(m0)

    if plotIt:
        fig, axes = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))
        for i in range(prob.G.shape[0]):
            axes[0].plot(prob.G[i, :])
        axes[0].set_title('Columns of matrix G')

        axes[1].plot(M.vectorCCx, survey.mtrue, 'b-')
        axes[1].plot(M.vectorCCx, mrec, 'r-')
        axes[1].legend(('True Model', 'Recovered Model'))
        axes[1].set_ylim([-2, 2])

    return prob, survey, mesh, mrec
    def fit_colecole_with_se(self, eta_cc=0.8, tau_cc=0.003, c_cc=0.6):
        def ColeColeSeigel(f, sigmaInf, eta, tau, c):
            w = 2 * np.pi * f
            return sigmaInf * (1 - eta / (1 + (1j * w * tau)**c))

        # Step1: Fit Cole-Cole with Stretched Exponential function
        time = np.logspace(-6, np.log10(0.01), 41)
        wt, tbase, omega_int = DigFilter.setFrequency(time)
        frequency = omega_int / (2 * np.pi)
        # Cole-Cole parameters
        siginf = 1.
        self.eta_cc = eta_cc
        self.tau_cc = tau_cc
        self.c_cc = c_cc

        sigma = ColeColeSeigel(frequency, siginf, eta_cc, tau_cc, c_cc)
        sigTCole = DigFilter.transFiltImpulse(sigma,
                                              wt,
                                              tbase,
                                              omega_int,
                                              time,
                                              tol=1e-12)
        wires = Maps.Wires(('eta', 1), ('tau', 1), ('c', 1))
        taumap = Maps.ExpMap(nP=1) * wires.tau
        survey = SESurvey()
        dtrue = -sigTCole
        survey.dobs = dtrue
        m1D = Mesh.TensorMesh([np.ones(3)])
        prob = SEInvImpulseProblem(m1D,
                                   etaMap=wires.eta,
                                   tauMap=taumap,
                                   cMap=wires.c)
        update_sens = Directives.UpdateSensitivityWeights()
        prob.time = time
        prob.pair(survey)
        m0 = np.r_[eta_cc, np.log(tau_cc), c_cc]
        perc = 0.05
        dmisfitpeta = DataMisfit.l2_DataMisfit(survey)
        dmisfitpeta.W = 1 / (abs(survey.dobs) * perc)
        reg = regularization.Simple(m1D)
        opt = Optimization.ProjectedGNCG(maxIter=10)
        invProb = InvProblem.BaseInvProblem(dmisfitpeta, reg, opt)
        # Create an inversion object
        target = Directives.TargetMisfit()
        invProb.beta = 0.
        inv = Inversion.BaseInversion(invProb, directiveList=[target])
        reg.mref = 0. * m0
        prob.counter = opt.counter = Utils.Counter()
        opt.LSshorten = 0.5
        opt.remember('xc')
        opt.tolX = 1e-20
        opt.tolF = 1e-20
        opt.tolG = 1e-20
        opt.eps = 1e-20
        mopt = inv.run(m0)
        return mopt
Esempio n. 14
0
 def root_finder(self):
     """Root-finding Algorithm"""
     if getattr(self, '_root_finder', None) is None:
         self._root_finder = Optimization.NewtonRoot(
             doLS=self.do_newton,
             maxIter=self.root_finder_max_iter,
             tol=self.root_finder_tol,
             Solver=self.Solver
         )
     return self._root_finder
Esempio n. 15
0
    def test_inv(self):
        reg = Regularization.Tikhonov(self.mesh)
        opt = Optimization.InexactGaussNewton(maxIter=10)
        invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives = [
            Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)
Esempio n. 16
0
    def setUp(self):

        cs = 25.
        hx = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)]
        hy = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)]
        hz = [(cs,0, -1.3),(cs,20),(cs,0, 1.3)]
        mesh = Mesh.TensorMesh([hx, hy, hz],x0="CCC")
        blkind0 = Utils.ModelBuilder.getIndicesSphere(np.r_[-100., -100., -200.], 75., mesh.gridCC)
        blkind1 = Utils.ModelBuilder.getIndicesSphere(np.r_[100., 100., -200.], 75., mesh.gridCC)
        sigma = np.ones(mesh.nC)*1e-2
        airind = mesh.gridCC[:,2]>0.
        sigma[airind] = 1e-8
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma)*1.
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        actmapeta = Maps.InjectActiveCells(mesh, ~airind, 0.)
        actmaptau = Maps.InjectActiveCells(mesh, ~airind, 1.)

        x = mesh.vectorCCx[(mesh.vectorCCx>-155.)&(mesh.vectorCCx<155.)]
        y = mesh.vectorCCx[(mesh.vectorCCy>-155.)&(mesh.vectorCCy<155.)]
        Aloc = np.r_[-200., 0., 0.]
        Bloc = np.r_[200., 0., 0.]
        M = Utils.ndgrid(x-25.,y, np.r_[0.])
        N = Utils.ndgrid(x+25.,y, np.r_[0.])

        times = np.arange(10)*1e-3 + 1e-3
        rx = SIP.Rx.Dipole(M, N, times)
        src = SIP.Src.Dipole([rx], Aloc, Bloc)
        survey = SIP.Survey([src])
        colemap = [("eta", Maps.IdentityMap(mesh)*actmapeta), ("taui", Maps.IdentityMap(mesh)*actmaptau)]
        problem = SIP.Problem3D_N(mesh, sigma=sigma, mapping=colemap)
        problem.Solver = Solver
        problem.pair(survey)
        mSynth = np.r_[eta[~airind], 1./tau[~airind]]
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        regmap = Maps.IdentityMap(nP=int(mSynth[~airind].size*2))
        reg = SIP.MultiRegularization(mesh, mapping=regmap, nModels=2, indActive=~airind)
        opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p =     problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Esempio n. 17
0
    def setUp(self):

        mesh = Mesh.TensorMesh([20, 20, 20], "CCN")
        sigma = np.ones(mesh.nC) * 1. / 100.
        actind = mesh.gridCC[:, 2] < -0.2
        # actMap = Maps.InjectActiveCells(mesh, actind, 0.)

        xyzM = Utils.ndgrid(
            np.ones_like(mesh.vectorCCx[:-1]) * -0.4,
            np.ones_like(mesh.vectorCCy) * -0.4, np.r_[-0.3])
        xyzN = Utils.ndgrid(mesh.vectorCCx[1:], mesh.vectorCCy, np.r_[-0.3])

        problem = SP.Problem_CC(mesh,
                                sigma=sigma,
                                qMap=Maps.IdentityMap(mesh),
                                Solver=PardisoSolver)
        rx = SP.Rx.Dipole(xyzN, xyzM)
        src = SP.Src.StreamingCurrents([rx],
                                       L=np.ones(mesh.nC),
                                       mesh=mesh,
                                       modelType="CurrentSource")
        survey = SP.Survey([src])
        survey.pair(problem)

        q = np.zeros(mesh.nC)
        inda = Utils.closestPoints(mesh, np.r_[-0.5, 0., -0.8])
        indb = Utils.closestPoints(mesh, np.r_[0.5, 0., -0.8])
        q[inda] = 1.
        q[indb] = -1.

        mSynth = q.copy()
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Simple(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e-2)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self):

        cs = 12.5
        hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)]
        hy = [(cs, 7, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hy], x0="CN")

        # x = np.linspace(-200, 200., 20)
        x = np.linspace(-200, 200., 2)
        M = Utils.ndgrid(x - 12.5, np.r_[0.])
        N = Utils.ndgrid(x + 12.5, np.r_[0.])

        A0loc = np.r_[-150, 0.]
        A1loc = np.r_[-130, 0.]
        B0loc = np.r_[-130, 0.]
        B1loc = np.r_[-110, 0.]

        rx = DC.Rx.Dipole_ky(M, N)
        src0 = DC.Src.Dipole([rx], A0loc, B0loc)
        src1 = DC.Src.Dipole([rx], A1loc, B1loc)
        survey = IP.Survey([src0, src1])

        sigma = np.ones(mesh.nC) * 1.
        problem = IP.Problem2D_CC(mesh,
                                  sigma=sigma,
                                  etaMap=Maps.IdentityMap(mesh),
                                  verbose=False)
        problem.pair(survey)

        mSynth = np.ones(mesh.nC) * 0.1
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def solve(self):
        # Tikhonov Inversion
        ####################

        # Initial model values
        m0 = np.median(self.ln_sigback) * np.ones(self.mapping.nP)
        m0 += np.random.randn(m0.size)

        # Misfit functional
        dmis = DataMisfit.l2_DataMisfit(self.survey.simpeg_survey)
        # Regularization functional
        regT = Regularization.Simple(self.mesh,
                                     alpha_s=10.0,
                                     alpha_x=10.0,
                                     alpha_y=10.0,
                                     alpha_z=10.0,
                                     indActive=self.actind)

        # Personal preference for this solver with a Jacobi preconditioner
        opt = Optimization.ProjectedGNCG(maxIter=8, tolX=1, maxIterCG=30)
        #opt = Optimization.ProjectedGradient(maxIter=100, tolX=1e-2,
        #                                 maxIterLS=20, maxIterCG=30, tolCG=1e-4)

        opt.printers.append(Optimization.IterationPrinters.iterationLS)
        #print(opt.printersLS)

        # Optimization class keeps value of 'xc'. Seems to be solution for the model parameters
        opt.remember('xc')
        invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

        # Options for the inversion algorithm in particular selection of Beta weight for regularization.

        # How to choose initial estimate for beta
        beta = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
        Target = Directives.TargetMisfit()
        # Beta changing algorithm.
        betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
        # Change model weights, seems sensitivity of conductivity ?? Not sure.
        updateSensW = Directives.UpdateSensitivityWeights(threshold=1e-3)
        # Use Jacobi preconditioner ( the only available).
        update_Jacobi = Directives.UpdatePreconditioner()

        inv = Inversion.BaseInversion(invProb,
                                      directiveList=[
                                          beta, Target, betaSched, updateSensW,
                                          update_Jacobi
                                      ])

        self.minv = inv.run(m0)
Esempio n. 20
0
    def test_inv_mref_setting(self):
        reg1 = Regularization.Tikhonov(self.mesh)
        reg2 = Regularization.Tikhonov(self.mesh)
        reg = reg1 + reg2
        opt = Optimization.InexactGaussNewton(maxIter=10)
        invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives = [
            Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)

        self.assertTrue(np.all(reg1.mref == m0))
        self.assertTrue(np.all(reg2.mref == m0))
Esempio n. 21
0
    def setUp(self):
        mesh = Mesh.TensorMesh([4, 4, 4])

        # Magnetic inducing field parameter (A,I,D)
        B = [50000, 90, 0]

        # Create a MAGsurvey
        rx = PF.BaseMag.RxObs(
            np.vstack([[0.25, 0.25, 0.25], [-0.25, -0.25, 0.25]]))
        srcField = PF.BaseMag.SrcField([rx], param=(B[0], B[1], B[2]))
        survey = PF.BaseMag.LinearSurvey(srcField)

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(mesh,
                                             chiMap=Maps.IdentityMap(mesh))

        # Pair the survey and problem
        survey.pair(prob)

        # Compute forward model some data
        m = np.random.rand(mesh.nC)
        survey.makeSyntheticData(m)

        reg = Regularization.Sparse(mesh)
        reg.mref = np.zeros(mesh.nC)

        wr = np.sum(prob.G**2., axis=0)**0.5
        reg.cell_weights = wr
        reg.norms = [0, 1, 1, 1]
        reg.eps_p, reg.eps_q = 1e-3, 1e-3

        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1. / survey.std

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=2,
                                         lower=-10.,
                                         upper=10.,
                                         maxIterCG=2)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

        self.mesh = mesh
        self.invProb = invProb
Esempio n. 22
0
    def setUp(self):

        aSpacing = 2.5
        nElecs = 10

        surveySize = nElecs * aSpacing - aSpacing
        cs = surveySize / nElecs / 4

        mesh = Mesh.TensorMesh(
            [
                [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)],
                [(cs, 3, -1.3), (cs, 3, 1.3)],
                # [(cs, 5, -1.3), (cs, 10)]
            ],
            'CN')

        srcList = DC.Utils.WennerSrcList(nElecs, aSpacing, in2D=True)
        survey = DC.Survey(srcList)
        problem = DC.Problem3D_N(mesh,
                                 rhoMap=Maps.IdentityMap(mesh),
                                 storeJ=True)
        problem.pair(survey)

        mSynth = np.ones(mesh.nC)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Esempio n. 23
0
    def setUp(self):

        cs = 12.5
        hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)]
        hy = [(cs, 7, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hy], x0="CN")
        x = np.linspace(-135, 250., 20)
        M = Utils.ndgrid(x - 12.5, np.r_[0.])
        N = Utils.ndgrid(x + 12.5, np.r_[0.])
        A0loc = np.r_[-150, 0.]
        A1loc = np.r_[-130, 0.]
        rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]]
        rx = DC.Rx.Dipole_ky(M, N)
        src0 = DC.Src.Pole([rx], A0loc)
        src1 = DC.Src.Pole([rx], A1loc)
        survey = DC.Survey_ky([src0, src1])
        problem = DC.Problem2D_N(mesh,
                                 mapping=[('rho', Maps.IdentityMap(mesh))])
        problem.pair(survey)

        mSynth = np.ones(mesh.nC) * 1.
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e0)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Esempio n. 24
0
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs):
    """
    Inversion module for MagneticsDiffSecondary

    """
    from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion

    prob = Simulation3DDifferential(mesh, survey=data, mu=model)

    miter = kwargs.get("maxIter", 10)

    # Create an optimization program
    opt = Optimization.InexactGaussNewton(maxIter=miter)
    opt.bfgsH0 = Solver(sp.identity(model.nP), flag="D")
    # Create a regularization program
    reg = Regularization.Tikhonov(model)
    # Create an objective function
    beta = Parameters.BetaSchedule(beta0=1e0)
    obj = ObjFunction.BaseObjFunction(prob, reg, beta=beta)
    # Create an inversion object
    inv = Inversion.BaseInversion(obj, opt)

    return inv, reg
Esempio n. 25
0
 def solve(self):
     # initial values/model
     m0 = numpy.median(-4) * numpy.ones(self.mapping.nP)
     # Data Misfit
     dataMisfit = DataMisfit.l2_DataMisfit(self.survey)
     # Regularization
     regT = Regularization.Simple(self.mesh, indActive=self.activeCellIndices, alpha_s=1e-6, alpha_x=1., alpha_y=1., alpha_z=1.)
     # Optimization Scheme
     opt = Optimization.InexactGaussNewton(maxIter=10)
     # Form the problem
     opt.remember('xc')
     invProb = InvProblem.BaseInvProblem(dataMisfit, regT, opt)
     # Directives for Inversions
     beta = Directives.BetaEstimate_ByEig(beta0_ratio=0.5e+1)
     Target = Directives.TargetMisfit()
     betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
     inversion = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
     # Run Inversion
     self.invModelOnActiveCells = inversion.run(m0)
     self.invModelOnAllCells = self.givenModelCond * numpy.ones_like(self.givenModelCond)
     self.invModelOnAllCells[self.activeCellIndices] = self.invModelOnActiveCells
     self.invModelOnCoreCells = self.invModelOnAllCells[self.coreMeshCellIndices]
     pass
Esempio n. 26
0
    def setUp(self):

        time = np.logspace(-3, 0, 21)
        n_loc = 5
        wires = Maps.Wires(('eta', n_loc), ('tau', n_loc), ('c', n_loc))
        taumap = Maps.ExpMap(nP=n_loc) * wires.tau
        etamap = Maps.ExpMap(nP=n_loc) * wires.eta
        cmap = Maps.ExpMap(nP=n_loc) * wires.c
        survey = SEMultiSurvey(time=time, locs=np.zeros((n_loc, 3)), n_pulse=0)
        mesh = Mesh.TensorMesh([np.ones(int(n_loc * 3))])
        prob = SEMultiInvProblem(mesh, etaMap=etamap, tauMap=taumap, cMap=cmap)
        prob.pair(survey)

        eta0, tau0, c0 = 0.1, 10., 0.5
        m0 = np.log(np.r_[eta0 * np.ones(n_loc), tau0 * np.ones(n_loc),
                          c0 * np.ones(n_loc)])
        survey.makeSyntheticData(m0)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = prob
        self.survey = survey
        self.m0 = m0
        self.dmis = dmis
        self.mesh = mesh
def resolve_1Dinversions(mesh,
                         dobs,
                         src_height,
                         freqs,
                         m0,
                         mref,
                         mapping,
                         std=0.08,
                         floor=1e-14,
                         rxOffset=7.86):
    """
    Perform a single 1D inversion for a RESOLVE sounding for Horizontal
    Coplanar Coil data (both real and imaginary).

    :param discretize.CylMesh mesh: mesh used for the forward simulation
    :param numpy.array dobs: observed data
    :param float src_height: height of the source above the ground
    :param numpy.array freqs: frequencies
    :param numpy.array m0: starting model
    :param numpy.array mref: reference model
    :param Maps.IdentityMap mapping: mapping that maps the model to electrical conductivity
    :param float std: percent error used to construct the data misfit term
    :param float floor: noise floor used to construct the data misfit term
    :param float rxOffset: offset between source and receiver.
    """

    # ------------------- Forward Simulation ------------------- #
    # set up the receivers
    bzr = EM.FDEM.Rx.Point_bSecondary(np.array([[rxOffset, 0., src_height]]),
                                      orientation='z',
                                      component='real')

    bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., src_height]]),
                             orientation='z',
                             component='imag')

    # source location
    srcLoc = np.array([0., 0., src_height])
    srcList = [
        EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    # construct a forward simulation
    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=PardisoSolver)
    prb.pair(survey)

    # ------------------- Inversion ------------------- #
    # data misfit term
    survey.dobs = dobs
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(dobs) * std + floor
    dmisfit.W = 1. / uncert

    # regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    reg.mref = mref

    # optimization
    opt = Optimization.InexactGaussNewton(maxIter=10)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = Directives.TargetMisfit()
    inv = Inversion.BaseInversion(invProb, directiveList=[target])

    invProb.beta = 2.  # Fix beta in the nonlinear iterations
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # run the inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred, survey.dobs
Esempio n. 28
0
reg_t = Regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
reg_t.mref = np.zeros(3 * nC)
reg_t.cell_weights = (wires.t * wr)

reg = reg_p + reg_s + reg_t
reg.mref = np.zeros(3 * nC)

# Data misfit function
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1. / survey.std

# Add directives to the inversion
opt = Optimization.ProjectedGNCG(maxIter=30,
                                 lower=-10,
                                 upper=10.,
                                 maxIterLS=20,
                                 maxIterCG=20,
                                 tolCG=1e-4)

invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# A list of directive to control the inverson
betaest = Directives.BetaEstimate_ByEig()

# Here is where the norms are applied
# Use pick a treshold parameter empirically based on the distribution of
#  model parameters
IRLS = Directives.Update_IRLS(f_min_change=1e-3, maxIRLSiter=0, beta_tol=5e-1)

# Pre-conditioner
update_Jacobi = Directives.UpdatePreconditioner()
Esempio n. 29
0
    def run_inversion_cg(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        coolingRate=1,
        alpha_s=1.0,
        alpha_x=1.0,
        use_target=False,
    ):
        survey, prob = self.get_problem_survey()
        survey.eps = percentage
        survey.std = floor
        survey.dobs = self.data.copy()
        self.uncertainty = percentage * abs(survey.dobs) * 0.01 + floor

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = Regularization.Tikhonov(
            self.mesh, alpha_s=alpha_s, alpha_x=alpha_x, mref=mref
        )
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1.0 / self.uncertainty

        opt = Optimization.InexactGaussNewton(maxIter=maxIter, maxIterCG=20)
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        save = Directives.SaveOutputEveryIteration()
        beta_schedule = Directives.BetaSchedule(
            coolingFactor=coolingFactor, coolingRate=coolingRate
        )
        target = Directives.TargetMisfit(chifact=chifact)

        if use_target:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                target,
                save,
            ]
        else:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(survey.dpred(m))
        return model, pred, save
Esempio n. 30
0
problem = DC.Problem3D_CC(mesh, sigmaMap=mapping)
problem.pair(survey)
problem.Solver = PardisoSolver

survey.dpred(mtrue)
survey.makeSyntheticData(mtrue, std=0.05, force=True)

print '# of data: ', survey.dobs.shape

#Simple Inversion
regmesh = mesh
m0 = (-5.) * np.ones(mapping.nP)
dmis = DataMisfit.l2_DataMisfit(survey)
reg = Regularization.Tikhonov(regmesh)  #,mapping = mapping)#,indActive=actind)
reg.mref = m0
opt = Optimization.InexactGaussNewton(maxIter=20, tolX=1e-6)
opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
beta = Directives.BetaEstimate_ByEig(beta0=10., beta0_ratio=1e0)
reg.alpha_s = 1e-2
#beta = 0.
#invProb.beta = beta
betaSched = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
#sav0 = Directives.SaveEveryIteration()
#sav1 = Directives.SaveModelEveryIteration()
sav2 = Directives.SaveOutputDictEveryIteration()
inv = Inversion.BaseInversion(invProb, directiveList=[sav2, beta,
                                                      betaSched])  #sav0,sav1,

mtest = np.load('../Update_W_each_3it_5s_rademacher/finalresult.npy')
print "check misfit with W: ", dmis.eval(mtest) / survey.nD