def test_in_out(self): layer = CBHG(128, K= 6, projections=[128, 128], num_highways=2) dummy_input = T.autograd.Variable(T.rand(4, 8, 128)) print(layer) output = layer(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 8 assert output.shape[2] == 256
def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80, r=5, padding_idx=None): super(Tacotron, self).__init__() self.r = r self.mel_dim = mel_dim self.linear_dim = linear_dim self.embedding = nn.Embedding(len(symbols), embedding_dim, padding_idx=padding_idx) print(" | > Embedding dim : {}".format(len(symbols))) self.embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(embedding_dim) self.decoder = Decoder(256, mel_dim, r) self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim]) self.last_linear = nn.Linear(mel_dim * 2, linear_dim)
def test_in_out(self): layer = self.cbhg = CBHG(128, K=8, conv_bank_features=80, conv_projections=[160, 128], highway_features=80, gru_features=80, num_highways=4) dummy_input = T.rand(4, 8, 128) print(layer) output = layer(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 8 assert output.shape[2] == 160
def test_in_out(self): #pylint: disable=attribute-defined-outside-init layer = self.cbhg = CBHG(128, K=8, conv_bank_features=80, conv_projections=[160, 128], highway_features=80, gru_features=80, num_highways=4) # B x D x T dummy_input = T.rand(4, 128, 8) print(layer) output = layer(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 8 assert output.shape[2] == 160