Esempio n. 1
0
def _product_deriv(terms, wrt):
    """
    Return an AST expressing the derivative of the product of all the terms.
    """
    if len(terms) == 1:
        return _diff_ast(terms[0], wrt)
    deriv_terms = []
    for ii, term in enumerate(terms):
        term_d = _diff_ast(term, wrt)
        other_terms = terms[:ii] + terms[ii + 1:]
        deriv_terms.append(AST._make_product(other_terms + [term_d]))
    sum = deriv_terms[0]
    for term in deriv_terms[1:]:
        sum = BinOp(left=term, op=Add(), right=sum)
    return sum
Esempio n. 2
0
def _diff_ast(ast, wrt):
    """
    Return an AST that is the derivative of ast with respect the variable with
    name 'wrt'.
    """

    # For now, the strategy is to return the most general forms, and let
    #  the simplifier take care of the special cases.
    if isinstance(ast, Name):
        if ast.id == wrt:
            return _ONE
        else:
            return _ZERO
    elif isinstance(ast, Constant):
        return _ZERO
    elif isinstance(ast, BinOp) and (isinstance(ast.op, Add)
                                     or isinstance(ast.op, Sub)):
        # Just take the derivative of the arguments. The call to ast.__class__
        #  lets us use the same code from Add and Sub.
        return (BinOp(left=_diff_ast(ast.left, wrt),
                      op=ast.op,
                      right=_diff_ast(ast.right, wrt)))
    elif isinstance(ast, BinOp) and (isinstance(ast.op, Mult)
                                     or isinstance(ast.op, Div)):
        # Collect all the numerators and denominators together
        nums, denoms = [], []
        AST._collect_num_denom(ast, nums, denoms)

        # Collect the numerator terms into a single AST
        num = AST._make_product(nums)
        # Take the derivative of the numerator terms as a product
        num_d = _product_deriv(nums, wrt)
        if not denoms:
            # If there is no denominator
            return num_d

        denom = AST._make_product(denoms)
        denom_d = _product_deriv(denoms, wrt)

        # Derivative of x/y is x'/y + -x*y'/y**2
        term1 = BinOp(left=num_d, op=Div(), right=denom)
        term2 = BinOp(left=BinOp(left=UnaryOp(op=USub(), operand=num),
                                 op=Mult(),
                                 right=denom_d),
                      op=Div(),
                      right=BinOp(left=denom,
                                  op=Pow(),
                                  right=Constant(value=2)))
        return BinOp(left=term1, op=Add(), right=term2)

    elif isinstance(ast, BinOp) and isinstance(ast.op, Pow):
        # Use the derivative of the 'pow' function
        ast = Call(func=Name(id='pow', ctx=Load()), args=[ast.left, ast.right])
        return _diff_ast(ast, wrt)

    elif isinstance(ast, Call):
        func_name = AST.ast2str(ast.func)
        args = ast.args
        args_d = [_diff_ast(arg, wrt) for arg in args]

        if (func_name, len(args)) in _KNOWN_FUNCS:
            form = copy.deepcopy(_KNOWN_FUNCS[(func_name, len(args))])
        else:
            # If this isn't a known function, our form is
            #  (f_0(args), f_1(args), ...)
            args_expr = [
                Name(id='arg%i' % ii, ctx=Load()) for ii in range(len(args))
            ]
            form = [
                Call(func=Name(id='%s_%i' % (func_name, ii), ctx=Load()),
                     args=args_expr,
                     keywords=[]) for ii in range(len(args))
            ]

        # We build up the terms in our derivative
        #  f_0(x,y)*x' + f_1(x,y)*y', etc.
        outs = []
        for arg_d, arg_form_d in zip(args_d, form):
            # We skip arguments with 0 derivative
            if arg_d == _ZERO:
                continue
            for ii, arg in enumerate(args):
                Substitution._sub_subtrees_for_vars(arg_form_d,
                                                    {'arg%i' % ii: arg})
            outs.append(BinOp(left=arg_form_d, op=Mult(), right=arg_d))
        # If all arguments had zero deriviative
        if not outs:
            return _ZERO
        else:
            # We add up all our terms
            ret = outs[0]
            for term in outs[1:]:
                ret = BinOp(left=ret, op=Add(), right=term)
            return ret

    elif isinstance(ast, UnaryOp) and isinstance(ast.op, USub):
        return UnaryOp(op=USub(), operand=_diff_ast(ast.operand, wrt))

    elif isinstance(ast, UnaryOp) and isinstance(ast.op, UAdd):
        return UnaryOp(op=UAdd(), operand=_diff_ast(ast.operand, wrt))
Esempio n. 3
0
def _simplify_ast(ast):
    """
    Return a simplified ast.

    Current simplifications:
        Special cases for zeros and ones, and combining of constants, in 
            addition, subtraction, multiplication, division.
        Note that at present we only handle constants applied left to right.
          1+1+x -> 2+x, but x+1+1 -> x+1+1.
        x - x = 0
        --x = x
    """
    if isinstance(ast, Name) or isinstance(ast, Constant):
        return ast
    elif isinstance(ast, BinOp) and (isinstance(ast.op, Add)
                                     or isinstance(ast.op, Sub)):

        # We collect positive and negative terms and simplify each of them
        pos, neg = [], []
        AST._collect_pos_neg(ast, pos, neg)

        pos = [_simplify_ast(term) for term in pos]
        neg = [_simplify_ast(term) for term in neg]
        # We collect and sum the constant values
        values = [term.value for term in pos if isinstance(term, Constant)] +\
                [-term.value for term in neg if isinstance(term, Constant)]
        value = sum(values)
        # Remove the constants from our pos and neg lists
        pos = [term for term in pos if not isinstance(term, Constant)]
        neg = [term for term in neg if not isinstance(term, Constant)]
        new_pos, new_neg = [], []
        for term in pos:
            if isinstance(term, UnaryOp):
                if isinstance(term.op, USub):
                    new_neg.append(term.operand)
            else:
                new_pos.append(term)
        for term in neg:
            if isinstance(term, UnaryOp):
                if isinstance(term.op, USub):
                    new_pos.append(term.operand)
            else:
                new_neg.append(term)
        pos, neg = new_pos, new_neg
        # Append the constant value sum to pos or neg
        if value > 0:
            pos.append(Constant(value=value))
        elif value < 0:
            neg.append(Constant(value=abs(value)))
        # Count the number of occurances of each term.
        term_counts = [
            (term,
             get_count_from_ast(pos, term) - get_count_from_ast(neg, term))
            for term in pos + neg
        ]
        # Tricky: We use the str(term) as the key for the dictionary to ensure
        #         that each entry represents a unique term. We also drop terms
        #         that have a total count of 0.
        term_counts = dict([(AST.ast2str(term), (term, count))
                            for term, count in term_counts])
        # We find the first term with non-zero count.
        ii = 0
        for ii, term in enumerate(pos + neg):
            ast_out, count = term_counts[AST.ast2str(term)]
            if count != 0:
                break
        else:
            # We get here if we don't break out of the loop, implying that
            #  all our terms had count of 0
            return _ZERO
        term_counts[AST.ast2str(term)] = (ast_out, 0)
        if abs(count) != 1:
            ast_out = BinOp(left=Constant(value=abs(count)),
                            op=Mult(),
                            right=ast_out)
        if count < 0:
            ast_out = UnaryOp(op=USub(), operand=ast_out)

        # And add in all the rest
        for term in (pos + neg)[ii:]:
            term, count = term_counts[AST.ast2str(term)]
            term_counts[AST.ast2str(term)] = (term, 0)
            if abs(count) != 1:
                term = BinOp(left=Constant(value=abs(count)),
                             op=Mult(),
                             right=term)
            if count > 0:
                ast_out = BinOp(left=ast_out, op=Add(), right=term)
            elif count < 0:
                ast_out = BinOp(left=ast_out, op=Sub(), right=term)
        return ast_out

    elif isinstance(ast, BinOp) and (isinstance(ast.op, Mult)
                                     or isinstance(ast.op, Div)):
        # We collect numerator and denominator terms and simplify each of them
        num, denom = [], []
        AST._collect_num_denom(ast, num, denom)
        num = [_simplify_ast(term) for term in num]
        denom = [_simplify_ast(term) for term in denom]
        # We collect and sum the constant values
        values = [term.value for term in num if isinstance(term, Constant)] +\
                [1./term.value for term in denom if isinstance(term, Constant)]
        # This takes the product of all our values
        value = functools.reduce(operator.mul, values + [1])
        # If our value is 0, the expression is 0
        if not value:
            return _ZERO
        # Remove the constants from our pos and neg lists
        num = [term for term in num if not isinstance(term, Constant)]
        denom = [term for term in denom if not isinstance(term, Constant)]
        # Here we count all the negative (UnarySub) elements of our expression.
        # We also remove the UnarySubs from their arguments. We'll correct
        #  for it at the end.
        num_neg = 0
        for list_of_terms in [num, denom]:
            for ii, term in enumerate(list_of_terms):
                if isinstance(term, UnaryOp) and isinstance(term.op, USub):
                    list_of_terms[ii] = term.operand
                    num_neg += 1

        # Append the constant value sum to pos or neg
        if abs(value) != 1:
            num.append(Constant(value=abs(value)))
        if value < 0:
            num_neg += 1

        make_neg = num_neg % 2
        # Count the number of occurances of each term.
        term_counts = [
            (term,
             get_count_from_ast(num, term) - get_count_from_ast(denom, term))
            for term in num + denom
        ]
        # Tricky: We use the str(term) as the key for the dictionary to ensure
        #         that each entry represents a unique term. We also drop terms
        #         that have a total count of 0.
        term_counts = dict([(AST.ast2str(term), (term, count))
                            for term, count in term_counts])

        nums, denoms = [], []
        # We walk through terms in num+denom in order, so we rearrange a little
        #  as possible.
        for term in num + denom:
            term, count = term_counts[AST.ast2str(term)]
            # Once a term has been done, we set its term_counts to 0, so it
            #  doesn't get done again.
            term_counts[AST.ast2str(term)] = (term, 0)
            if abs(count) > 1:
                term = BinOp(left=term,
                             op=Pow(),
                             right=Constant(value=abs(count)))
            if count > 0:
                nums.append(term)
            elif count < 0:
                denoms.append(term)

        # We return the product of the numerator terms over the product of the
        #  denominator terms
        out = AST._make_product(nums)
        if denoms:
            denom = AST._make_product(denoms)
            out = BinOp(left=out, op=Div(), right=denom)

        if make_neg:
            out = UnaryOp(op=USub(), operand=out)
        return out
    elif isinstance(ast, BinOp) and isinstance(ast.op, Pow):
        # These cases all have a left and a right, so we group them just to
        #  avoid some code duplication.
        power = _simplify_ast(ast.right)
        base = _simplify_ast(ast.left)

        if power == _ZERO:
            # Anything, including 0, to the 0th power is 1, so this
            #  test should come first
            return _ONE
        if base == _ZERO or base == _ONE or power == _ONE:
            return base
        elif isinstance(base, Constant) and\
                isinstance(power, Constant):
            return Constant(value=base.value**power.value)
        # Getting here implies that no simplifications are possible, so just
        #  return with simplified arguments
        return BinOp(left=base, op=Pow(), right=power)

    elif isinstance(ast, UnaryOp) and isinstance(ast.op, USub):
        simple_expr = _simplify_ast(ast.operand)
        if isinstance(simple_expr, UnaryOp) and isinstance(
                simple_expr.op, USub):
            # Case --x
            return _simplify_ast(simple_expr.operand)
        elif isinstance(simple_expr, Constant):
            if simple_expr.value == 0:
                return Constant(value=0)
            else:
                return Constant(value=-simple_expr.value)
        else:
            return UnaryOp(op=USub(), operand=simple_expr)
    elif isinstance(ast, UnaryOp) and isinstance(ast.op, UAdd):
        simple_expr = _simplify_ast(ast.operand)
        return simple_expr
    elif isinstance(ast, list):
        simple_list = [_simplify_ast(elem) for elem in ast]
        return simple_list
    elif isinstance(ast, tuple):
        return tuple(_simplify_ast(list(ast)))
    elif ast.__class__ in AST._node_attrs:
        # Handle node types with no special cases.
        for attr_name in AST._node_attrs[ast.__class__]:
            attr = getattr(ast, attr_name)
            if isinstance(attr, list):
                for ii, elem in enumerate(attr):
                    attr[ii] = _simplify_ast(elem)
            else:
                setattr(ast, attr_name, _simplify_ast(attr))
        return ast
    else:
        return ast