"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ceil, log10, abs as np_abs from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.arrhenius(T + normal(size=len(T), scale=3.0, loc=0.0), 1e6, 0.5) E = 10 ** ceil(log10(np_abs(R - SF.arrhenius(T, 1e6, 0.5)))) d = Data(T, R, E, setas="xye", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.arrhenius, p0=(1e6, 0.5), result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.arrhenius, x=0.5, y=0.5, mode="eng", fontdict={"size": "x-small", "color": "blue"}, ) # lmfit using lmfit guesses fit = SF.Arrhenius() d.setas = "xye" d.lmfit(fit, result=True, header="lmfit") d.setas = "x...y" d.plot(fmt="g-") d.annotate_fit(
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace from numpy.random import normal #Make some data T=linspace(200,350,101) R=SF.arrhenius(T+normal(size=len(T),scale=1.0,loc=1.0),1E6,0.5) d=Data(T,R,setas="xy",column_headers=["T","Rate"]) #Curve_fit on its own d.curve_fit(SF.arrhenius,p0=[1E6,0.5],result=True,header="curve_fit") d.setas="xyy" d.plot() d.annotate_fit(SF.arrhenius,x=200,y=0.04) # lmfit using lmfit guesses fit=SF.Arrhenius() p0=fit.guess(R,x=T) d.lmfit(fit,p0=p0,result=True,header="lmfit") d.setas="x..y" d.plot() d.annotate_fit(SF.Arrhenius,x=200,y=0.02,prefix="Arrhenius") d.title="Arrhenius Test Fit" d.ylabel="Rate" d.xlabel="Temperature (K)"
"""Example of Arrhenius Fit.""" from Stoner import Data import Stoner.Fit as SF from numpy import linspace, ceil, log10, abs from numpy.random import normal # Make some data T = linspace(200, 350, 101) R = SF.arrhenius(T + normal(size=len(T), scale=3.0, loc=0.0), 1e6, 0.5) E = 10 ** ceil(log10(abs(R - SF.arrhenius(T, 1e6, 0.5)))) d = Data(T, R, E, setas="xye", column_headers=["T", "Rate"]) # Curve_fit on its own d.curve_fit(SF.arrhenius, p0=(1e6, 0.5), result=True, header="curve_fit") d.setas = "xyey" d.plot(fmt=["r.", "b-"]) d.annotate_fit( SF.arrhenius, x=0.5, y=0.5, mode="eng", fontdict={"size": "x-small", "color": "blue"}, ) # lmfit using lmfit guesses fit = SF.Arrhenius() d.setas = "xye" d.lmfit(fit, result=True, header="lmfit") d.setas = "x...y" d.plot(fmt="g-") d.annotate_fit(