def setUp(self): cs = 25. hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hz = [(cs, 0, -1.3), (cs, 20)] mesh = Mesh.TensorMesh([hx, hy, hz], x0="CCN") blkind0 = Utils.ModelBuilder.getIndicesSphere( np.r_[-100., -100., -200.], 75., mesh.gridCC ) blkind1 = Utils.ModelBuilder.getIndicesSphere( np.r_[100., 100., -200.], 75., mesh.gridCC ) sigma = np.ones(mesh.nC)*1e-2 eta = np.zeros(mesh.nC) tau = np.ones_like(sigma)*1. eta[blkind0] = 0.1 eta[blkind1] = 0.1 tau[blkind0] = 0.1 tau[blkind1] = 0.01 x = mesh.vectorCCx[(mesh.vectorCCx > -155.) & (mesh.vectorCCx < 155.)] y = mesh.vectorCCx[(mesh.vectorCCy > -155.) & (mesh.vectorCCy < 155.)] Aloc = np.r_[-200., 0., 0.] Bloc = np.r_[200., 0., 0.] M = Utils.ndgrid(x-25., y, np.r_[0.]) N = Utils.ndgrid(x+25., y, np.r_[0.]) times = np.arange(10)*1e-3 + 1e-3 rx = SIP.Rx.Dipole(M, N, times) src = SIP.Src.Dipole([rx], Aloc, Bloc) survey = SIP.Survey([src]) wires = Maps.Wires(('eta', mesh.nC), ('taui', mesh.nC)) problem = SIP.Problem3D_N( mesh, sigma=sigma, etaMap=wires.eta, tauiMap=wires.taui ) problem.Solver = Solver problem.pair(survey) mSynth = np.r_[eta, 1./tau] survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton( maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6 ) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def test_basic_inversion(self): """ Test to see if inversion recovers model """ h = [(2, 30)] meshObj = Mesh.TensorMesh((h, h, [(2, 10)]), x0='CCN') mod = 0.00025 * np.ones(meshObj.nC) mod[(meshObj.gridCC[:, 0] > -4.) & (meshObj.gridCC[:, 1] > -4.) & (meshObj.gridCC[:, 0] < 4.) & (meshObj.gridCC[:, 1] < 4.)] = 0.001 times = np.logspace(-4, -2, 5) waveObj = VRM.WaveformVRM.SquarePulse(0.02) x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16)) x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x)) rxList = [VRM.Rx.Point(np.c_[x, y, z], times, 'dbdt', 'z')] txNodes = np.array([[-20, -20, 0.001], [20, -20, 0.001], [20, 20, 0.001], [-20, 20, 0.01], [-20, -20, 0.001]]) txList = [VRM.Src.LineCurrent(rxList, txNodes, 1., waveObj)] Survey = VRM.Survey(txList) Problem = VRM.Problem_Linear(meshObj, refFact=2) Problem.pair(Survey) Survey.makeSyntheticData(mod) Survey.eps = 1e-11 dmis = DataMisfit.l2_DataMisfit(Survey) W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25 reg = Regularization.Simple(meshObj, alpha_s=0.01, alpha_x=1., alpha_y=1., alpha_z=1., cell_weights=W) opt = Optimization.ProjectedGNCG(maxIter=20, lower=0., upper=1e-2, maxIterLS=20, tolCG=1e-4) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) directives = [ Directives.BetaSchedule(coolingFactor=2, coolingRate=1), Directives.TargetMisfit() ] inv = Inversion.BaseInversion(invProb, directiveList=directives) m0 = 1e-6 * np.ones(len(mod)) mrec = inv.run(m0) dmis_final = np.sum( (dmis.W.diagonal() * (Survey.dobs - Problem.fields(mrec)))**2) mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod) mod_err_inf = np.max(np.abs(mrec - mod)) self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6 and mod_err_inf < np.max(mod))
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs): """ Inversion module for MagneticsDiffSecondary """ from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion prob = MagneticsDiffSecondary(mesh, model) miter = kwargs.get('maxIter', 10) if prob.ispaired: prob.unpair() if data.ispaired: data.unpair() prob.pair(data) # Create an optimization program opt = Optimization.InexactGaussNewton(maxIter=miter) opt.bfgsH0 = Solver(sp.identity(model.nP), flag='D') # Create a regularization program reg = Regularization.Tikhonov(model) # Create an objective function beta = Parameters.BetaSchedule(beta0=1e0) obj = ObjFunction.BaseObjFunction(data, reg, beta=beta) # Create an inversion object inv = Inversion.BaseInversion(obj, opt) return inv, reg
def test_GN_quadratic(self): GN = Optimization.GaussNewton() xopt = GN.minimize(getQuadratic(self.A, self.b), np.array([0, 0])) x_true = np.array([5., 5.]) print('xopt: ', xopt) print('x_true: ', x_true) self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
def test_GN_Rosenbrock(self): GN = Optimization.GaussNewton() xopt = GN.minimize(Rosenbrock, np.array([0, 0])) x_true = np.array([1., 1.]) print('xopt: ', xopt) print('x_true: ', x_true) self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
def setUp(self, parallel=False): frequency = np.array([900, 7200, 56000], dtype=float) hz = np.r_[1.] n_sounding = 10 dx = 20. hx = np.ones(n_sounding) * dx e = np.ones(n_sounding) mSynth = np.r_[e * np.log(1. / 100.), e * 20] x = np.arange(n_sounding) y = np.zeros_like(x) z = np.ones_like(x) * 30. rx_locations = np.c_[x, y, z] src_locations = np.c_[x, y, z] topo = np.c_[x, y, z - 30.].astype(float) wires = Maps.Wires(('sigma', n_sounding), ('h', n_sounding)) expmap = Maps.ExpMap(nP=n_sounding) sigmaMap = expmap * wires.sigma survey = GlobalEM1DSurveyFD(rx_locations=rx_locations, src_locations=src_locations, frequency=frequency, offset=np.ones_like(frequency) * 8., src_type="VMD", rx_type="ppm", field_type='secondary', topo=topo, half_switch=True) problem = GlobalEM1DProblemFD([], sigmaMap=sigmaMap, hMap=wires.h, hz=hz, parallel=parallel, n_cpu=2) problem.pair(survey) survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization mesh = Mesh.TensorMesh([int(n_sounding * 2)]) dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth * 1.2 self.survey = survey self.dmis = dmis
def setUp(self, parallel=True): frequency = np.array([900, 7200, 56000], dtype=float) hz = get_vertical_discretization_frequency( frequency, sigma_background=1./10. ) n_sounding = 10 dx = 20. hx = np.ones(n_sounding) * dx mesh = Mesh.TensorMesh([hx, hz], x0='00') inds = mesh.gridCC[:, 1] < 25 inds_1 = mesh.gridCC[:, 1] < 50 sigma = np.ones(mesh.nC) * 1./100. sigma[inds_1] = 1./10. sigma[inds] = 1./50. sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten() mSynth = np.log(sigma_em1d) x = mesh.vectorCCx y = np.zeros_like(x) z = np.ones_like(x) * 30. rx_locations = np.c_[x, y, z] src_locations = np.c_[x, y, z] topo = np.c_[x, y, z-30.].astype(float) mapping = Maps.ExpMap(mesh) survey = GlobalEM1DSurveyFD( rx_locations=rx_locations, src_locations=src_locations, frequency=frequency, offset=np.ones_like(frequency) * 8., src_type="VMD", rx_type="Hz", field_type='secondary', topo=topo ) problem = GlobalEM1DProblemFD( [], sigmaMap=mapping, hz=hz, parallel=parallel, n_cpu=5 ) problem.pair(survey) survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton( maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6 ) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def test_ProjGradient_quadraticBounded(self): PG = Optimization.ProjectedGradient(debug=True) PG.lower, PG.upper = -2, 2 xopt = PG.minimize(getQuadratic(self.A, self.b), np.array([0, 0])) x_true = np.array([2., 2.]) print('xopt: ', xopt) print('x_true: ', x_true) self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
def test_NewtonRoot(self): fun = lambda x, return_g=True: np.sin(x) if not return_g else ( np.sin(x), sdiag( np.cos(x) ) ) x = np.array([np.pi-0.3, np.pi+0.1, 0]) xopt = Optimization.NewtonRoot(comments=False).root(fun,x) x_true = np.array([np.pi,np.pi,0]) print('Newton Root Finding') print('xopt: ', xopt) print('x_true: ', x_true) self.assertTrue(np.linalg.norm(xopt-x_true,2) < TOL, True)
def rootFinder(self): """Root-finding Algorithm""" if getattr(self, '_rootFinder', None) is None: self._rootFinder = Optimization.NewtonRoot( doLS=self.doNewton, maxIter=self.maxIterRootFinder, tol=self.tolRootFinder, Solver=self.Solver) return self._rootFinder
def test_ProjGradient_quadratic1Bound(self): myB = np.array([-5, 1]) PG = Optimization.ProjectedGradient() PG.lower, PG.upper = -2, 2 xopt = PG.minimize(getQuadratic(self.A, myB), np.array([0, 0])) x_true = np.array([2., -1.]) print('xopt: ', xopt) print('x_true: ', x_true) self.assertTrue(np.linalg.norm(xopt - x_true, 2) < TOL, True)
def run(N=100, plotIt=True): np.random.seed(1) mesh = Mesh.TensorMesh([N]) nk = 20 jk = np.linspace(1., 60., nk) p = -0.25 q = 0.25 def g(k): return (np.exp(p * jk[k] * mesh.vectorCCx) * np.cos(np.pi * q * jk[k] * mesh.vectorCCx)) G = np.empty((nk, mesh.nC)) for i in range(nk): G[i, :] = g(i) mtrue = np.zeros(mesh.nC) mtrue[mesh.vectorCCx > 0.3] = 1. mtrue[mesh.vectorCCx > 0.45] = -0.5 mtrue[mesh.vectorCCx > 0.6] = 0 prob = Problem.LinearProblem(mesh, G=G) survey = Survey.LinearSurvey() survey.pair(prob) survey.makeSyntheticData(mtrue, std=0.01) M = prob.mesh reg = Regularization.Tikhonov(mesh, alpha_s=1., alpha_x=1.) dmis = DataMisfit.l2_DataMisfit(survey) opt = Optimization.InexactGaussNewton(maxIter=60) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) directives = [ Directives.BetaEstimate_ByEig(beta0_ratio=1e-2), Directives.TargetMisfit() ] inv = Inversion.BaseInversion(invProb, directiveList=directives) m0 = np.zeros_like(survey.mtrue) mrec = inv.run(m0) if plotIt: fig, axes = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2)) for i in range(prob.G.shape[0]): axes[0].plot(prob.G[i, :]) axes[0].set_title('Columns of matrix G') axes[1].plot(M.vectorCCx, survey.mtrue, 'b-') axes[1].plot(M.vectorCCx, mrec, 'r-') axes[1].legend(('True Model', 'Recovered Model')) axes[1].set_ylim([-2, 2]) return prob, survey, mesh, mrec
def fit_colecole_with_se(self, eta_cc=0.8, tau_cc=0.003, c_cc=0.6): def ColeColeSeigel(f, sigmaInf, eta, tau, c): w = 2 * np.pi * f return sigmaInf * (1 - eta / (1 + (1j * w * tau)**c)) # Step1: Fit Cole-Cole with Stretched Exponential function time = np.logspace(-6, np.log10(0.01), 41) wt, tbase, omega_int = DigFilter.setFrequency(time) frequency = omega_int / (2 * np.pi) # Cole-Cole parameters siginf = 1. self.eta_cc = eta_cc self.tau_cc = tau_cc self.c_cc = c_cc sigma = ColeColeSeigel(frequency, siginf, eta_cc, tau_cc, c_cc) sigTCole = DigFilter.transFiltImpulse(sigma, wt, tbase, omega_int, time, tol=1e-12) wires = Maps.Wires(('eta', 1), ('tau', 1), ('c', 1)) taumap = Maps.ExpMap(nP=1) * wires.tau survey = SESurvey() dtrue = -sigTCole survey.dobs = dtrue m1D = Mesh.TensorMesh([np.ones(3)]) prob = SEInvImpulseProblem(m1D, etaMap=wires.eta, tauMap=taumap, cMap=wires.c) update_sens = Directives.UpdateSensitivityWeights() prob.time = time prob.pair(survey) m0 = np.r_[eta_cc, np.log(tau_cc), c_cc] perc = 0.05 dmisfitpeta = DataMisfit.l2_DataMisfit(survey) dmisfitpeta.W = 1 / (abs(survey.dobs) * perc) reg = regularization.Simple(m1D) opt = Optimization.ProjectedGNCG(maxIter=10) invProb = InvProblem.BaseInvProblem(dmisfitpeta, reg, opt) # Create an inversion object target = Directives.TargetMisfit() invProb.beta = 0. inv = Inversion.BaseInversion(invProb, directiveList=[target]) reg.mref = 0. * m0 prob.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') opt.tolX = 1e-20 opt.tolF = 1e-20 opt.tolG = 1e-20 opt.eps = 1e-20 mopt = inv.run(m0) return mopt
def root_finder(self): """Root-finding Algorithm""" if getattr(self, '_root_finder', None) is None: self._root_finder = Optimization.NewtonRoot( doLS=self.do_newton, maxIter=self.root_finder_max_iter, tol=self.root_finder_tol, Solver=self.Solver ) return self._root_finder
def test_inv(self): reg = Regularization.Tikhonov(self.mesh) opt = Optimization.InexactGaussNewton(maxIter=10) invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt) directives = [ Directives.BetaEstimate_ByEig(beta0_ratio=1e-2), ] inv = Inversion.BaseInversion(invProb, directiveList=directives) m0 = self.model.mean() * np.ones_like(self.model) mrec = inv.run(m0)
def setUp(self): cs = 25. hx = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)] hy = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)] hz = [(cs,0, -1.3),(cs,20),(cs,0, 1.3)] mesh = Mesh.TensorMesh([hx, hy, hz],x0="CCC") blkind0 = Utils.ModelBuilder.getIndicesSphere(np.r_[-100., -100., -200.], 75., mesh.gridCC) blkind1 = Utils.ModelBuilder.getIndicesSphere(np.r_[100., 100., -200.], 75., mesh.gridCC) sigma = np.ones(mesh.nC)*1e-2 airind = mesh.gridCC[:,2]>0. sigma[airind] = 1e-8 eta = np.zeros(mesh.nC) tau = np.ones_like(sigma)*1. eta[blkind0] = 0.1 eta[blkind1] = 0.1 tau[blkind0] = 0.1 tau[blkind1] = 0.01 actmapeta = Maps.InjectActiveCells(mesh, ~airind, 0.) actmaptau = Maps.InjectActiveCells(mesh, ~airind, 1.) x = mesh.vectorCCx[(mesh.vectorCCx>-155.)&(mesh.vectorCCx<155.)] y = mesh.vectorCCx[(mesh.vectorCCy>-155.)&(mesh.vectorCCy<155.)] Aloc = np.r_[-200., 0., 0.] Bloc = np.r_[200., 0., 0.] M = Utils.ndgrid(x-25.,y, np.r_[0.]) N = Utils.ndgrid(x+25.,y, np.r_[0.]) times = np.arange(10)*1e-3 + 1e-3 rx = SIP.Rx.Dipole(M, N, times) src = SIP.Src.Dipole([rx], Aloc, Bloc) survey = SIP.Survey([src]) colemap = [("eta", Maps.IdentityMap(mesh)*actmapeta), ("taui", Maps.IdentityMap(mesh)*actmaptau)] problem = SIP.Problem3D_N(mesh, sigma=sigma, mapping=colemap) problem.Solver = Solver problem.pair(survey) mSynth = np.r_[eta[~airind], 1./tau[~airind]] survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) regmap = Maps.IdentityMap(nP=int(mSynth[~airind].size*2)) reg = SIP.MultiRegularization(mesh, mapping=regmap, nModels=2, indActive=~airind) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def setUp(self): mesh = Mesh.TensorMesh([20, 20, 20], "CCN") sigma = np.ones(mesh.nC) * 1. / 100. actind = mesh.gridCC[:, 2] < -0.2 # actMap = Maps.InjectActiveCells(mesh, actind, 0.) xyzM = Utils.ndgrid( np.ones_like(mesh.vectorCCx[:-1]) * -0.4, np.ones_like(mesh.vectorCCy) * -0.4, np.r_[-0.3]) xyzN = Utils.ndgrid(mesh.vectorCCx[1:], mesh.vectorCCy, np.r_[-0.3]) problem = SP.Problem_CC(mesh, sigma=sigma, qMap=Maps.IdentityMap(mesh), Solver=PardisoSolver) rx = SP.Rx.Dipole(xyzN, xyzM) src = SP.Src.StreamingCurrents([rx], L=np.ones(mesh.nC), mesh=mesh, modelType="CurrentSource") survey = SP.Survey([src]) survey.pair(problem) q = np.zeros(mesh.nC) inda = Utils.closestPoints(mesh, np.r_[-0.5, 0., -0.8]) indb = Utils.closestPoints(mesh, np.r_[0.5, 0., -0.8]) q[inda] = 1. q[indb] = -1. mSynth = q.copy() survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Simple(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e-2) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def setUp(self): cs = 12.5 hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)] hy = [(cs, 7, -1.3), (cs, 20)] mesh = Mesh.TensorMesh([hx, hy], x0="CN") # x = np.linspace(-200, 200., 20) x = np.linspace(-200, 200., 2) M = Utils.ndgrid(x - 12.5, np.r_[0.]) N = Utils.ndgrid(x + 12.5, np.r_[0.]) A0loc = np.r_[-150, 0.] A1loc = np.r_[-130, 0.] B0loc = np.r_[-130, 0.] B1loc = np.r_[-110, 0.] rx = DC.Rx.Dipole_ky(M, N) src0 = DC.Src.Dipole([rx], A0loc, B0loc) src1 = DC.Src.Dipole([rx], A1loc, B1loc) survey = IP.Survey([src0, src1]) sigma = np.ones(mesh.nC) * 1. problem = IP.Problem2D_CC(mesh, sigma=sigma, etaMap=Maps.IdentityMap(mesh), verbose=False) problem.pair(survey) mSynth = np.ones(mesh.nC) * 0.1 survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def solve(self): # Tikhonov Inversion #################### # Initial model values m0 = np.median(self.ln_sigback) * np.ones(self.mapping.nP) m0 += np.random.randn(m0.size) # Misfit functional dmis = DataMisfit.l2_DataMisfit(self.survey.simpeg_survey) # Regularization functional regT = Regularization.Simple(self.mesh, alpha_s=10.0, alpha_x=10.0, alpha_y=10.0, alpha_z=10.0, indActive=self.actind) # Personal preference for this solver with a Jacobi preconditioner opt = Optimization.ProjectedGNCG(maxIter=8, tolX=1, maxIterCG=30) #opt = Optimization.ProjectedGradient(maxIter=100, tolX=1e-2, # maxIterLS=20, maxIterCG=30, tolCG=1e-4) opt.printers.append(Optimization.IterationPrinters.iterationLS) #print(opt.printersLS) # Optimization class keeps value of 'xc'. Seems to be solution for the model parameters opt.remember('xc') invProb = InvProblem.BaseInvProblem(dmis, regT, opt) # Options for the inversion algorithm in particular selection of Beta weight for regularization. # How to choose initial estimate for beta beta = Directives.BetaEstimate_ByEig(beta0_ratio=1.) Target = Directives.TargetMisfit() # Beta changing algorithm. betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2) # Change model weights, seems sensitivity of conductivity ?? Not sure. updateSensW = Directives.UpdateSensitivityWeights(threshold=1e-3) # Use Jacobi preconditioner ( the only available). update_Jacobi = Directives.UpdatePreconditioner() inv = Inversion.BaseInversion(invProb, directiveList=[ beta, Target, betaSched, updateSensW, update_Jacobi ]) self.minv = inv.run(m0)
def test_inv_mref_setting(self): reg1 = Regularization.Tikhonov(self.mesh) reg2 = Regularization.Tikhonov(self.mesh) reg = reg1 + reg2 opt = Optimization.InexactGaussNewton(maxIter=10) invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt) directives = [ Directives.BetaEstimate_ByEig(beta0_ratio=1e-2), ] inv = Inversion.BaseInversion(invProb, directiveList=directives) m0 = self.model.mean() * np.ones_like(self.model) mrec = inv.run(m0) self.assertTrue(np.all(reg1.mref == m0)) self.assertTrue(np.all(reg2.mref == m0))
def setUp(self): mesh = Mesh.TensorMesh([4, 4, 4]) # Magnetic inducing field parameter (A,I,D) B = [50000, 90, 0] # Create a MAGsurvey rx = PF.BaseMag.RxObs( np.vstack([[0.25, 0.25, 0.25], [-0.25, -0.25, 0.25]])) srcField = PF.BaseMag.SrcField([rx], param=(B[0], B[1], B[2])) survey = PF.BaseMag.LinearSurvey(srcField) # Create the forward model operator prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=Maps.IdentityMap(mesh)) # Pair the survey and problem survey.pair(prob) # Compute forward model some data m = np.random.rand(mesh.nC) survey.makeSyntheticData(m) reg = Regularization.Sparse(mesh) reg.mref = np.zeros(mesh.nC) wr = np.sum(prob.G**2., axis=0)**0.5 reg.cell_weights = wr reg.norms = [0, 1, 1, 1] reg.eps_p, reg.eps_q = 1e-3, 1e-3 # Data misfit function dmis = DataMisfit.l2_DataMisfit(survey) dmis.W = 1. / survey.std # Add directives to the inversion opt = Optimization.ProjectedGNCG(maxIter=2, lower=-10., upper=10., maxIterCG=2) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) self.mesh = mesh self.invProb = invProb
def setUp(self): aSpacing = 2.5 nElecs = 10 surveySize = nElecs * aSpacing - aSpacing cs = surveySize / nElecs / 4 mesh = Mesh.TensorMesh( [ [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)], [(cs, 3, -1.3), (cs, 3, 1.3)], # [(cs, 5, -1.3), (cs, 10)] ], 'CN') srcList = DC.Utils.WennerSrcList(nElecs, aSpacing, in2D=True) survey = DC.Survey(srcList) problem = DC.Problem3D_N(mesh, rhoMap=Maps.IdentityMap(mesh), storeJ=True) problem.pair(survey) mSynth = np.ones(mesh.nC) survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def setUp(self): cs = 12.5 hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)] hy = [(cs, 7, -1.3), (cs, 20)] mesh = Mesh.TensorMesh([hx, hy], x0="CN") x = np.linspace(-135, 250., 20) M = Utils.ndgrid(x - 12.5, np.r_[0.]) N = Utils.ndgrid(x + 12.5, np.r_[0.]) A0loc = np.r_[-150, 0.] A1loc = np.r_[-130, 0.] rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]] rx = DC.Rx.Dipole_ky(M, N) src0 = DC.Src.Pole([rx], A0loc) src1 = DC.Src.Pole([rx], A1loc) survey = DC.Survey_ky([src0, src1]) problem = DC.Problem2D_N(mesh, mapping=[('rho', Maps.IdentityMap(mesh))]) problem.pair(survey) mSynth = np.ones(mesh.nC) * 1. survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e0) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs): """ Inversion module for MagneticsDiffSecondary """ from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion prob = Simulation3DDifferential(mesh, survey=data, mu=model) miter = kwargs.get("maxIter", 10) # Create an optimization program opt = Optimization.InexactGaussNewton(maxIter=miter) opt.bfgsH0 = Solver(sp.identity(model.nP), flag="D") # Create a regularization program reg = Regularization.Tikhonov(model) # Create an objective function beta = Parameters.BetaSchedule(beta0=1e0) obj = ObjFunction.BaseObjFunction(prob, reg, beta=beta) # Create an inversion object inv = Inversion.BaseInversion(obj, opt) return inv, reg
def solve(self): # initial values/model m0 = numpy.median(-4) * numpy.ones(self.mapping.nP) # Data Misfit dataMisfit = DataMisfit.l2_DataMisfit(self.survey) # Regularization regT = Regularization.Simple(self.mesh, indActive=self.activeCellIndices, alpha_s=1e-6, alpha_x=1., alpha_y=1., alpha_z=1.) # Optimization Scheme opt = Optimization.InexactGaussNewton(maxIter=10) # Form the problem opt.remember('xc') invProb = InvProblem.BaseInvProblem(dataMisfit, regT, opt) # Directives for Inversions beta = Directives.BetaEstimate_ByEig(beta0_ratio=0.5e+1) Target = Directives.TargetMisfit() betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2) inversion = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched]) # Run Inversion self.invModelOnActiveCells = inversion.run(m0) self.invModelOnAllCells = self.givenModelCond * numpy.ones_like(self.givenModelCond) self.invModelOnAllCells[self.activeCellIndices] = self.invModelOnActiveCells self.invModelOnCoreCells = self.invModelOnAllCells[self.coreMeshCellIndices] pass
def setUp(self): time = np.logspace(-3, 0, 21) n_loc = 5 wires = Maps.Wires(('eta', n_loc), ('tau', n_loc), ('c', n_loc)) taumap = Maps.ExpMap(nP=n_loc) * wires.tau etamap = Maps.ExpMap(nP=n_loc) * wires.eta cmap = Maps.ExpMap(nP=n_loc) * wires.c survey = SEMultiSurvey(time=time, locs=np.zeros((n_loc, 3)), n_pulse=0) mesh = Mesh.TensorMesh([np.ones(int(n_loc * 3))]) prob = SEMultiInvProblem(mesh, etaMap=etamap, tauMap=taumap, cMap=cmap) prob.pair(survey) eta0, tau0, c0 = 0.1, 10., 0.5 m0 = np.log(np.r_[eta0 * np.ones(n_loc), tau0 * np.ones(n_loc), c0 * np.ones(n_loc)]) survey.makeSyntheticData(m0) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = prob self.survey = survey self.m0 = m0 self.dmis = dmis self.mesh = mesh
def resolve_1Dinversions(mesh, dobs, src_height, freqs, m0, mref, mapping, std=0.08, floor=1e-14, rxOffset=7.86): """ Perform a single 1D inversion for a RESOLVE sounding for Horizontal Coplanar Coil data (both real and imaginary). :param discretize.CylMesh mesh: mesh used for the forward simulation :param numpy.array dobs: observed data :param float src_height: height of the source above the ground :param numpy.array freqs: frequencies :param numpy.array m0: starting model :param numpy.array mref: reference model :param Maps.IdentityMap mapping: mapping that maps the model to electrical conductivity :param float std: percent error used to construct the data misfit term :param float floor: noise floor used to construct the data misfit term :param float rxOffset: offset between source and receiver. """ # ------------------- Forward Simulation ------------------- # # set up the receivers bzr = EM.FDEM.Rx.Point_bSecondary(np.array([[rxOffset, 0., src_height]]), orientation='z', component='real') bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., src_height]]), orientation='z', component='imag') # source location srcLoc = np.array([0., 0., src_height]) srcList = [ EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z') for freq in freqs ] # construct a forward simulation survey = EM.FDEM.Survey(srcList) prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=PardisoSolver) prb.pair(survey) # ------------------- Inversion ------------------- # # data misfit term survey.dobs = dobs dmisfit = DataMisfit.l2_DataMisfit(survey) uncert = abs(dobs) * std + floor dmisfit.W = 1. / uncert # regularization regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = Regularization.Simple(regMesh) reg.mref = mref # optimization opt = Optimization.InexactGaussNewton(maxIter=10) # statement of the inverse problem invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt) # Inversion directives and parameters target = Directives.TargetMisfit() inv = Inversion.BaseInversion(invProb, directiveList=[target]) invProb.beta = 2. # Fix beta in the nonlinear iterations reg.alpha_s = 1e-3 reg.alpha_x = 1. prb.counter = opt.counter = Utils.Counter() opt.LSshorten = 0.5 opt.remember('xc') # run the inversion mopt = inv.run(m0) return mopt, invProb.dpred, survey.dobs
reg_t = Regularization.Sparse(mesh, indActive=actv, mapping=wires.t) reg_t.mref = np.zeros(3 * nC) reg_t.cell_weights = (wires.t * wr) reg = reg_p + reg_s + reg_t reg.mref = np.zeros(3 * nC) # Data misfit function dmis = DataMisfit.l2_DataMisfit(survey) dmis.W = 1. / survey.std # Add directives to the inversion opt = Optimization.ProjectedGNCG(maxIter=30, lower=-10, upper=10., maxIterLS=20, maxIterCG=20, tolCG=1e-4) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) # A list of directive to control the inverson betaest = Directives.BetaEstimate_ByEig() # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of # model parameters IRLS = Directives.Update_IRLS(f_min_change=1e-3, maxIRLSiter=0, beta_tol=5e-1) # Pre-conditioner update_Jacobi = Directives.UpdatePreconditioner()
def run_inversion_cg( self, maxIter=60, m0=0.0, mref=0.0, percentage=5, floor=0.1, chifact=1, beta0_ratio=1.0, coolingFactor=1, coolingRate=1, alpha_s=1.0, alpha_x=1.0, use_target=False, ): survey, prob = self.get_problem_survey() survey.eps = percentage survey.std = floor survey.dobs = self.data.copy() self.uncertainty = percentage * abs(survey.dobs) * 0.01 + floor m0 = np.ones(self.M) * m0 mref = np.ones(self.M) * mref reg = Regularization.Tikhonov( self.mesh, alpha_s=alpha_s, alpha_x=alpha_x, mref=mref ) dmis = DataMisfit.l2_DataMisfit(survey) dmis.W = 1.0 / self.uncertainty opt = Optimization.InexactGaussNewton(maxIter=maxIter, maxIterCG=20) opt.remember("xc") opt.tolG = 1e-10 opt.eps = 1e-10 invProb = InvProblem.BaseInvProblem(dmis, reg, opt) save = Directives.SaveOutputEveryIteration() beta_schedule = Directives.BetaSchedule( coolingFactor=coolingFactor, coolingRate=coolingRate ) target = Directives.TargetMisfit(chifact=chifact) if use_target: directives = [ Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio), beta_schedule, target, save, ] else: directives = [ Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio), beta_schedule, save, ] inv = Inversion.BaseInversion(invProb, directiveList=directives) mopt = inv.run(m0) model = opt.recall("xc") model.append(mopt) pred = [] for m in model: pred.append(survey.dpred(m)) return model, pred, save
problem = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem.pair(survey) problem.Solver = PardisoSolver survey.dpred(mtrue) survey.makeSyntheticData(mtrue, std=0.05, force=True) print '# of data: ', survey.dobs.shape #Simple Inversion regmesh = mesh m0 = (-5.) * np.ones(mapping.nP) dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(regmesh) #,mapping = mapping)#,indActive=actind) reg.mref = m0 opt = Optimization.InexactGaussNewton(maxIter=20, tolX=1e-6) opt.remember('xc') invProb = InvProblem.BaseInvProblem(dmis, reg, opt) beta = Directives.BetaEstimate_ByEig(beta0=10., beta0_ratio=1e0) reg.alpha_s = 1e-2 #beta = 0. #invProb.beta = beta betaSched = Directives.BetaSchedule(coolingFactor=5, coolingRate=2) #sav0 = Directives.SaveEveryIteration() #sav1 = Directives.SaveModelEveryIteration() sav2 = Directives.SaveOutputDictEveryIteration() inv = Inversion.BaseInversion(invProb, directiveList=[sav2, beta, betaSched]) #sav0,sav1, mtest = np.load('../Update_W_each_3it_5s_rademacher/finalresult.npy') print "check misfit with W: ", dmis.eval(mtest) / survey.nD