def _findPeaks(self, pkWndw, pkDelta): """ Find the peaks and valleys in the data """ self.peaks = {} self.valleys = {} for key in list(self.data.keys()): ls = LineScan(self.data[key]) # need to automagically adjust the window # to make sure we get a minimum number of # of peaks, maybe let the user guess a min? self.peaks[key] = ls.findPeaks(pkWndw, pkDelta) self.valleys[key] = ls.findValleys(pkWndw, pkDelta)
def _findPeaks(self, pkWndw, pkDelta): """ Find the peaks and valleys in the data """ self.peaks = {} self.valleys = {} for key in self.data.keys(): ls = LineScan(self.data[key]) # need to automagically adjust the window # to make sure we get a minimum number of # of peaks, maybe let the user guess a min? self.peaks[key] = ls.findPeaks(pkWndw, pkDelta) self.valleys[key] = ls.findValleys(pkWndw, pkDelta)
def __init__(self): self._rtData = LineScan([]) # the deployed data self._steadyState = None # mu/signal for the ss behavior self._extractor = None self._roi = None self._window = None self._template = None self._cutoff = None self._bestKey = None self._isPeak = False self.corrTemplates = None self.peaks = {} self.valleys = {} self.doPeaks = {} self.corrStdMult = 3.0 self.count = 0
class TemporalColorTracker: """ **SUMMARY** The temporal color tracker attempts to find and periodic color signal in an roi or arbitrary function. Once the temporal tracker is trained it will return a count object every time the signal is detected. This class is usefull for counting periodically occuring events, for example, waves on a beach or the second hand on a clock. """ def __init__(self): self._rtData = LineScan([]) # the deployed data self._steadyState = None # mu/signal for the ss behavior self._extractor = None self._roi = None self._window = None self._template = None self._cutoff = None self._bestKey = None self._isPeak = False self.corrTemplates = None self.peaks = {} self.valleys = {} self.doPeaks = {} self.corrStdMult = 3.0 self.count = 0 def train(self, src, roi=None, extractor=None, doCorr=False, maxFrames=1000, ssWndw=0.05, pkWndw=30, pkDelta=3, corrStdMult=2.0, forceChannel=None, verbose=True): """ **SUMMARY** To train the TemporalColorTracker you provide it with a video, camera, or ImageSet and either an region of interest (ROI) or a function of the form: (R,G,B) = MyFunction(Image) This function takes in an image and returns a tuple of RGB balues for the frame. The TemoralColroTracker will then attempt to find the maximum peaks in the data and create a model for the peaks. **PARAMETERS** * *src* - An image source, either a camera, a virtual camera (like a video) or an ImageSet. * *roi* - An ROI object that tells the tracker where to look in the frame. * *extractor* - A function with the following signature: (R,G,B) = Extract(Image) * *doCorr* - Do correlation use correlation to confirm that the signal is present. * *maxFrames* - The maximum number of frames to use for training. * *ssWndw* - SteadyState window, this is the size of the window to look for a steady state, i.e a region where the signal is not changing. * *pkWndw* - The window size to look for peaks/valleys in the signal. This is roughly the period of the signal. * *pkDelta* - The minimum difference between the steady state to look for peaks. * *corrStdMult* - The maximum correlation standard deviation of the training set to use when looking for a signal. This is the knob to dial in when using correlation to confirm the event happened. * *forceChannel* - A string that is the channel to use. Options are: * 'r' - Red Channel * 'g' - Green Channel * 'b' - Blue Channel * 'h' - Hue Channel * 'i' - Intensity Channel By default this module will look at the signal with the highest peak/valley swings. You can manually overide this behavior. * *verbose* - Print debug info after training. **RETURNS** Nothing, will raise an exception if no signal is found. **EXAMPLE** A really simple example >>>> cam = Camera(1) >>>> tct = TemporalColorTracker() >>>> img = cam.getImage() >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> tct.train(cam,roi=roi,maxFrames=250) >>>> disp = Display((800,600)) >>>> while disp.isNotDone(): >>>> img = cam.getImage() >>>> result = tct.recognize(img) >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> roi.draw(width=3) >>>> img.drawText(str(result),20,20,color=Color.RED,fontsize=32) >>>> img = img.applyLayers() >>>> img.save(disp) """ if (roi is None and extractor is None): raise Exception('Need to provide an ROI or an extractor') self.doCorr = doCorr self.corrStdMult = corrStdMult self._extractor = extractor #function that returns a RGB values self._roi = roi self._extract(src, maxFrames, verbose) self._findSteadyState(windowSzPrct=ssWndw) self._findPeaks(pkWndw, pkDelta) self._extractSignalInfo(forceChannel) self._buildSignalProfile() if verbose: for key in list(self.data.keys()): print(30 * '-') print("Channel: {0}".format(key)) print("Data Points: {0}".format(len(self.data[key]))) print("Steady State: {0}+/-{1}".format( self._steadyState[key][0], self._steadyState[key][1])) print("Peaks: {0}".format(self.peaks[key])) print("Valleys: {0}".format(self.valleys[key])) print("Use Peaks: {0}".format(self.doPeaks[key])) print(30 * '-') print("BEST SIGNAL: {0}".format(self._bestKey)) print("BEST WINDOW: {0}".format(self._window)) print("BEST CUTOFF: {0}".format(self._cutoff)) def _getDataFromImg(self, img): """ Get the data from the image """ mc = None if (self._extractor): mc = self._extractor(img) else: temp = self._roi.reassign(img) mc = temp.meanColor() self.data['r'].append(mc[0]) self.data['g'].append(mc[1]) self.data['b'].append(mc[2]) # NEED TO CHECK THAT THIS REALLY RGB self.data['i'].append(Color.getLightness(mc)) self.data['h'].append(Color.getHueFromRGB(mc)) #return [mc[0],mc[1],mc[2],gray,Color.rgbToHue(mc)] def _extract(self, src, maxFrames, verbose): # get the full dataset and append it to the data vector dictionary. self.data = {'r': [], 'g': [], 'b': [], 'i': [], 'h': []} if (isinstance(src, ImageSet)): src = VirtualCamera(src, st='imageset') # this could cause a bug elif (isinstance(src, (VirtualCamera, Camera))): count = 0 for i in range(0, maxFrames): img = src.getImage() count = count + 1 if (verbose): print("Got Frame {0}".format(count)) if (isinstance(src, Camera)): time.sleep(0.05) # let the camera sleep if (img is None): break else: self._getDataFromImg(img) else: raise Exception('Not a valid training source') return None def _findSteadyState(self, windowSzPrct=0.05): # slide a window across each of the signals # find where the std dev of the window is minimal # this is the steady state (e.g. where the # assembly line has nothing moving) # save the mean and sd of this value # as a tuple in the steadyStateDict self._steadyState = {} for key in list(self.data.keys()): wndwSz = int(np.floor(windowSzPrct * len(self.data[key]))) signal = self.data[key] # slide the window and get the std data = [ np.std(signal[i:i + wndwSz]) for i in range(0, len(signal) - wndwSz) ] # find the first spot where sd is minimal index = np.where(data == np.min(data))[0][0] # find the mean for the window mean = np.mean(signal[index:index + wndwSz]) self._steadyState[key] = (mean, data[index]) def _findPeaks(self, pkWndw, pkDelta): """ Find the peaks and valleys in the data """ self.peaks = {} self.valleys = {} for key in list(self.data.keys()): ls = LineScan(self.data[key]) # need to automagically adjust the window # to make sure we get a minimum number of # of peaks, maybe let the user guess a min? self.peaks[key] = ls.findPeaks(pkWndw, pkDelta) self.valleys[key] = ls.findValleys(pkWndw, pkDelta) def _extractSignalInfo(self, forceChannel): """ Find the difference between the peaks and valleys """ self.pD = {} self.vD = {} self.doPeaks = {} bestSpread = 0.00 bestDoPeaks = None bestKey = None for key in list(self.data.keys()): #Look at which signal has a bigger distance from #the steady state behavior if (len(self.peaks[key]) > 0): peakMean = np.mean(np.array(self.peaks[key])[:, 1]) self.pD[key] = np.abs(self._steadyState[key][0] - peakMean) else: self.pD[key] = 0.00 if (len(self.valleys[key]) > 0): valleyMean = np.mean(np.array(self.valleys[key])[:, 1]) self.vD[key] = np.abs(self._steadyState[key][0] - valleyMean) else: self.vD[key] = 0.00 self.doPeaks[key] = False best = self.vD[key] if (self.pD[key] > self.vD[key]): best = self.pD[key] self.doPeaks[key] = True if (best > bestSpread): bestSpread = best bestDoPeaks = self.doPeaks[key] bestKey = key # Now we know which signal has the most spread # and what direction we are looking for. if (forceChannel is not None): if (forceChannel in self.data): self._bestKey = forceChannel else: raise Exception('That is not a valid data channel') else: self._bestKey = bestKey def _buildSignalProfile(self): key = self._bestKey self._window = None peaks = None if (self.doPeaks[key]): self._isPeak = True peaks = self.peaks[key] # We're just going to do halfway self._cutoff = self._steadyState[key][0] + (self.pD[key] / 2.0) else: self._isPeak = False peaks = self.valleys[key] self._cutoff = self._steadyState[key][0] - (self.vD[key] / 2.0) if (len(peaks) > 1): p2p = np.array(peaks[1:]) - np.array(peaks[:-1]) p2pMean = int(np.mean(p2p)) p2pS = int(np.std(p2p)) p2pMean = p2pMean + 2 * p2pS # constrain it to be an od window if int(p2pMean) % 2 == 1: p2pMean = p2pMean + 1 self._window = p2pMean else: raise Exception("Can't find enough peaks") if (self.doCorr and self._window is not None): self._doCorr() #NEED TO ERROR OUT ON NOT ENOUGH POINTS def _doCorr(self): key = self._bestKey # build an average signal for the peaks and valleys # centered at the peak. The go and find the correlation # value of each peak/valley with the average signal self.corrTemplates = [] halfWndw = self._window / 2 pList = None if (self._isPeak): pList = self.peaks[key] else: pList = self.valleys[key] for peak in pList: center = peak[0] lb = center - halfWndw ub = center + halfWndw # ignore signals that fall of the end of the data if (lb > 0 and ub < len(self.data[key])): self.corrTemplates.append(np.array(self.data[key][lb:ub])) if (len(self.corrTemplates) < 1): raise Exception( 'Could not find a coherrent signal for correlation.') sig = np.copy(self.corrTemplates[0]) # little np gotcha for peak in self.corrTemplates[1:]: sig += peak self._template = sig / len(self.corrTemplates) self._template /= np.max(self._template) corrVals = [ np.correlate(peak / np.max(peak), self._template) for peak in self.corrTemplates ] print(corrVals) self.corrThresh = (np.mean(corrVals), np.std(corrVals)) def _getBestValue(self, img): """ Extract the data from the live signal """ if (self._extractor): mc = self._extractor(img) else: temp = self._roi.reassign(img) mc = temp.meanColor() if (self._bestKey == 'r'): return mc[0] elif (self._bestKey == 'g'): return mc[1] elif (self._bestKey == 'b'): return mc[2] elif (self._bestKey == 'i'): return Color.getLightness(mc) elif (self._bestKey == 'h'): return Color.getHueFromRGB(mc) def _updateBuffer(self, v): """ Keep a buffer of the running data and process it to determine if there is a peak. """ self._rtData.append(v) wndwCenter = int(np.floor(self._window / 2.0)) # pop the end of the buffer if (len(self._rtData) > self._window): self._rtData = self._rtData[1:] if (self._isPeak): lm = self._rtData.findPeaks() for l in lm: if (l[0] == wndwCenter and l[1] > self._cutoff): if (self.doCorr): corrVal = np.correlate(self._rtData.normalize(), self._template) thresh = self.corrThresh[ 0] - self.corrStdMult * self.corrThresh[1] if (corrVal[0] > thresh): self.count += 1 else: self.count += 1 else: lm = self._rtData.findValleys() for l in lm: if (l[0] == wndwCenter and l[1] < self._cutoff): if (self.doCorr): corrVal = np.correlate(self._rtData.normalize(), self._template) thresh = self.corrThresh[ 0] - self.corrStdMult * self.corrThresh[1] if (corrVal[0] > thresh): self.count += 1 else: self.count += 1 return self.count def recognize(self, img): """ **SUMMARY*** This method is used to do the real time signal analysis. Pass the method an image from the stream and it will return the event count. Note that due to buffering the signal may lag the actual video by up to a few seconds. **PARAMETERS** * *img* - The image in the stream to test. **RETURNS** Returns an int that is the count of the number of times the event has occurred. **EXAMPLE** >>>> cam = Camera(1) >>>> tct = TemporalColorTracker() >>>> img = cam.getImage() >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> tct.train(cam,roi=roi,maxFrames=250) >>>> disp = Display((800,600)) >>>> while disp.isNotDone(): >>>> img = cam.getImage() >>>> result = tct.recognize(img) >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> roi.draw(width=3) >>>> img.drawText(str(result),20,20,color=Color.RED,fontsize=32) >>>> img = img.applyLayers() >>>> img.save(disp) **TODO** Return True/False if the event occurs. """ if (self._bestKey is None): raise Exception('The TemporalColorTracker has not been trained.') v = self._getBestValue(img) return self._updateBuffer(v)
class TemporalColorTracker: """ **SUMMARY** The temporal color tracker attempts to find and periodic color signal in an roi or arbitrary function. Once the temporal tracker is trained it will return a count object every time the signal is detected. This class is usefull for counting periodically occuring events, for example, waves on a beach or the second hand on a clock. """ def __init__(self): self._rtData = LineScan([]) # the deployed data self._steadyState = None # mu/signal for the ss behavior self._extractor = None self._roi = None self._window = None self._template = None self._cutoff = None self._bestKey = None self._isPeak = False self.corrTemplates = None self.peaks = {} self.valleys = {} self.doPeaks = {} self.corrStdMult = 3.0 self.count = 0 def train( self, src, roi=None, extractor=None, doCorr=False, maxFrames=1000, ssWndw=0.05, pkWndw=30, pkDelta=3, corrStdMult=2.0, forceChannel=None, verbose=True, ): """ **SUMMARY** To train the TemporalColorTracker you provide it with a video, camera, or ImageSet and either an region of interest (ROI) or a function of the form: (R,G,B) = MyFunction(Image) This function takes in an image and returns a tuple of RGB balues for the frame. The TemoralColroTracker will then attempt to find the maximum peaks in the data and create a model for the peaks. **PARAMETERS** * *src* - An image source, either a camera, a virtual camera (like a video) or an ImageSet. * *roi* - An ROI object that tells the tracker where to look in the frame. * *extractor* - A function with the following signature: (R,G,B) = Extract(Image) * *doCorr* - Do correlation use correlation to confirm that the signal is present. * *maxFrames* - The maximum number of frames to use for training. * *ssWndw* - SteadyState window, this is the size of the window to look for a steady state, i.e a region where the signal is not changing. * *pkWndw* - The window size to look for peaks/valleys in the signal. This is roughly the period of the signal. * *pkDelta* - The minimum difference between the steady state to look for peaks. * *corrStdMult* - The maximum correlation standard deviation of the training set to use when looking for a signal. This is the knob to dial in when using correlation to confirm the event happened. * *forceChannel* - A string that is the channel to use. Options are: * 'r' - Red Channel * 'g' - Green Channel * 'b' - Blue Channel * 'h' - Hue Channel * 'i' - Intensity Channel By default this module will look at the signal with the highest peak/valley swings. You can manually overide this behavior. * *verbose* - Print debug info after training. **RETURNS** Nothing, will raise an exception if no signal is found. **EXAMPLE** A really simple example >>>> cam = Camera(1) >>>> tct = TemporalColorTracker() >>>> img = cam.getImage() >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> tct.train(cam,roi=roi,maxFrames=250) >>>> disp = Display((800,600)) >>>> while disp.isNotDone(): >>>> img = cam.getImage() >>>> result = tct.recognize(img) >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> roi.draw(width=3) >>>> img.drawText(str(result),20,20,color=Color.RED,fontsize=32) >>>> img = img.applyLayers() >>>> img.save(disp) """ if roi is None and extractor is None: raise Exception("Need to provide an ROI or an extractor") self.doCorr = doCorr self.corrStdMult = corrStdMult self._extractor = extractor # function that returns a RGB values self._roi = roi self._extract(src, maxFrames, verbose) self._findSteadyState(windowSzPrct=ssWndw) self._findPeaks(pkWndw, pkDelta) self._extractSignalInfo(forceChannel) self._buildSignalProfile() if verbose: for key in self.data.keys(): print 30 * "-" print "Channel: {0}".format(key) print "Data Points: {0}".format(len(self.data[key])) print "Steady State: {0}+/-{1}".format(self._steadyState[key][0], self._steadyState[key][1]) print "Peaks: {0}".format(self.peaks[key]) print "Valleys: {0}".format(self.valleys[key]) print "Use Peaks: {0}".format(self.doPeaks[key]) print 30 * "-" print "BEST SIGNAL: {0}".format(self._bestKey) print "BEST WINDOW: {0}".format(self._window) print "BEST CUTOFF: {0}".format(self._cutoff) def _getDataFromImg(self, img): """ Get the data from the image """ mc = None if self._extractor: mc = self._extractor(img) else: temp = self._roi.reassign(img) mc = temp.meanColor() self.data["r"].append(mc[0]) self.data["g"].append(mc[1]) self.data["b"].append(mc[2]) # NEED TO CHECK THAT THIS REALLY RGB self.data["i"].append(Color.getLightness(mc)) self.data["h"].append(Color.getHueFromRGB(mc)) # return [mc[0],mc[1],mc[2],gray,Color.rgbToHue(mc)] def _extract(self, src, maxFrames, verbose): # get the full dataset and append it to the data vector dictionary. self.data = {"r": [], "g": [], "b": [], "i": [], "h": []} if isinstance(src, ImageSet): src = VirtualCamera(src, st="imageset") # this could cause a bug elif isinstance(src, (VirtualCamera, Camera)): count = 0 for i in range(0, maxFrames): img = src.getImage() count = count + 1 if verbose: print "Got Frame {0}".format(count) if isinstance(src, Camera): time.sleep(0.05) # let the camera sleep if img is None: break else: self._getDataFromImg(img) else: raise Exception("Not a valid training source") return None def _findSteadyState(self, windowSzPrct=0.05): # slide a window across each of the signals # find where the std dev of the window is minimal # this is the steady state (e.g. where the # assembly line has nothing moving) # save the mean and sd of this value # as a tuple in the steadyStateDict self._steadyState = {} for key in self.data.keys(): wndwSz = int(np.floor(windowSzPrct * len(self.data[key]))) signal = self.data[key] # slide the window and get the std data = [np.std(signal[i : i + wndwSz]) for i in range(0, len(signal) - wndwSz)] # find the first spot where sd is minimal index = np.where(data == np.min(data))[0][0] # find the mean for the window mean = np.mean(signal[index : index + wndwSz]) self._steadyState[key] = (mean, data[index]) def _findPeaks(self, pkWndw, pkDelta): """ Find the peaks and valleys in the data """ self.peaks = {} self.valleys = {} for key in self.data.keys(): ls = LineScan(self.data[key]) # need to automagically adjust the window # to make sure we get a minimum number of # of peaks, maybe let the user guess a min? self.peaks[key] = ls.findPeaks(pkWndw, pkDelta) self.valleys[key] = ls.findValleys(pkWndw, pkDelta) def _extractSignalInfo(self, forceChannel): """ Find the difference between the peaks and valleys """ self.pD = {} self.vD = {} self.doPeaks = {} bestSpread = 0.00 bestDoPeaks = None bestKey = None for key in self.data.keys(): # Look at which signal has a bigger distance from # the steady state behavior if len(self.peaks[key]) > 0: peakMean = np.mean(np.array(self.peaks[key])[:, 1]) self.pD[key] = np.abs(self._steadyState[key][0] - peakMean) else: self.pD[key] = 0.00 if len(self.valleys[key]) > 0: valleyMean = np.mean(np.array(self.valleys[key])[:, 1]) self.vD[key] = np.abs(self._steadyState[key][0] - valleyMean) else: self.vD[key] = 0.00 self.doPeaks[key] = False best = self.vD[key] if self.pD[key] > self.vD[key]: best = self.pD[key] self.doPeaks[key] = True if best > bestSpread: bestSpread = best bestDoPeaks = self.doPeaks[key] bestKey = key # Now we know which signal has the most spread # and what direction we are looking for. if forceChannel is not None: if self.data.has_key(forceChannel): self._bestKey = forceChannel else: raise Exception("That is not a valid data channel") else: self._bestKey = bestKey def _buildSignalProfile(self): key = self._bestKey self._window = None peaks = None if self.doPeaks[key]: self._isPeak = True peaks = self.peaks[key] # We're just going to do halfway self._cutoff = self._steadyState[key][0] + (self.pD[key] / 2.0) else: self._isPeak = False peaks = self.valleys[key] self._cutoff = self._steadyState[key][0] - (self.vD[key] / 2.0) if len(peaks) > 1: p2p = np.array(peaks[1:]) - np.array(peaks[:-1]) p2pMean = int(np.mean(p2p)) p2pS = int(np.std(p2p)) p2pMean = p2pMean + 2 * p2pS # constrain it to be an od window if int(p2pMean) % 2 == 1: p2pMean = p2pMean + 1 self._window = p2pMean else: raise Exception("Can't find enough peaks") if self.doCorr and self._window is not None: self._doCorr() # NEED TO ERROR OUT ON NOT ENOUGH POINTS def _doCorr(self): key = self._bestKey # build an average signal for the peaks and valleys # centered at the peak. The go and find the correlation # value of each peak/valley with the average signal self.corrTemplates = [] halfWndw = self._window / 2 pList = None if self._isPeak: pList = self.peaks[key] else: pList = self.valleys[key] for peak in pList: center = peak[0] lb = center - halfWndw ub = center + halfWndw # ignore signals that fall of the end of the data if lb > 0 and ub < len(self.data[key]): self.corrTemplates.append(np.array(self.data[key][lb:ub])) if len(self.corrTemplates) < 1: raise Exception("Could not find a coherrent signal for correlation.") sig = np.copy(self.corrTemplates[0]) # little np gotcha for peak in self.corrTemplates[1:]: sig += peak self._template = sig / len(self.corrTemplates) self._template /= np.max(self._template) corrVals = [np.correlate(peak / np.max(peak), self._template) for peak in self.corrTemplates] print corrVals self.corrThresh = (np.mean(corrVals), np.std(corrVals)) def _getBestValue(self, img): """ Extract the data from the live signal """ if self._extractor: mc = self._extractor(img) else: temp = self._roi.reassign(img) mc = temp.meanColor() if self._bestKey == "r": return mc[0] elif self._bestKey == "g": return mc[1] elif self._bestKey == "b": return mc[2] elif self._bestKey == "i": return Color.getLightness(mc) elif self._bestKey == "h": return Color.getHueFromRGB(mc) def _updateBuffer(self, v): """ Keep a buffer of the running data and process it to determine if there is a peak. """ self._rtData.append(v) wndwCenter = int(np.floor(self._window / 2.0)) # pop the end of the buffer if len(self._rtData) > self._window: self._rtData = self._rtData[1:] if self._isPeak: lm = self._rtData.findPeaks() for l in lm: if l[0] == wndwCenter and l[1] > self._cutoff: if self.doCorr: corrVal = np.correlate(self._rtData.normalize(), self._template) thresh = self.corrThresh[0] - self.corrStdMult * self.corrThresh[1] if corrVal[0] > thresh: self.count += 1 else: self.count += 1 else: lm = self._rtData.findValleys() for l in lm: if l[0] == wndwCenter and l[1] < self._cutoff: if self.doCorr: corrVal = np.correlate(self._rtData.normalize(), self._template) thresh = self.corrThresh[0] - self.corrStdMult * self.corrThresh[1] if corrVal[0] > thresh: self.count += 1 else: self.count += 1 return self.count def recognize(self, img): """ **SUMMARY*** This method is used to do the real time signal analysis. Pass the method an image from the stream and it will return the event count. Note that due to buffering the signal may lag the actual video by up to a few seconds. **PARAMETERS** * *img* - The image in the stream to test. **RETURNS** Returns an int that is the count of the number of times the event has occurred. **EXAMPLE** >>>> cam = Camera(1) >>>> tct = TemporalColorTracker() >>>> img = cam.getImage() >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> tct.train(cam,roi=roi,maxFrames=250) >>>> disp = Display((800,600)) >>>> while disp.isNotDone(): >>>> img = cam.getImage() >>>> result = tct.recognize(img) >>>> roi = ROI(img.width*0.45,img.height*0.45,img.width*0.1,img.height*0.1,img) >>>> roi.draw(width=3) >>>> img.drawText(str(result),20,20,color=Color.RED,fontsize=32) >>>> img = img.applyLayers() >>>> img.save(disp) **TODO** Return True/False if the event occurs. """ if self._bestKey is None: raise Exception("The TemporalColorTracker has not been trained.") v = self._getBestValue(img) return self._updateBuffer(v)