Esempio n. 1
0
def cropGVE(grainfile, oldgvefile, newgvefile, verbose):

	grains = multigrainOutputParser.parse_GrainSpotter_log(grainfile)
	print "Parsed grains from %s" % grainfile
	print "Number of grains: %d" % len(grains)
	
	[peaksgve,idlist,header] = multigrainOutputParser.parseGVE(oldgvefile)

	print "Removing peaks which have been assigned to grains in %s" % grainfile

	for grain in grains:
		if (verbose):
			print "Looking at grain %s" % grain.getName()
		peaks = grain.getPeaks()
		# Sometimes, GrainSpotter indexes the same peak twice. We need to remove those double indexings
		peakid = []
		for peak in peaks:
			peakid.append(peak.getPeakID())
		peakid = list(set(peakid)) # remove duplicates, may loose the ordering but we do not care
		# Removing assign peaks from the list of g-vectors
		for thisid in peakid:
			try:
				index = idlist.index(thisid)
			except:
				print "Failed removing g-vector ID %d which was found in grain %s" % (thisid, grain.getName())
				return
			if (verbose):
				print "Trying to remove peak %d from the list of g-vectors" % thisid
			del idlist[index]
			del peaksgve[index]

	multigrainOutputParser.saveGVE(peaksgve, header, newgvefile)
Esempio n. 2
0
 def setGVE(self, gvefile):
     [peaksgve, idlist, header] = multigrainOutputParser.parseGVE(gvefile)
     self.peakList = peaksgve
     self.npeaks = len(peaksgve)
     self.gvefile = gvefile
     self.twotheta = []
     for peak in self.peakList:
         dsPeak = float(peak['ds'])
         self.twotheta.append(
             2. *
             numpy.degrees(numpy.arcsin(dsPeak * self.wavelength / 2.)))
Esempio n. 3
0
def RemoveUsedGVE(logfile, gve_input, gve_output):
    # Upload .log file from GrainSpotter :
    grains = multigrainOutputParser.parse_GrainSpotter_log(logfile)

    # Upload .gve file from ImageD11 :
    [peaksgve, idlist, header] = multigrainOutputParser.parseGVE(gve_input)

    # Display peak information :
    nb_start = len(peaksgve)
    gveToRemove = []
    for grain in grains:
        peaks = grain.peaks
        for indexedPeak in peaks:
            #print 'Peak in grainFile'
            #print indexedPeak.getPeakID()
            #print indexedPeak.getTThetaMeasured()
            #print indexedPeak.getOmegaMeasured()
            #print indexedPeak.getEtaMeasured()
            #print 'Peak in gveFile'
            ID_grains = indexedPeak.getPeakID()
            ID_idlist = idlist.index(ID_grains)
            ID_gve = peaksgve[ID_idlist]
            #print  ID_gve
            #print ID_gve['eta']
            # Eliminate g-vectors which correspond to already indexed peaks :
            gveToRemove.append(ID_gve)
            #print nb_start
            #print len(peaksgve)
            #print len(gveToRemove)

    # Save the new list of (not indexed) peaks in .gve format :
    newPeakslist = [peaks for peaks in peaksgve if peaks not in gveToRemove]
    OutputPeaks = multigrainOutputParser.saveGVE(newPeakslist, header,
                                                 gve_output)
    print '\n%s g-vectors were removed.' % len(gveToRemove)
    print '\nThe new list contains %s g-vectors.' % len(newPeakslist)
    print '\nSaved'
Esempio n. 4
0
def gs_indexing_statistics(logfile, gve, gsinputfile, wavelength):
    """
	Checks a grainspotter indexing performance
	Send the final GrainSpotter log, the list of g-vectors, the GS input file (with the loosest conditions), and the wavelength
	"""
    nphases = len(logfile)
    grains = []
    ngrains = []
    gsinput = []
    nindexed = []
    totalngrains = 0
    totalindexedpeaks = 0

    i = 0
    # Parsing grain spotter output in input files
    # Extracting grain information
    for thislog in logfile:
        grains.append(multigrainOutputParser.parseGrains(thislog))
        print("Parsed %s, found %d grains" % (thislog, len(grains[i])))
        print("Parsing grain spotter input file %s." % (gsinputfile[i]))
        # Load the grain spotter input file
        gsinput.append(multigrainOutputParser.parseGSInput(gsinputfile[i]))
        print("\nGrainSpotter results for phase %d" % i)
        print("\t%d grains indexed" % (len(grains[i])))
        nindexed.append(0)
        ngrains.append(len(grains[i]))
        totalngrains += len(grains[i])
        for grain in grains[i]:
            nindexed[i] += grain.getNPeaks()
        print("\t%d g-vectors indexed" % (nindexed[i]))
        totalindexedpeaks += nindexed[i]
        tt = 1.0 * nindexed[i] / ngrains[i]
        print("\t%.1f g-vectors per grain in average" % (tt))
        i = i + 1
        print("")

    print("Done parsing grain files.\n")

    # Extract peak list and ds ranges in which to look for peak
    # For each phase, the list of peaks is on top of the gve file
    # Then, need keep a record of the ds tolerance for the peak (which could different for each phase)
    peakssample = []
    peaksgve = [None] * nphases
    idlist = [None] * nphases
    for i in range(0, nphases):
        [peaksgve[i], idlist[i],
         header] = multigrainOutputParser.parseGVE(gve[i])
        print(
            "Parsing header from GVE files %s to extract predicted sample peaks for phase %i"
            % (gve[i], i))
        tttol = gsinput[i]["sigma_tth"] * gsinput[i]["nsigmas"]
        recordpeaks = False
        for line in header.split("\n"):
            if ((line.strip() ==
                 "#  gx  gy  gz  xc  yc  ds  eta  omega  spot3d_id  xl  yl  zl"
                 )):
                recordpeaks = False
                # We reached the end of the header...
            if recordpeaks:
                try:
                    tt = line.split()
                    ds = float(tt[0])
                    h = int(tt[1])
                    k = int(tt[2])
                    l = int(tt[3])
                    tt = 2. * numpy.degrees(numpy.arcsin(wavelength * ds / 2.))
                    dsmin = 2. * numpy.sin(numpy.radians(
                        (tt - tttol) / 2.)) / (wavelength)
                    dsmax = 2. * numpy.sin(numpy.radians(
                        (tt + tttol) / 2.)) / (wavelength)
                except ValueError:
                    print(
                        "Conversion error when reading predicted sample peaks from %s."
                        % (gve[i]))
                    print("Was trying to convert %s to ds, h, k, and l" %
                          (line))
                    sys.exit(1)
                peakssample.append([ds, h, k, l, tt, dsmin, dsmax, tttol])
            if ((line.strip() == "# ds h k l")):
                recordpeaks = True
    print(
        "\nRead theoretical peak positions in 2theta for all phases.\nI have a list of %d potential peaks for all %d phases.\n"
        % (len(peakssample), nphases))

    # Merging peaks from GVE files, removing doubles
    allgves = peaksgve[0]
    allPeakIds = idlist[0]
    for i in range(1, nphases):
        missinggveID = set(idlist[i]).symmetric_difference(set(allPeakIds))
        for peakid in missinggveID:
            ID_idlist = (idlist[i]).index(peakid)
            allPeakIds.append(peakid)
            allgves.append(peaksgve[i][ID_idlist])

    print(
        "Merged unique g-vectors of all %d gve files. I now have %d experimental g-vectors."
        % (nphases, len(allgves)))

    # Loop on all experimental g-vectors
    # Are they in one of the 2 theta, omega, and eta ranges defined in grain spotter?
    # Need to check for all phases

    ds = []
    eta = []
    omega = []
    keepPeak = [False] * len(allgves)

    for i in range(1, nphases):  # Loop on phase
        gsinput[i]["dsranges"] = []
        for tthrange in gsinput[i][
                "tthranges"]:  # Convert 2theta range to ds range for easier comparison
            ds0 = 2. * numpy.sin(numpy.radians(
                tthrange[0] / 2.)) / (wavelength)
            ds1 = 2. * numpy.sin(numpy.radians(
                tthrange[1] / 2.)) / (wavelength)
            (gsinput[i]["dsranges"]).append([ds0, ds1])
        # Loop on peaks. If the peak is within the range, we keep it for later
        for j in range(0, len(allgves)):
            peak = allgves[j]
            thisds = float(peak['ds'])
            thiseta = normalizedAngle360(float(
                peak['eta']))  # In GrainSpotter, eta is in [0;360]
            thisomega = normalizedAngle180(float(
                peak['omega']))  # In GrainSpotter, omega is in [-180;180]
            test1 = 0
            test2 = 0
            test3 = 0
            for dsrange in gsinput[i]["dsranges"]:
                if ((thisds >= dsrange[0]) and (thisds <= dsrange[1])):
                    test1 = 1
            for etarange in gsinput[i]["etaranges"]:
                if ((thiseta >= etarange[0]) and (thiseta <= etarange[1])):
                    test2 = 1
                #else:
                #	print "Not for eta %.1f < %.1f < %.1f" % (etarange[0],thiseta,etarange[1])
            for omegarange in gsinput[i]["omegaranges"]:
                if ((thisomega >= omegarange[0])
                        and (thisomega <= omegarange[1])):
                    test3 = 1
                #else:
                #	print "Not for omega %.1f < %.1f < %.1f" % (omegarange[0],thisomega,omegarange[1])
            if (
                    test1 * test2 * test3 == 1
            ):  # The peak is within the range of ttheta, eta, and omega for phase i. It could have been indexed.
                keepPeak[j] = True

    for j in range(0, len(allgves)):
        if (keepPeak[j]):
            peak = allgves[j]
            ds.append(float(peak['ds']))
            eta.append(float(peak['eta']))
            omega.append(float(peak['omega']))

    print(
        "%d g-vectors within eta, omega, and 2theta ranges and could have been indexed."
        % (len(ds)))

    # Counting peak, within 2 theta range, and that can be assigned to the sample

    nassigned = 0
    for thisds in ds:
        append = 0
        for i in range(0, len(peakssample)):
            if ((thisds <= peakssample[i][6])
                    and (thisds >= peakssample[i][5])):
                append = 1
        nassigned += append
    print(
        "%d g-vectors assigned to one of the sample peaks within these ranges."
        % (nassigned))

    print("\nGlobal indexing performance")
    print(
        "\tOut of %d possible g-vectors, %d have been assigned to %d grains" %
        (nassigned, totalindexedpeaks, totalngrains))
    tt = nassigned - totalindexedpeaks
    print("\t%d remaining g-vectors" % (tt))
    tt = 100. * totalindexedpeaks / nassigned
    print("\t%.1f percents of g-vectors indexed" % (tt))
    print()

    return
Esempio n. 5
0
def test_grains(grainfile,gvefile,wavelength):
	"""
	Check a GrainSpotter log file against a GVE file
	This can be used to make sure that this exact GVE file was actually used to index the grains
	"""
	grains = multigrainOutputParser.parseGrains(grainfile)
	print ("Parsed %s, found %d grains" % (grainfile, len(grains)))
	
	# Load .gve file from ImageD11 :
	[peaksgve,idlist,header] = multigrainOutputParser.parseGVE(gvefile) 
	
	# Try to see if all peaks in the indexed grains are in the gve
	print ("Making sure all indexed peak ID's are in the GVE file...")
	npeakstotal = 0
	npeakserror = 0
	for grain in grains : 
		peaks = grain.peaks
		for indexedPeak in peaks : 
			npeakstotal += 1
			try:
				ID_grains = indexedPeak.getPeakID()
				ID_idlist = idlist.index(ID_grains)
				ID_gve = peaksgve[ID_idlist]
			except ValueError:
				print ("Peak %d of grain %s not found" % (ID_grains, grain.getName() ))
				npeakserror += 1
				if (npeakserror > 10):
					print ("Too many errors, I stop here")
					return
	
	print ("I was looking for %d peaks from %d grains and got %d errors" % (npeakstotal, len(grains), npeakserror))
	if (npeakserror > 0):
		print ("%s and %s do not seem to match" % (grainfile, gvefile))
		return
	
	print ("All peaks in the grain file are in the GVE file. Now, looking for 2theta, eta, omega to see if they match...")
	for grain in grains : 
		peaks = grain.peaks
		for indexedPeak in peaks : 
			npeakstotal += 1
			ID_grains = indexedPeak.getPeakID()
			omegaG = normalizedAngle(indexedPeak.getOmegaMeasured())
			etaG = normalizedAngle(indexedPeak.getEtaMeasured())
			tthetaG = indexedPeak.getTThetaMeasured()
			dsG = 2.*numpy.sin(numpy.radians(tthetaG/2.))/(wavelength)
			
			ID_idlist = idlist.index(ID_grains)
			#print peaksgve[ID_idlist]
			#return
			dsPeak = float(peaksgve[ID_idlist]['ds'])
			etaPeak = normalizedAngle(float(peaksgve[ID_idlist]['eta']))
			omegaPeak = normalizedAngle(float(peaksgve[ID_idlist]['omega']))
			if ((abs(etaG-etaPeak) > 0.01) or (abs(omegaPeak-omegaG) > 0.01) or (abs(dsG-dsPeak) > 0.001)):
				print ("Problem with peak %d of grain %s not found" % (ID_grains, grain.getName() ))
				print ("Expected: eta = %.2f , omega = %.2f, ds = %.4f" % (etaG, omegaG, dsG))
				print ("Found: eta = %.2f , omega = %.2f, ds = %.4f" % (etaPeak, omegaPeak, dsPeak))
				print ("Differences: eta = %.4f , omega = %.4f, ds = %.6f" % (abs(etaPeak-etaG), abs(omegaPeak-omegaG), abs(dsG-dsPeak)))
				npeakserror += 1
				if (npeakserror > 10):
					print ("Too many errors, I stop here")
					return

	if (npeakserror > 0):
		print ("%s and %s do not seem to match" % (grainfile, gvefile))
		return
	
	print ("All peaks in the grain file are in the GVE file and angles fully match.")
	
	return
def gs_indexing_statistics(logfile, gve, gsinput, wavelength):
	"""
	Checks a grainspotter indexing performance
	Send the final GrainSpotter log, the list of g-vectors, the GS input file (with the loosest conditions), and the wavelength
	"""
	grains = multigrainOutputParser.parseGrains(logfile)
	print "Parsed %s, found %d grains" % (logfile, len(grains))
	
	# Load .gve file from ImageD11 :
	[peaksgve,idlist,header] = multigrainOutputParser.parseGVE(gve) 
	# Extracting list of g-vectors from the header
	peakssample = []
	recordpeaks = False
	#print header
	for line in header.split("\n"):
		if ((line.strip() == "#  gx  gy  gz  xc  yc  ds  eta  omega  spot3d_id  xl  yl  zl")):
			recordpeaks = False
		if recordpeaks:
			tt = line.split()
			ds = float(tt[0])
			h = int(tt[1])
			k = int(tt[2])
			l = int(tt[3])
			peakssample.append([ds,h,k,l])
			#print h, k, l
		if ((line.strip() == "# ds h k l")):
			recordpeaks = True
		
	
	# Load the grain spotter input file
	gsinput =  multigrainOutputParser.parseGSInput(gsinput) 
	
	# Try to see if all g-vectors in the indexed grains are in the gve
	nindexed = 0
	ngrains = len(grains)
	for grain in grains : 
		nindexed += grain.getNPeaks()
	
	print "\nGrainSpotter results"
	print "\t%d grains indexed" % (len(grains))
	print "\t%d g-vectors indexed" % (nindexed)
	tt = 1.0*nindexed/ngrains
	print "\t%.1f g-vectors per grain in average" % (tt)
	
	# Matching conditions in angle ranges
	ds = []
	eta = []
	omega = []
	gsinput["dsranges"] = []
	for tthrange in gsinput["tthranges"]:
		ds0 = 2.*numpy.sin(numpy.radians(tthrange[0]/2.))/(wavelength)
		ds1 = 2.*numpy.sin(numpy.radians(tthrange[1]/2.))/(wavelength)
		gsinput["dsranges"].append([ds0,ds1])
	
	#print gsinput
		
	for peak in peaksgve:
		thisds = float(peak['ds'])
		thiseta = normalizedAngle360(float(peak['eta'])) # In GrainSpotter, eta is in [0;360]
		thisomega = normalizedAngle180(float(peak['omega'])) # In GrainSpotter, omega is in [-180;180]
		test1 = 0
		test2 = 0
		test3 = 0
		for dsrange in gsinput["dsranges"]:
			if ((thisds >= dsrange[0]) and (thisds <= dsrange[1])):
				test1 = 1
		for etarange in gsinput["etaranges"]:
			if ((thiseta >= etarange[0]) and (thiseta <= etarange[1])):
				test2 = 1
			#else:
			#	print "Not for eta %.1f < %.1f < %.1f" % (etarange[0],thiseta,etarange[1])
		for omegarange in gsinput["omegaranges"]:
			if ((thisomega >= omegarange[0]) and (thisomega <= omegarange[1])):
				test3 = 1
			#else:
			#	print "Not for omega %.1f < %.1f < %.1f" % (omegarange[0],thisomega,omegarange[1])
		if (test1*test2*test3 == 1):
			ds.append(float(peak['ds']))
			eta.append(float(peak['eta']))
			omega.append(float(peak['omega']))
	print "\nPeaks"
	print "\t%d g-vectors in GVE file" % (len(peaksgve))
	print "\t%d g-vectors within eta, omega, and 2theta ranges" % (len(ds))

	# Counting peak, within 2 theta range, and that can be assigned to the sample
	tttol = gsinput["sigma_tth"]*gsinput["nsigmas"]
	dsmin = []
	dsmax = []
	#print tttol
	for samplepeak in peakssample:
		thisds = samplepeak[0]
		#print thisds
		tt = 2.*numpy.degrees(numpy.arcsin(wavelength*thisds/2.))
		#print 2.*numpy.sin(numpy.radians((tt-tttol)/2.))/(wavelength)
		#print 2.*numpy.sin(numpy.radians((tt+tttol)/2.))/(wavelength)
		dsmin.append(2.*numpy.sin(numpy.radians((tt-tttol)/2.))/(wavelength))
		dsmax.append(2.*numpy.sin(numpy.radians((tt+tttol)/2.))/(wavelength))
	
	nassigned = 0
	for thisds in ds:
		append = 0
		for i in range(0,len(dsmin)):
			if ((thisds <= dsmax[i]) and (thisds >= dsmin[i])):
				append = 1
		nassigned += append
	print "\t%d g-vectors assigned to sample within these ranges" % (nassigned)
	
	print "\nIndexing performance"
	print "\tOut of %d possible g-vectors, %d have been assigned to %d grains" % (nassigned, nindexed, len(grains))
	tt = nassigned-nindexed
	print "\t%d remaining g-vectors" % (tt)
	tt = 100.*nindexed/nassigned
	print "\t%.1f percents of g-vectors indexed" % (tt)
	print 
	
	
	return