Esempio n. 1
0
    def clone_from_trajectory(self, expert_evaluation, expert_trajectory: Trajectory, streaming_enviroment, trace_list,
                              video_csv_list, log_steps=False):
        logging_iteration = 0
        # Select the training/validation traces
        self.policy_history = None
        trace_list = np.array(trace_list)
        video_csv_list = np.array(video_csv_list)
        expert_evaluation = np.array(expert_evaluation)
        train_idx, test_idx = train_test_split(np.arange(len(expert_evaluation)),
                                               test_size=self.validation_split, random_state=RANDOM_SEED)
        trace_video_pair_list = [f.name for f in expert_evaluation[train_idx]]
        expert_trajectory_train = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_train.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[test_idx]]
        self.fit_clustering_scorer(expert_trajectory)
        ###########
        if self.weight_samples:
            self.fit_value_function(to_imitate_evaluation=expert_evaluation[train_idx],
                                    to_imitate_trajectory=expert_trajectory_train)
            advantage = []
            for index in train_idx:
                advantage += list(self.estimate_advantage_frame(expert_evaluation[index], trace_list[index],
                                                                video_csv_list[index], streaming_enviroment))
            advantage = np.array(advantage).flatten()
            advantage = advantage + np.min(
                advantage)  # We smooth the estimate so that the low advantages are a bit bolstered
            assert (advantage < 0).sum() == 0, 'advantage should be non negative everywhere'
        #### estimate advantage on the training samples

        expert_trajectory_test = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)

        state_t = np.array([self.classifier.extract_features_observation(state_t) for state_t, _, _ in
                            tqdm(expert_trajectory_train.trajectory_list, desc='transforming')])
        state_t = pd.DataFrame(state_t, columns=self.classifier.extract_features_names())
        self.impute_NaN_inplace(state_t)
        expert_action = expert_trajectory_train.trajectory_action_t_arr
        if self.weight_samples:
            self.classifier.fit(state_t, expert_action.ravel(), sample_weight=advantage)
        else:
            self.classifier.fit(state_t, expert_action.ravel())
        if self.policy_history is None:
            self.policy_history, behavioural_cloning_evaluation = self.score(expert_evaluation[test_idx],
                                                                             expert_trajectory_test,
                                                                             streaming_enviroment,
                                                                             trace_list[test_idx],
                                                                             video_csv_list[test_idx], add_data=False)
        weight_filepaths = []
        for cloning_iteration in range(self.iterations):
            behavioural_cloning_trace_generator_testing = TrajectoryVideoStreaming(self, streaming_enviroment,
                                                                                   trace_list=trace_list,
                                                                                   video_csv_list=video_csv_list)
            behavioural_cloning_evaluation, behavioural_cloning_evaluation_trajectory = behavioural_cloning_trace_generator_testing.create_trajectories(
                random_action_probability=0,cores_avail=1)
            behavioural_cloning_evaluation_trajectory.convert_list()
            transformed_observations = self.transform_trajectory(behavioural_cloning_evaluation_trajectory)
            sample_weights_new = self.clustering_scorer.predict(transformed_observations)
            state_t_new = np.array([self.classifier.extract_features_observation(state_t) for state_t, _, _ in
                                tqdm(behavioural_cloning_evaluation_trajectory.trajectory_list, desc='transforming')])
            state_t_new = np.array(state_t_new[sample_weights_new == 1.])
            state_t_new = pd.DataFrame(state_t_new, columns=self.classifier.extract_features_names())
            state_t = state_t.append(state_t_new)
            action_new = behavioural_cloning_evaluation_trajectory.trajectory_action_t_arr[sample_weights_new == 1.]
            expert_action = np.array(list(expert_action) + list(action_new))
            self.classifier.fit(state_t, expert_action.ravel())
            weight_filepath = self.rnd_id + '_policy_network_iteration_%d.h5' % cloning_iteration
            with open(weight_filepath, 'wb') as output_file:
                dill.dump(self.classifier, output_file)
            weight_filepaths.append(weight_filepath)
        best_iteration = self.opt_policy_opt_operator(self.policy_history[self.opt_policy_value_name])
        with open(weight_filepaths[best_iteration], 'rb') as input_file:
            self.classifier = dill.load(input_file)
Esempio n. 2
0
    def clone_from_trajectory(self, expert_evaluation, expert_trajectory: Trajectory, streaming_enviroment, trace_list,
                              video_csv_list, log_steps=False):
        self.reset_learning()
        self.policy_history = None
        self.fit_clustering_scorer(expert_trajectory)
        trace_list = np.array(trace_list)
        video_csv_list = np.array(video_csv_list)
        expert_evaluation = np.array(expert_evaluation)
        train_idx, test_idx = train_test_split(np.arange(len(expert_evaluation)),
                                               test_size=self.validation_split * 2.)
        test_idx, validation_idx = train_test_split(test_idx,
                                                    test_size=0.5)
        trace_video_pair_list = [f.name for f in expert_evaluation[train_idx]]
        expert_trajectory_train = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_train.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[test_idx]]
        expert_trajectory_test = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_test.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[validation_idx]]
        expert_trajectory_validation = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_validation.convert_list()

        state_t_training = expert_trajectory_train.trajectory_state_t_arr
        state_t_future_training = expert_trajectory_train.trajectory_state_t_future
        action_training = to_categorical(expert_trajectory_train.trajectory_action_t_arr, self.n_actions)

        state_t_testing = expert_trajectory_test.trajectory_state_t_arr
        state_t_future_testing = expert_trajectory_test.trajectory_state_t_future
        action_testing = to_categorical(expert_trajectory_test.trajectory_action_t_arr, self.n_actions)
        validation_data = ([state_t_testing, state_t_future_testing], action_testing)
        weight_filepaths = []
        keras_class_weighting = None
        self.fit_clustering_scorer(expert_trajectory)
        if self.balanced:
            keras_class_weighting = class_weight.compute_class_weight('balanced',
                                                                      np.unique(action_training.argmax(1)),
                                                                      action_training.argmax(1))
        for cloning_iteration in tqdm(range(self.cloning_epochs), desc='Cloning Epochs'):
            history = self.policy_network.model.fit([state_t_training, state_t_future_training],
                                                    action_training,
                                                    validation_data=validation_data, epochs=1,
                                                    verbose=0, class_weight=keras_class_weighting).history
            if self.policy_history is None:
                self.policy_history = history
            else:
                for k, v in history.items():
                    self.policy_history[k] += history[k]
            scoring_history, behavioural_cloning_evaluation = self.score(expert_evaluation[validation_idx],
                                                                         expert_trajectory_validation,
                                                                         streaming_enviroment,
                                                                         trace_list[validation_idx],
                                                                         video_csv_list[validation_idx])
            if log_steps:
                logging_folder = 'logging_%s' % self.abr_name
                if not os.path.exists(logging_folder):
                    os.makedirs(logging_folder)
                with open(os.path.join(logging_folder, 'logging_iteration_%d' % cloning_iteration),
                          'wb') as output_file:
                    dill.dump(behavioural_cloning_evaluation, output_file)

            for k, v in scoring_history.items():
                if k in self.policy_history:
                    self.policy_history[k] += scoring_history[k]
                else:
                    self.policy_history[k] = scoring_history[k]
            weight_filepath = self.rnd_id + '_policy_network_iteration_%d.h5' % cloning_iteration
            self.policy_network.model.save_weights(filepath=weight_filepath)
            weight_filepaths.append(weight_filepath)
        best_iteration = self.opt_policy_opt_operator(self.policy_history[self.opt_policy_value_name])
        self.policy_network.model.load_weights(weight_filepaths[best_iteration])
        logger.info('Restoring best iteration %d' % best_iteration)
        for path in weight_filepaths:
            os.remove(path)
    def clone_from_trajectory(self, expert_evaluation, expert_trajectory: Trajectory, streaming_enviroment,
                              trace_list,
                              video_csv_list, log_steps=False):
        self.reset_learning()
        self.fit_clustering_scorer(expert_trajectory)

        # Select the training/validation traces
        trace_list = np.array(trace_list)
        video_csv_list = np.array(video_csv_list)
        expert_evaluation = np.array(expert_evaluation)
        train_idx, test_idx = train_test_split(np.arange(len(expert_evaluation)),
                                               test_size=self.validation_split * 2.)
        test_idx, validation_idx = train_test_split(test_idx,
                                                    test_size=0.5)
        trace_video_pair_list = [f.name for f in expert_evaluation[train_idx]]
        expert_trajectory_train = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_train.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[test_idx]]
        expert_trajectory_test = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_test.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[validation_idx]]
        expert_trajectory_validation = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_validation.convert_list()

        state_t_training = expert_trajectory_train.trajectory_state_t_arr
        state_t_future_training = expert_trajectory_train.trajectory_state_t_future
        action_training = to_categorical(expert_trajectory_train.trajectory_action_t_arr, self.n_actions)

        state_t_testing = expert_trajectory_test.trajectory_state_t_arr
        state_t_future_testing = expert_trajectory_test.trajectory_state_t_future
        action_testing = to_categorical(expert_trajectory_test.trajectory_action_t_arr, self.n_actions)
        weight_filepaths = []

        behavioural_cloning_trace_generator_training = TrajectoryVideoStreaming(self, streaming_enviroment,
                                                                                trace_list=trace_list[train_idx],
                                                                                video_csv_list=video_csv_list[
                                                                                    train_idx])

        keras_class_weighting = None
        if self.balanced:
            keras_class_weighting = class_weight.compute_class_weight('balanced',
                                                                      np.unique(action_training.argmax(1)),
                                                                      action_training.argmax(1))

        if self.pretrain:
            history = self.gail_model.policy_model.model.fit(
                [state_t_training, state_t_future_training],
                action_training,
                validation_data=([state_t_testing, state_t_future_testing], action_testing),
                epochs=self.pretrain_max_epochs, verbose=0,
                callbacks=self.early_stopping, class_weight=keras_class_weighting).history
            self.pretrain_history_last = history.copy()
            self.pretrain_history = self.keep_last_entry(history)

        for cloning_iteration in tqdm(range(self.cloning_epochs), desc='Cloning Epochs'):
            # --------------------------------------------------------------------------------------------------
            # Train Discriminator
            behavioural_cloning_training_evaluation, behavioural_cloning_training_trajectory = behavioural_cloning_trace_generator_training.create_trajectories(
                random_action_probability=0)

            behavioural_cloning_training_trajectory.convert_list()
            training_trajectory_state_t = behavioural_cloning_training_trajectory.trajectory_state_t_arr
            training_trajectory_state_t_future = behavioural_cloning_training_trajectory.trajectory_state_t_future
            behavioural_action = behavioural_cloning_training_trajectory.trajectory_action_t_arr
            behavioural_action_likelihood = behavioural_cloning_training_trajectory.trajectory_likelihood

            train_idx_clone, test_idx_clone = train_test_split(np.arange(len(training_trajectory_state_t)),
                                                               test_size=self.validation_split)

            behavioral_action = to_categorical(behavioural_action, num_classes=self.n_actions)

            state_t_train = np.vstack([training_trajectory_state_t[train_idx_clone], state_t_training])
            state_t_future_train = np.vstack(
                [training_trajectory_state_t_future[train_idx_clone], state_t_future_training])
            action_train = np.vstack([behavioral_action[train_idx_clone], action_training])
            target_label_train = to_categorical(np.vstack([0] * len(train_idx_clone) + [1] * len(action_training)),
                                                num_classes=2)

            state_t_validation = np.vstack([training_trajectory_state_t[test_idx_clone], state_t_testing])
            state_t_future_validation = np.vstack(
                [training_trajectory_state_t_future[test_idx_clone], state_t_future_testing])
            action_validation = np.vstack([behavioral_action[test_idx_clone], action_testing])
            target_label_validation = to_categorical(np.vstack([0] * len(test_idx_clone) + [1] * len(action_testing)),
                                                     num_classes=2)

            validation_data_discriminator = (
                [state_t_validation, state_t_future_validation, action_validation], target_label_validation)

            data_train = [state_t_train, state_t_future_train, action_train]

            history = self.discriminator.model.fit(data_train, target_label_train,
                                                   validation_data=validation_data_discriminator,
                                                   epochs=self.adverserial_max_epochs,
                                                   verbose=0).history  # Repeated early stopping callback introduce errors
            self.discriminator_history_last = history.copy()
            history = self.keep_last_entry(history)
            if self.discriminator_history is None:
                self.discriminator_history = history
            else:
                for k, v in history.items():
                    self.discriminator_history[k] += history[k]

            data_predict_discriminator = [training_trajectory_state_t,
                                          training_trajectory_state_t_future,
                                          behavioral_action]

            discriminator_prediction = self.discriminator.model.predict(data_predict_discriminator)[:, 1]

            reward = np.log(discriminator_prediction)  # Scales to 1.0 as recommended
            # Train the value net
            future_reward_obtained = []
            i_start = 0
            i_end = 0
            for evaluation_dataframe in behavioural_cloning_training_evaluation:
                i_end += len(evaluation_dataframe.streaming_session_evaluation)
                reward_transform = list(reward[i_start:i_end])
                # We ignore the last reward obtained as we don't have a corresponding state
                for i in range(1, len(reward_transform))[::-1]:
                    exponent = (len(reward_transform) - i)
                    reward_transform[i - 1] += reward_transform[i] * self.future_reward_discount ** exponent
                future_reward_obtained += reward_transform
                i_start = i_end
            future_reward_obtained = np.array(future_reward_obtained).reshape((-1, 1))
            future_reward_predicted = self.value_model.model.predict(
                [training_trajectory_state_t, training_trajectory_state_t_future])
            history = self.value_model.model.fit([training_trajectory_state_t, training_trajectory_state_t_future],
                                                 future_reward_obtained,
                                                 validation_split=0.2, epochs=self.adverserial_max_epochs,
                                                 verbose=0).history
            self.value_history_last = history.copy()
            history = self.keep_last_entry(history)

            if self.value_history is None:
                self.value_history = history
            else:
                for k, v in history.items():
                    self.value_history[k] += history[k]

            estimated_advantage = future_reward_obtained - future_reward_predicted
            estimated_advantage = estimated_advantage
            # --------------------------------------------------------------------------------------------------------
            # Fit with the PPO loss
            # print(np.mean(self.gail_model.policy_model.concatenate_informations.get_weights()))
            # print('---------' * 10)
            # print('---------' * 10)

            history = self.gail_model.gail_training_model.fit(
                [training_trajectory_state_t, training_trajectory_state_t_future,
                 estimated_advantage, behavioural_action_likelihood],
                behavioral_action,
                validation_split=self.validation_split, epochs=self.adverserial_max_epochs,
                verbose=0, shuffle=True).history
            # print(np.mean(self.gail_model.policy_model.concatenate_informations.get_weights()))
            # print('=========' * 10)
            # print('=========' * 10)
            self.policy_history_last = history.copy()
            history = self.keep_last_entry(history)

            if self.policy_history is None:
                self.policy_history = history
            else:
                for k, v in history.items():
                    self.policy_history[k] += history[k]
            scoring_history, behavioural_cloning_evaluation = self.score(expert_evaluation[validation_idx],
                                                                         expert_trajectory_validation,
                                                                         streaming_enviroment,
                                                                         trace_list[validation_idx],
                                                                         video_csv_list[validation_idx])
            if log_steps:
                logging_folder = 'logging_%s' % self.abr_name
                if not os.path.exists(logging_folder):
                    os.makedirs(logging_folder)
                with open(os.path.join(logging_folder, 'logging_iteration_%d' % cloning_iteration),
                          'wb') as output_file:
                    dill.dump(behavioural_cloning_evaluation, output_file)

            for k, v in scoring_history.items():
                if k in self.policy_history:
                    self.policy_history[k] += scoring_history[k]
                else:
                    self.policy_history[k] = scoring_history[k]
            weight_filepath = self.rnd_id + '_policy_network_iteration_%d.h5' % cloning_iteration
            self.gail_model.policy_model.model.save_weights(filepath=weight_filepath)
            weight_filepaths.append(weight_filepath)
        best_iteration = self.opt_policy_opt_operator(self.policy_history[self.opt_policy_value_name])
        self.gail_model.policy_model.model.load_weights(weight_filepaths[best_iteration])
        logger.info('Restoring best iteration %d' % best_iteration)
        for path in weight_filepaths:
            os.remove(path)
Esempio n. 4
0
    def clone_from_trajectory(self, expert_evaluation, expert_trajectory: Trajectory, streaming_enviroment, trace_list,
                              video_csv_list, log_steps=False):
        """
        Main function which will try to imitate the expert actions. Simply imitate the actions of an expert in a given situation
        :param expert_evaluation:
        :param expert_trajectory:
        :param streaming_enviroment:
        :param trace_list:
        :param video_csv_list:
        :param log_steps:
        :return:
        """
        logging_iteration = 0
        # Select the training/validation traces
        self.policy_history = None
        trace_list = np.array(trace_list)
        video_csv_list = np.array(video_csv_list)
        expert_evaluation = np.array(expert_evaluation)
        train_idx, test_idx = train_test_split(np.arange(len(expert_evaluation)),
                                               test_size=self.validation_split, random_state=RANDOM_SEED)
        trace_video_pair_list = [f.name for f in expert_evaluation[train_idx]]
        expert_trajectory_train = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_train.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[test_idx]]
        self.fit_clustering_scorer(expert_trajectory)
        ###########
        if self.weight_samples:
            self.fit_value_function(to_imitate_evaluation=expert_evaluation[train_idx],
                                    to_imitate_trajectory=expert_trajectory_train)
            advantage = []
            ## Add advante to the training data
            for index in train_idx:
                advantage += list(self.estimate_advantage_frame(expert_evaluation[index], trace_list[index],
                                                                video_csv_list[index], streaming_enviroment))
            advantage = np.array(advantage).flatten()
            advantage = advantage + np.min(
                advantage)  # We smooth the estimate so that the low advantages are a bit bolstered
            ## NO NEGATIV WEIGHTS !
            assert (advantage < 0).sum() == 0, 'advantage should be non negative everywhere'
        #### estimate advantage on the training samples

        expert_trajectory_test = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)

        state_t = np.array([self.classifier.extract_features_observation(state_t) for state_t, _, _ in
                            tqdm(expert_trajectory_train.trajectory_list, desc='transforming')])
        state_t = pd.DataFrame(state_t, columns=self.classifier.extract_features_names())
        self.impute_NaN_inplace(state_t)
        expert_action = expert_trajectory_train.trajectory_action_t_arr
        if self.weight_samples:
            self.classifier.fit(state_t, expert_action.ravel(), sample_weight=advantage)
            if log_steps:
                logging_folder = 'logging_%s' % self.abr_name
                if not os.path.exists(logging_folder):
                    os.makedirs(logging_folder)
                    with open(os.path.join(logging_folder, 'advantage_distribution'),
                              'wb') as output_file:
                        dill.dump(advantage, output_file)
        else:
            self.classifier.fit(state_t, expert_action.ravel())

        if self.policy_history is None:
            self.policy_history, behavioural_cloning_evaluation = self.score(expert_evaluation[test_idx],
                                                                             expert_trajectory_test,
                                                                             streaming_enviroment,
                                                                             trace_list[test_idx],
                                                                             video_csv_list[test_idx], add_data=False)
            if log_steps:
                with open(os.path.join(logging_folder, 'logging_iteration_%d' % logging_iteration),
                          'wb') as output_file:
                    dill.dump(behavioural_cloning_evaluation, output_file)
    def clone_from_trajectory(self, expert_evaluation, expert_trajectory: Trajectory, streaming_enviroment, trace_list,
                              video_csv_list, log_steps=False):
        self.reset_learning()
        self.fit_clustering_scorer(expert_trajectory)

        trace_list = np.array(trace_list)
        video_csv_list = np.array(video_csv_list)
        expert_evaluation = np.array(expert_evaluation)
        train_idx, test_idx = train_test_split(np.arange(len(expert_evaluation)),
                                               test_size=self.validation_split * 2.)
        test_idx, validation_idx = train_test_split(test_idx,
                                                    test_size=0.5)
        trace_video_pair_list = [f.name for f in expert_evaluation[train_idx]]
        expert_trajectory_train = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_train.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[test_idx]]
        expert_trajectory_test = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_test.convert_list()
        trace_video_pair_list = [f.name for f in expert_evaluation[validation_idx]]
        expert_trajectory_validation = expert_trajectory.extract_trajectory(trace_video_pair_list=trace_video_pair_list)
        expert_trajectory_validation.convert_list()

        state_t_training = expert_trajectory_train.trajectory_state_t_arr
        state_t_future_training = expert_trajectory_train.trajectory_state_t_future
        action_training = to_categorical(expert_trajectory_train.trajectory_action_t_arr, self.n_actions)

        state_t_testing = expert_trajectory_test.trajectory_state_t_arr
        state_t_future_testing = expert_trajectory_test.trajectory_state_t_future
        action_testing = to_categorical(expert_trajectory_test.trajectory_action_t_arr, self.n_actions)
        ###############################################################################################################
        #### Fit first network
        random_prediction_training = self.rnd_cloning_network.model.predict([state_t_training, state_t_future_training])
        random_prediction_testing = self.rnd_cloning_network.model.predict([state_t_testing, state_t_future_testing])

        testing_data = ([state_t_testing, state_t_future_testing], random_prediction_testing)
        self.pretrain_distill_history = self.bc_cloning_network.model.fit(
            [state_t_training, state_t_future_training],
            random_prediction_training,
            validation_data=testing_data,
            epochs=self.rde_distill_epochs, verbose=0, shuffle=True,
            callbacks=self.early_stopping).history
        trained_prediction_training = self.bc_cloning_network.model.predict([state_t_training, state_t_future_training])

        scaling_factor = np.random.random(size=100) * 100  # Pick the hyperparameter randomly
        rewards = [np.exp(-fact * (np.square(trained_prediction_training - random_prediction_training)).mean(
            axis=-1)).flatten().mean() for fact in scaling_factor]
        self.scaling_factor_sigma = scaling_factor[np.argmin(np.abs(np.array(rewards) - 1.0))]
        print('Choosen Scaling factor %.2f' % self.scaling_factor_sigma)

        red_trajectory_generator_training = TrajectoryVideoStreaming(self, streaming_enviroment,
                                                                     trace_list=trace_list[train_idx],
                                                                     video_csv_list=video_csv_list[train_idx])
        keras_class_weighting = None
        if self.balanced:
            keras_class_weighting = class_weight.compute_class_weight('balanced',
                                                                      np.unique(action_training.argmax(1)),
                                                                      action_training.argmax(1))

        weight_filepaths = []
        if self.pretrain:
            self.pretrain_bc_history = self.policy_network.policy_model.model.fit(
                [state_t_training, state_t_future_training],
                action_training,
                validation_data=([state_t_testing, state_t_future_testing], action_testing),
                epochs=self.rde_distill_epochs, verbose=0,
                callbacks=self.early_stopping, class_weight=keras_class_weighting).history

        for cloning_iteration in tqdm(range(self.cloning_epochs), desc='Cloning Epochs'):
            """
            Iterations of the RED algorithm
            """
            training_evaluation, training_trajectories = red_trajectory_generator_training.create_trajectories(
                random_action_probability=0)
            training_trajectories.convert_list()
            state_t_training_sampled = training_trajectories.trajectory_state_t_arr
            state_t_future_training_sampled = training_trajectories.trajectory_state_t_future
            action_sampled = to_categorical(training_trajectories.trajectory_action_t_arr, num_classes=self.n_actions)
            action_likelihood_sampled = training_trajectories.trajectory_likelihood

            bc_clone_prediction = self.bc_cloning_network.model.predict([state_t_training_sampled,
                                                                         state_t_future_training_sampled])
            random_prediction = self.rnd_cloning_network.model.predict([state_t_training_sampled,
                                                                        state_t_future_training_sampled])
            # report_var(·) = exp(−σ1‖fˆθ(·)−fθ(·)‖22)
            reward = np.exp(-self.scaling_factor_sigma * (np.square(bc_clone_prediction - random_prediction)).mean(
                axis=-1)).flatten()  # Scales to 1.0 as recommended
            # Train the value net
            future_reward_obtained = []
            i_start = 0
            i_end = 0
            for evaluation_dataframe in training_evaluation:
                i_end += len(evaluation_dataframe.streaming_session_evaluation)
                reward_transform = list(reward[i_start:i_end])
                # We ignore the last reward obtained as we don't have a corresponding state
                for i in range(1, len(reward_transform))[::-1]:
                    exponent = (len(reward_transform) - i)
                    reward_transform[i - 1] += reward_transform[i] * self.future_reward_discount ** exponent
                future_reward_obtained += reward_transform
                i_start = i_end
            future_reward_obtained = np.array(future_reward_obtained).reshape((-1, 1))
            future_reward_predicted = self.value_model.model.predict(
                [state_t_training_sampled, state_t_future_training_sampled])
            history = self.value_model.model.fit([state_t_training_sampled, state_t_future_training_sampled],
                                                 future_reward_obtained,
                                                 validation_split=0.2, epochs=self.model_iterations,
                                                 verbose=0,
                                                 shuffle=True).history  # Repeated early stopping callback introduce errors
            self.value_history_last = history.copy()
            history = self.keep_last_entry(history)

            if self.value_history is None:
                self.value_history = history
            else:
                for k, v in history.items():
                    self.value_history[k] += history[k]

            estimated_advantage = future_reward_obtained - future_reward_predicted
            estimated_advantage = estimated_advantage

            history = self.policy_network.gail_training_model.fit(
                [state_t_training_sampled, state_t_future_training_sampled,
                 estimated_advantage, action_likelihood_sampled],
                action_sampled,
                validation_split=self.validation_split, epochs=self.model_iterations,
                verbose=0, shuffle=True).history
            self.policy_history_last = history.copy()
            history = self.keep_last_entry(history)

            if self.policy_history is None:
                self.policy_history = history
            else:
                for k, v in history.items():
                    self.policy_history[k] += history[k]
            scoring_history, behavioural_cloning_evaluation = self.score(expert_evaluation[validation_idx],
                                                                         expert_trajectory_validation,
                                                                         streaming_enviroment,
                                                                         trace_list[validation_idx],
                                                                         video_csv_list[validation_idx])
            if log_steps:
                logging_folder = 'logging_%s' % self.abr_name
                if not os.path.exists(logging_folder):
                    os.makedirs(logging_folder)
                with open(os.path.join(logging_folder, 'logging_iteration_%d' % cloning_iteration),
                          'wb') as output_file:
                    dill.dump(behavioural_cloning_evaluation, output_file)
            for k, v in scoring_history.items():
                if k in self.policy_history:
                    self.policy_history[k] += scoring_history[k]
                else:
                    self.policy_history[k] = scoring_history[k]
            weight_filepath = self.rnd_id + '_policy_network_iteration_%d.h5' % cloning_iteration
            self.policy_network.policy_model.model.save_weights(filepath=weight_filepath)
            weight_filepaths.append(weight_filepath)

        best_iteration = self.opt_policy_opt_operator(self.policy_history[self.opt_policy_value_name])
        self.policy_network.policy_model.model.load_weights(weight_filepaths[best_iteration])
        for path in weight_filepaths:
            os.remove(path)