def plot_survival_curves_and_histograms(sim_outcomes_mono, sim_outcomes_combo):
    """ draws the survival curves and the histograms of time until HIV deaths
    :param sim_outcomes_mono: outcomes of a cohort simulated under mono therapy
    :param sim_outcomes_combo: outcomes of a cohort simulated under combination therapy
    """

    # get survival curves of both treatments
    survival_curves = [
        sim_outcomes_mono.nLivingPatients, sim_outcomes_combo.nLivingPatients
    ]

    # graph survival curve
    Path.plot_sample_paths(sample_paths=survival_curves,
                           title='Survival curve',
                           x_label='Simulation time step (year)',
                           y_label='Number of alive patients',
                           legends=['Mono Therapy', 'Combination Therapy'],
                           color_codes=['green', 'blue'])

    # histograms of survival times
    set_of_survival_times = [
        sim_outcomes_mono.survivalTimes, sim_outcomes_combo.survivalTimes
    ]

    # graph histograms
    Hist.plot_histograms(data_sets=set_of_survival_times,
                         title='Histogram of patient survival time',
                         x_label='Survival time (year)',
                         y_label='Counts',
                         bin_width=1,
                         legends=['Mono Therapy', 'Combination Therapy'],
                         color_codes=['green', 'blue'],
                         transparency=0.6)
Esempio n. 2
0
    def plot_histogram(self, parameter_name, title, x_label=None, y_label=None, x_range=None, folder=''):
        """ creates a histogram of one parameter """

        Fig.plot_histogram(
            data=self.dictOfParamValues[parameter_name],
            title=title, x_label=x_label, y_label=y_label,
            x_range=x_range, figure_size=HISTOGRAM_FIG_SIZE, file_name=folder+'/'+title
        )
Esempio n. 3
0
    def plot_ratio_hist(self, numerator_par_name, denominator_par_names,
                        title, x_label=None, x_range=None, output_fig_loc='figures_national'):

        ratio_obss = self.__calculate_ratio_obss(numerator_par_name, denominator_par_names)

        file_name = output_fig_loc + '/Ratio-' + title

        # create the histogram of ratio
        Fig.plot_histogram(
            data=ratio_obss,
            title=title,
            x_label=x_label,
            x_range=x_range,
            figure_size=HISTOGRAM_FIG_SIZE,
            file_name=file_name)
    def plot_histogram(self,
                       parameter_name,
                       title,
                       x_lable=None,
                       y_lable=None,
                       x_range=None):
        """ creates a histogram of one parameter """

        Fig.plot_histogram(self.dictOfParams[parameter_name],
                           title,
                           x_lable,
                           y_lable,
                           x_range=x_range,
                           figure_size=HISTOGRAM_FIG_SIZE,
                           output_type='jpg',
                           file_name='figures_national\Par-' + title)
Esempio n. 5
0
    def plot_histograms(self, par_names=None, csv_file_name_prior=None, posterior_fig_loc='figures_national'):
        """ creates histograms of parameters specified by ids
        :param par_names: (list) of parameter names to plot
        :param csv_file_name_prior: (string) filename where parameter prior ranges are located
        :param posterior_fig_loc: (string) location where posterior figures_national should be located
        """

        raise ValueError('Needs to be debugged.')

        # clean the directory
        IO.delete_files('.png', posterior_fig_loc)

        # read prior distributions
        dict_of_priors = None
        if csv_file_name_prior is not None:
            dict_of_priors = self.get_dict_of_priors(prior_info_csv_file=csv_file_name_prior)

        if par_names is None:
            par_names = self.get_all_parameter_names()

        # for all parameters, read sampled parameter values and create the histogram
        for par_name in par_names:

            # get values for this parameter
            par_values = self.dictOfParamValues[par_name]

            # get info of this parameter
            title, multiplier, x_range = self.get_title_multiplier_x_range_decimal_format(
                par_name=par_name, dict_of_priors=dict_of_priors)

            # adjust parameter values
            par_values = [v*multiplier for v in par_values]

            # find the filename the histogram should be saved as
            file_name = posterior_fig_loc + '/Par-' + par_name + ' ' + F.proper_file_name(par_name)

            # plot histogram
            Fig.plot_histogram(
                data=par_values,
                title=title.replace('!', '\n'),
                x_range=x_range,
                figure_size=HISTOGRAM_FIG_SIZE,
                file_name=file_name
            )
def draw_survival_curves_and_histograms(calibrated_model_no_drug,
                                        calibrated_model_with_drug):
    """ draws the histograms of average survival time
    :param calibrated_model_no_drug: calibrated model simulated when drug is not available
    :param calibrated_model_with_drug: calibrated model simulated when drug is available
    """

    # get survival curves of both treatments
    survival_curves = [
        calibrated_model_no_drug.multiCohorts.multiCohortOutcomes.
        survivalCurves, calibrated_model_with_drug.multiCohorts.
        multiCohortOutcomes.survivalCurves
    ]

    # graph survival curve
    Path.plot_sets_of_sample_paths(sets_of_sample_paths=survival_curves,
                                   title='Survival curve',
                                   x_label='Simulation time step',
                                   y_label='Number of alive patients',
                                   legends=['No Drug', 'With Drug'],
                                   color_codes=['blue', 'orange'],
                                   transparency=0.25)

    # histograms of average survival times
    set_of_survival_times = [
        calibrated_model_no_drug.multiCohorts.multiCohortOutcomes.
        meanSurvivalTimes, calibrated_model_with_drug.multiCohorts.
        multiCohortOutcomes.meanSurvivalTimes
    ]

    # graph histograms
    Hist.plot_histograms(data_sets=set_of_survival_times,
                         title='Histogram of average patient survival time',
                         x_label='Survival time',
                         y_label='Counts',
                         bin_width=0.5,
                         legends=['No Drug', 'With Drug'],
                         color_codes=['blue', 'orange'],
                         transparency=0.5,
                         x_range=[6, 20])
Esempio n. 7
0
def plot_survival_curves_and_histograms(sim_outcomes_none, sim_outcomes_anticoag):
    """ draws the survival curves and the histograms of time until HIV deaths
    :param sim_outcomes_none: outcomes of a cohort simulated under no therapy
    :param sim_outcomes_anticoag: outcomes of a cohort simulated under anticoagulation
    """

    # get survival curves of both treatments
    survival_curves = [
        sim_outcomes_none.nLivingPatients,
        sim_outcomes_anticoag.nLivingPatients
    ]

    # graph survival curve
    Path.plot_sample_paths(
        sample_paths=survival_curves,
        title='Survival curve',
        x_label='Simulation time step (year)',
        y_label='Number of alive patients',
        legends=['No Therapy', 'Anticoagulation'],
        color_codes=['red', 'blue']
    )

    # histograms of survival times
    set_of_strokes = [
        sim_outcomes_none.nStrokes,
        sim_outcomes_anticoag.nStrokes
    ]

    # graph histograms
    Hist.plot_histograms(
        data_sets=set_of_strokes,
        title='Histogram of number of strokes',
        x_label='Number of Strokes',
        y_label='Counts',
        bin_width=1,
        legends=['No Therapy', 'Anticoagulation'],
        color_codes=['red', 'blue'],
        transparency=0.5
    )
def plot_survival_curves_and_histograms(multi_cohort_outcomes_mono,
                                        multi_cohort_outcomes_combo):
    """ plot the survival curves and the histograms of survival times
    :param multi_cohort_outcomes_mono: outcomes of a multi-cohort simulated under mono therapy
    :param multi_cohort_outcomes_combo: outcomes of a multi-cohort simulated under combination therapy
    """

    # get survival curves of both treatments
    sets_of_survival_curves = [
        multi_cohort_outcomes_mono.survivalCurves,
        multi_cohort_outcomes_combo.survivalCurves
    ]

    # graph survival curve
    Path.plot_sets_of_sample_paths(
        sets_of_sample_paths=sets_of_survival_curves,
        title='Survival Curves',
        x_label='Simulation Time Step (year)',
        y_label='Number of Patients Alive',
        legends=['Mono Therapy', 'Combination Therapy'],
        transparency=0.4,
        color_codes=['green', 'blue'])

    # histograms of survival times
    set_of_survival_times = [
        multi_cohort_outcomes_mono.meanSurvivalTimes,
        multi_cohort_outcomes_combo.meanSurvivalTimes
    ]

    # graph histograms
    Hist.plot_histograms(data_sets=set_of_survival_times,
                         title='Histograms of Average Patient Survival Time',
                         x_label='Survival Time (year)',
                         y_label='Counts',
                         bin_width=0.25,
                         x_range=[5.25, 17.75],
                         legends=['Mono Therapy', 'Combination Therapy'],
                         color_codes=['green', 'blue'],
                         transparency=0.5)
Esempio n. 9
0
def draw_survival_curves_and_histograms(cohort_no_drug, cohort_with_drug):
    """ draws the survival curves and the histograms of survival time
    :param cohort_no_drug: a cohort simulated when drug is not available
    :param cohort_with_drug: a cohort simulated when drug is available
    """

    # get survival curves of both treatments
    survival_curves = [
        cohort_no_drug.cohortOutcomes.nLivingPatients,
        cohort_with_drug.cohortOutcomes.nLivingPatients
    ]

    # graph survival curve
    Path.plot_sample_paths(sample_paths=survival_curves,
                           title='Survival curve',
                           x_label='Simulation time step',
                           y_label='Number of alive patients',
                           legends=['No Drug', 'With Drug'],
                           color_codes=['blue', 'orange'],
                           transparency=0.5)

    # histograms of survival times
    set_of_survival_times = [
        cohort_no_drug.cohortOutcomes.survivalTimes,
        cohort_with_drug.cohortOutcomes.survivalTimes
    ]

    # graph histograms
    Hist.plot_histograms(data_sets=set_of_survival_times,
                         title='Histogram of patient survival time',
                         x_label='Survival time',
                         y_label='Counts',
                         bin_width=2,
                         legends=['No Drug', 'With Drug'],
                         color_codes=['blue', 'orange'],
                         transparency=0.5)
import SimPy.InOutFunctions as IO
import SimPy.Plots.Histogram as Hist
import SimPy.Plots.ProbDist as Plot
import SimPy.RandomVariateGenerators as RVGs
import SimPy.Statistics as Stat

# read weekly number of drinks
cols = IO.read_csv_cols(file_name='dataNumOfDrinks.csv',
                        n_cols=1,
                        if_ignore_first_row=True,
                        if_convert_float=True)

# make a histogram
Hist.plot_histogram(data=cols[0], title='Weekly Number of Drinks', bin_width=1)

# mean and standard deviation
stat = Stat.SummaryStat(name='Weekly number of drinks', data=cols[0])
print('Mean = ', stat.get_mean())
print('StDev = ', stat.get_stdev())

# fit a Poisson distribution
fit_results = RVGs.Poisson.fit_ml(data=cols[0])
print('Fitting a Poisson distribution:', fit_results)

# plot the fitted Poisson distribution
Plot.plot_poisson_fit(data=cols[0],
                      fit_results=fit_results,
                      x_label='Weekly number of drinks',
                      x_range=(0, 40),
                      bin_width=1)
Esempio n. 11
0
# simulate all cohorts
multiCohort.simulate(Sets.TIME_STEPS)

# plot the sample paths
Path.plot_sample_paths(
    sample_paths=multiCohort.multiCohortOutcomes.survivalCurves,
    title='Survival Curves',
    x_label='Time-Step (Year)',
    y_label='Number Survived',
    transparency=0.5)

# plot the histogram of average survival time
Hist.plot_histogram(
    data=multiCohort.multiCohortOutcomes.meanSurvivalTimes,
    title='Histogram of Mean Survival Time',
    x_label='Mean Survival Time (Year)',
    y_label='Count',
    x_range=[2.5, 21.5],
    bin_width=0.5)

# create the histogram of the mortality probabilities
Hist.plot_histogram(
    data=mortality_samples,
    title='Histogram of Mortality Probabilities',
    x_label='Mortality Probability',
    y_label='Counts',
    x_range=[Sets.PRIOR_L, Sets.PRIOR_U])

# print projected mean survival time (years)
print('Projected mean survival time (years)',
      multiCohort.multiCohortOutcomes.statMeanSurvivalTime.get_mean())
Esempio n. 12
0
import SimPy.Plots.Histogram as Hist
import SimPy.Plots.SamplePaths as Path

# selected therapy
therapy = P.Therapies.COMBO

# create a cohort
myCohort = Cls.Cohort(id=1,
                      pop_size=D.POP_SIZE,
                      parameters=P.Parameters(therapy=therapy))

# simulate the cohort over the specified time steps
myCohort.simulate(sim_length=D.SIM_LENGTH)

# plot the sample path (survival curve)
Path.plot_sample_path(sample_path=myCohort.cohortOutcomes.nLivingPatients,
                      title='Survival Curve',
                      x_label='Time-Step (Year)',
                      y_label='Number Survived')

# plot the histogram of survival times
Hist.plot_histogram(data=myCohort.cohortOutcomes.survivalTimes,
                    title='Histogram of Patient Survival Time',
                    x_label='Survival Time (Year)',
                    y_label='Count',
                    bin_width=1)

# print the outcomes of this simulated cohort
Support.print_outcomes(sim_outcomes=myCohort.cohortOutcomes,
                       therapy_name=therapy)
Esempio n. 13
0
    pop_sizes=[COHORT_POP_SIZE] *
    N_COHORTS,  # [COHORT_POP_SIZE, COHORT_POP_SIZE, ..., COHORT_POP_SIZE]
    mortality_probs=[MORTALITY_PROB] * N_COHORTS  # [p, p, ....]
)

# simulate all cohorts
multiCohort.simulate(TIME_STEPS)

# plot the sample paths
Path.plot_sample_paths(
    sample_paths=multiCohort.multiCohortOutcomes.survivalCurves,
    title='Survival Curves',
    x_label='Time-Step (Year)',
    y_label='Number Survived',
    transparency=0.5)

# plot the histogram of average survival time
Hist.plot_histogram(data=multiCohort.multiCohortOutcomes.meanSurvivalTimes,
                    title='Histogram of Mean Survival Time',
                    x_label='Mean Survival Time (Year)',
                    y_label='Count')

# print projected mean survival time (years)
print('Projected mean survival time (years)',
      multiCohort.multiCohortOutcomes.statMeanSurvivalTime.get_mean())

# print projection interval
print(
    '95% projection (prediction, percentile, or uncertainty) interval of average survival time (years)',
    multiCohort.multiCohortOutcomes.statMeanSurvivalTime.get_PI(alpha=ALPHA))
    def plot_histograms(self,
                        ids=None,
                        csv_file_name_prior=None,
                        posterior_fig_loc='figures_national'):
        """ creates histograms of parameters specified by ids
        :param ids: (list) list of parameter ids
        :param csv_file_name_prior: (string) filename where parameter prior ranges are located
        :param posterior_fig_loc: (string) location where posterior figures_national should be located
        """

        # clean the directory
        IO.delete_files('.png', posterior_fig_loc)

        # read prior distributions
        if csv_file_name_prior is not None:
            priors = IO.read_csv_rows(file_name=csv_file_name_prior,
                                      if_ignore_first_row=True,
                                      delimiter=',',
                                      if_convert_float=True)

        # for all parameters, read sampled parameter values and create the histogram
        par_id = 0
        for key, par_values in self.dictOfParams.items():

            # skip these columns
            if key in ['Simulation Replication', 'Random Seed']:
                continue

            # check if the histogram should be created for this parameter
            if_show = False
            if ids is None:
                if_show = True
            elif par_id in ids:
                if_show = True

            # create the histogram
            if if_show:
                # find prior range
                x_range = None
                if priors is not None:
                    try:
                        x_range = [
                            float(priors[par_id][Column.LB.value]),
                            float(priors[par_id][Column.UB.value])
                        ]
                    except:
                        print(
                            'Could not convert string to float to find the prior distribution of parameter:',
                            par_id)
                else:
                    x_range = None

                # find the filename the histogram should be saved as
                file_name = posterior_fig_loc + '\Par-' + str(
                    par_id) + ' ' + F.proper_file_name(key)

                # find title
                if priors[par_id][Column.TITLE.value] in ('', None):
                    title = priors[par_id][Column.NAME.value]
                else:
                    title = priors[par_id][Column.TITLE.value]

                # find multiplier
                if priors[par_id][Column.MULTIPLIER.value] in ('', None):
                    multiplier = 1
                else:
                    multiplier = float(priors[par_id][Column.MULTIPLIER.value])
                x_range = [x * multiplier for x in x_range]
                par_values = [v * multiplier for v in par_values]

                # plot histogram
                Fig.plot_histogram(data=par_values,
                                   title=title.replace('!', '\n'),
                                   x_range=x_range,
                                   figure_size=HISTOGRAM_FIG_SIZE,
                                   file_name=file_name)

            # move to the next parameter
            par_id += 1
Esempio n. 15
0
    def plot_pairwise(self, par_names=None, prior_info_csv_file=None, fig_filename='pairwise_correlation.png',
                      figure_size=(10, 10)):
        """ creates pairwise correlation between parameters specified by ids
        :param par_names: (list) names of parameter to display
        :param prior_info_csv_file: (string) filename where parameter prior ranges are located
            (Note: '!' will be replaced with '\n')
        :param fig_filename: (string) filename to save the figure as
        :param figure_size: (tuple) figure size
        """

        # read information about prior distributions
        dict_of_priors = None
        if prior_info_csv_file is not None:
            dict_of_priors = self.get_dict_of_priors(prior_info_csv_file=prior_info_csv_file)

        # if parameter names are not specified, include all parameters
        if par_names is None:
            par_names = self.get_all_parameter_names()

        # find the info of parameters to include in the analysis
        info_of_param_info_to_include = []

        # for each parameter, read sampled parameter values and create the histogram
        for par_name in par_names:

            # get parameter values
            par_values = self.dictOfParamValues[par_name]

            # get info
            title, multiplier, x_range, decimal, form = self.get_title_multiplier_x_range_decimal_format(
                par_name=par_name, dict_of_priors=dict_of_priors)

            # adjust parameter values
            par_values = [v*multiplier for v in par_values]

            # append the info for this parameter
            info_of_param_info_to_include.append(
                ParamInfo(name=par_name,
                          label=title.replace('!', '\n'),
                          values=par_values, value_range=x_range))

        # plot pairwise
        # set default properties of the figure
        plt.rc('font', size=6)  # fontsize of texts
        plt.rc('axes', titlesize=6)  # fontsize of the figure title
        plt.rc('axes', titleweight='semibold')  # fontweight of the figure title

        # plot each panel
        n = len(info_of_param_info_to_include)

        if n == 0:
            raise ValueError('Values of parameters are not provided. '
                             'Make sure the calibration algorithm exports the parameter values.')

        f, axarr = plt.subplots(nrows=n, ncols=n, figsize=figure_size)

        for i in range(n):
            for j in range(n):

                # get the current axis
                ax = axarr[i, j]

                if j == 0:
                    ax.set_ylabel(info_of_param_info_to_include[i].label)
                if i == n-1:
                    ax.set_xlabel(info_of_param_info_to_include[j].label)

                if i == j:
                    # plot histogram
                    Fig.add_histogram_to_ax(
                        ax=ax,
                        data=info_of_param_info_to_include[i].values,
                        x_range=info_of_param_info_to_include[i].range
                    )
                    ax.set_yticklabels([])
                    ax.set_yticks([])

                else:
                    ax.scatter(info_of_param_info_to_include[j].values,
                               info_of_param_info_to_include[i].values,
                               alpha=0.5, s=2)
                    ax.set_xlim(info_of_param_info_to_include[j].range)
                    ax.set_ylim(info_of_param_info_to_include[i].range)
                    # correlation line
                    b, m = polyfit(info_of_param_info_to_include[j].values,
                                   info_of_param_info_to_include[i].values, 1)
                    ax.plot(info_of_param_info_to_include[j].values,
                            b + m * info_of_param_info_to_include[j].values, '-', c='black')
                    corr, p = pearsonr(info_of_param_info_to_include[j].values,
                                       info_of_param_info_to_include[i].values)
                    ax.text(0.95, 0.95, '{0:.2f}'.format(corr), transform=ax.transAxes, fontsize=6,
                            va='top', ha='right')

        f.align_ylabels(axarr[:, 0])
        f.tight_layout()
        output_figure(plt=f, filename=fig_filename, dpi=300)
    def plot_pairwise(self,
                      ids=None,
                      csv_file_name_prior=None,
                      fig_filename='pairwise_correlation.png',
                      figure_size=(10, 10)):
        """ creates pairwise corrolation between parameters specified by ids
        :param ids: (list) list of parameter ids
        :param csv_file_name_prior: (string) filename where parameter prior ranges are located
        :param fig_filename: (string) filename to save the figure as
        :param figure_size: (tuple) figure size
        """

        # read prior distributions
        priors = None
        if csv_file_name_prior is not None:
            priors = IO.read_csv_rows(file_name=csv_file_name_prior,
                                      if_ignore_first_row=True,
                                      delimiter=',',
                                      if_convert_float=True)

        # find the names of parameters to include in the analysis
        info_of_params_to_include = []

        par_id = 0
        for key, par_values in self.dictOfParams.items():

            # skip these columns
            if key in ['Simulation Replication', 'Random Seed']:
                continue

            # check if the histogram should be created for this parameter
            if_show = False
            if ids is None:
                if_show = True
            elif par_id in ids:
                if_show = True

            # create the histogram
            if if_show:
                # find prior range
                x_range = None
                if priors is not None:
                    try:
                        x_range = [
                            float(priors[par_id][Column.LB.value]),
                            float(priors[par_id][Column.UB.value])
                        ]
                    except:
                        print(
                            'Could not convert string to float to find the prior distribution of parameter:',
                            par_id)
                else:
                    x_range = None

                # find title
                if priors[par_id][Column.TITLE.value] in ('', None):
                    label = priors[par_id][Column.NAME.value]
                else:
                    label = priors[par_id][Column.TITLE.value]

                # find multiplier
                if priors[par_id][Column.MULTIPLIER.value] in ('', None):
                    multiplier = 1
                else:
                    multiplier = float(priors[par_id][Column.MULTIPLIER.value])
                x_range = [x * multiplier for x in x_range]
                par_values = [v * multiplier for v in par_values]

                # append the info for this parameter
                info_of_params_to_include.append(
                    ParamInfo(idx=par_id,
                              name=key,
                              label=label.replace('!', '\n'),
                              values=par_values,
                              range=x_range))

            # move to the next parameter
            par_id += 1

        # plot pairwise
        # set default properties of the figure
        plt.rc('font', size=6)  # fontsize of texts
        plt.rc('axes', titlesize=6)  # fontsize of the figure title
        plt.rc('axes',
               titleweight='semibold')  # fontweight of the figure title

        # plot each panel
        n = len(info_of_params_to_include)
        f, axarr = plt.subplots(nrows=n, ncols=n, figsize=figure_size)

        for i in range(n):
            for j in range(n):

                # get the current axis
                ax = axarr[i, j]

                if j == 0:
                    ax.set_ylabel(info_of_params_to_include[i].label)
                if i == n - 1:
                    ax.set_xlabel(info_of_params_to_include[j].label)

                if i == j:
                    # plot histogram
                    Fig.add_histogram_to_ax(
                        ax=ax,
                        data=info_of_params_to_include[i].values,
                        x_range=info_of_params_to_include[i].range)
                    ax.set_yticklabels([])
                    ax.set_yticks([])

                else:
                    ax.scatter(info_of_params_to_include[j].values,
                               info_of_params_to_include[i].values,
                               alpha=0.5,
                               s=2)
                    ax.set_xlim(info_of_params_to_include[j].range)
                    ax.set_ylim(info_of_params_to_include[i].range)
                    # correlation line
                    b, m = polyfit(info_of_params_to_include[j].values,
                                   info_of_params_to_include[i].values, 1)
                    ax.plot(info_of_params_to_include[j].values,
                            b + m * info_of_params_to_include[j].values,
                            '-',
                            c='black')
                    corr, p = pearsonr(info_of_params_to_include[j].values,
                                       info_of_params_to_include[i].values)
                    ax.text(0.95,
                            0.95,
                            '{0:.2f}'.format(corr),
                            transform=ax.transAxes,
                            fontsize=6,
                            va='top',
                            ha='right')

        f.align_ylabels(axarr[:, 0])
        f.tight_layout()
        f.savefig(fig_filename, bbox_inches='tight', dpi=300)
Esempio n. 17
0
                          cohort_size=Sets.SIM_POP_SIZE,
                          time_steps=Sets.TIME_STEPS)

# plot the sample paths
Path.plot_sample_paths(sample_paths=calibrated_model.multiCohorts.
                       multiCohortOutcomes.survivalCurves,
                       title='Survival Curves',
                       x_label='Time-Step (Year)',
                       y_label='Number Survived',
                       transparency=0.5)

# plot the histogram of mean survival time
Hist.plot_histogram(
    data=calibrated_model.multiCohorts.multiCohortOutcomes.meanSurvivalTimes,
    title='Histogram of Mean Survival Time',
    x_label='Mean Survival Time (Year)',
    y_label='Count',
    bin_width=0.25,
    x_range=[2.5, 21.5])

# create the histogram of the resampled mortality probabilities
Hist.plot_histogram(data=calibrated_model.resampledMortalityProb,
                    title='Histogram of Resampled Mortality Probabilities',
                    x_label='Mortality Probability',
                    y_label='Counts',
                    x_range=[Sets.PRIOR_L, Sets.PRIOR_U])

# Estimate of mortality probability and the posterior interval
print(
    'Estimate of mortality probability ({:.{prec}%} credible interval):'.
    format(1 - Sets.ALPHA, prec=0),