def initialize_tf_variables(self): """ Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint). :return: updated TeLL session """ session = self.tf_session checkpoint = self.workspace.get_checkpoint() # # Initialize or load variables # with Timer(name="Initializing variables"): session.run(tf.global_variables_initializer()) session.run(tf.local_variables_initializer()) if checkpoint is not None: # restore from checkpoint self.tf_saver.restore(session, checkpoint) # get step number from checkpoint step = session.run(self.__global_step_placeholder) + 1 self.global_step = step # reopen summaries for _, summary in self.tf_summaries.items(): summary.reopen() summary.add_session_log( tf.SessionLog(status=tf.SessionLog.START), global_step=step) print("Resuming from checkpoint '{}' at iteration {}".format( checkpoint, step)) else: for _, summary in self.tf_summaries.items(): summary.add_graph(session.graph) return self
def main(): logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s - %(message)s') args = parse_args() out_path = args.path os.makedirs(out_path, exist_ok=True) if not args.num_images % 4 == 0: raise ValueError("Number of images must be a multiple of 4 due to data augmentation") if args.num_images >= 200: print("Many images are going to be created, an overflow on the GPU could occur") if args.gpu is not None: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu else: os.environ['CUDA_VISIBLE_DEVICES'] = '' tf.set_random_seed(args.random_num) samples = boosted_ising_mask(shape=[args.num_images, 400, int(400 * (args.width / args.height)), 3], keep_prob=args.keep_prob, num_steps=args.num_steps, beta=.5, beta_step=1.1) # samples = tf.image.resize_images(samples, (args.height, args.width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) logging.info('Samples' + str(samples)) with Timer(verbose=True, name="Ising") as t: gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) sess.run(tf.global_variables_initializer()) samples_np = sess.run(samples) # Append parameters to log file params = "" for arg in vars(args): if arg not in ["path", "gpu"]: params += arg + ":" + str(getattr(args, arg)) + "-" params = params[:-1] logfile = os.path.join(out_path, "log.txt") if os.path.isfile(logfile): with open(logfile, "r") as f: x = f.read().split("\n") offset = int(x[-1].split("\t")[1]) else: offset = 0 with open(logfile, "a") as myfile: myfile.write("\n" + params + "\t" + str(offset + getattr(args, "num_images"))) for i in range(samples_np.shape[0]): out = Image.fromarray(samples_np[i, :, :, 0] * 255) out = out.convert("1") out.save(out_path + '/image' + '_' + str(offset + i + 1) + '.png') sess.close()
def evaluate_on_validation_set(validationset, step: int, session, model, summary_writer, validation_summary, val_loss, workspace: Workspace): """Convenience function for evaluating network on a validation set Parameters ------- validationset : dataset reader Dataset reader for the validation set step : int Current step in training session : tf.session Tensorflow session to use model : network model Network model val_loss : tensor Tensor representing the validation loss computation Returns ------- : float Loss averaged over validation set """ loss = 0 _pbw = ['Evaluating on validation set: ', progressbar.ETA()] progress = progressbar.ProgressBar(widgets=_pbw, maxval=validationset.n_mbs - 1, redirect_stdout=True).start() mb_validation = validationset.batch_loader() with Timer(verbose=True, name="Evaluate on Validation Set"): for mb_i, mb in enumerate(mb_validation): # Abort if indicated by file check_kill_file(workspace) val_summary, cur_loss = session.run([validation_summary, val_loss], feed_dict={model.X: mb['X'], model.y_: mb['y']}) loss += cur_loss progress.update(mb_i) mb.clear() del mb progress.finish() avg_loss = loss / validationset.n_mbs summary_writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag="Validation Loss", simple_value=avg_loss)]), step) print("Validation scores:\n\tstep {} validation loss {}".format(step, avg_loss)) sys.stdout.flush() return avg_loss
def initialize_tf_variables(self, reset_optimizer_on_restore=False): """ Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint). :param reset_optimizer_on_restore: Flag indicating whether to reset the optimizer(s) given that this function call includes a restore operation. :return: updated TeLL session """ session = self.tf_session checkpoint = self.workspace.get_checkpoint() # # Initialize or load variables # with Timer(name="Initializing variables"): session.run(tf.global_variables_initializer()) session.run(tf.local_variables_initializer()) if checkpoint is not None: # restore from checkpoint self.tf_saver.restore(session, checkpoint) # get step number from checkpoint step = session.run(self.__global_step_placeholder) + 1 self.global_step = step # reopen summaries for _, summary in self.tf_summaries.items(): summary.reopen() summary.add_session_log( tf.SessionLog(status=tf.SessionLog.START), global_step=step) print("Resuming from checkpoint '{}' at iteration {}".format( checkpoint, step)) if self.config.get_value('optimizer', None) is not None: if reset_optimizer_on_restore: if isinstance(self.tf_optimizer, list): for optimizer in self.tf_optimizer: self.reset_optimizer(optimizer) else: self.reset_optimizer(self.tf_optimizer) else: for _, summary in self.tf_summaries.items(): summary.add_graph(session.graph) return self
def main(_): config = Config() np.random.seed(config.get_value("random_seed", 12345)) # PARAMETERS n_epochs = config.get_value("epochs", 100) batchsize = config.get_value("batchsize", 8) n_classes = config.get_value("n_classes", 13) dropout = config.get_value("dropout", 0.25) # TODO num_threads = config.get_value("num_threads", 5) initial_val = config.get_value("initial_val", True) # READER, LOADER readers = invoke_dataset_from_config(config) reader_train = readers["train"] reader_val = readers["val"] train_loader = torch.utils.data.DataLoader(reader_train, batch_size=config.batchsize, shuffle=True, num_workers=num_threads) val_loader = torch.utils.data.DataLoader(reader_val, batch_size=1, shuffle=False, num_workers=num_threads) # CONFIG tell = TeLLSession(config=config, model_params={"shape": reader_train.shape}) # Get some members from the session for easier usage session = tell.tf_session model = tell.model workspace, config = tell.workspace, tell.config prediction = tf.sigmoid(model.output) prediction_val = tf.reduce_mean(tf.sigmoid(model.output), axis=0, keepdims=True) # LOSS if hasattr(model, "loss"): loss = model.loss() else: with tf.name_scope("Loss_per_Class"): loss = 0 for i in range(n_classes): loss_batch = tf.nn.sigmoid_cross_entropy_with_logits( logits=model.output[:, i], labels=model.y_[:, i]) loss_mean = tf.reduce_mean(loss_batch) loss += loss_mean # Validation loss after patching if hasattr(model, "loss"): loss_val = model.loss() else: with tf.name_scope("Loss_per_Class_Patching"): loss_val = 0 for i in range(n_classes): loss_batch = tf.nn.sigmoid_cross_entropy_with_logits( logits=tf.reduce_mean(model.output[:, i], axis=0, keepdims=True), labels=model.y_[:, i]) loss_mean = tf.reduce_mean(loss_batch) loss_val += loss_mean # REGULARIZATION reg_penalty = regularize(layers=model.layers, l1=config.l1, l2=config.l2, regularize_weights=True, regularize_biases=True) # LEARNING RATE (SCHEDULE) # if a LRS is defined always use MomentumOptimizer and pass learning rate to optimizer lrs_plateu = False if config.get_value("lrs", None) is not None: lr_sched_type = config.lrs["type"] if lr_sched_type == "plateau": lrs_plateu = True learning_rate = tf.placeholder(tf.float32, [], name='learning_rate') lrs_learning_rate = config.get_value( "optimizer_params")["learning_rate"] lrs_n_bad_epochs = 0 # counter for plateu LRS lrs_patience = config.lrs["patience"] lrs_factor = config.lrs["factor"] lrs_threshold = config.lrs["threshold"] lrs_mode = config.lrs["mode"] lrs_best = -np.inf if lrs_mode == "max" else np.inf lrs_is_better = lambda old, new: (new > old * ( 1 + lrs_threshold)) if lrs_mode == "max" else (new < old * ( 1 - lrs_threshold)) else: learning_rate = None # if no LRS is defined the default optimizer is used with its defined learning rate # LOAD WEIGHTS and get list of trainables if specified assign_loaded_variables = None trainables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if config.get_value("checkpoint", None) is not None: with Timer(name="Loading Checkpoint", verbose=True): assign_loaded_variables, trainables = tell.load_weights( config.get_value("checkpoint", None), config.get_value("freeze", False), config.get_value("exclude_weights", None), config.get_value("exclude_freeze", None)) # Update step if len(trainables) > 0: update, gradients, gradient_name_dict = update_step( loss + reg_penalty, config, tell, lr=learning_rate, trainables=trainables) # INITIALIZE Tensorflow VARIABLES step = tell.initialize_tf_variables().global_step # ASSING LOADED WEIGHTS (overriding initializations) if available if assign_loaded_variables is not None: session.run(assign_loaded_variables) # ------------------------------------------------------------------------- # Start training # ------------------------------------------------------------------------- try: n_mbs = len(train_loader) epoch = int((step * batchsize) / (n_mbs * batchsize)) epochs = range(epoch, n_epochs) if len(trainables) == 0: validate(val_loader, n_classes, session, loss_val, prediction_val, model, workspace, step, batchsize, tell) return print("Epoch: {}/{} (step: {}, nmbs: {}, batchsize: {})".format( epoch + 1, n_epochs, step, n_mbs, batchsize)) for ep in epochs: if ep == 0 and initial_val: f1 = validate(val_loader, n_classes, session, loss_val, prediction_val, model, workspace, step, batchsize, tell) else: if config.has_value("lrs_best") and config.has_value( "lrs_learning_rate") and config.has_value( "lrs_n_bad_epochs"): f1 = config.get_value("lrs_f1") lrs_best = config.get_value("lrs_best") lrs_learning_rate = config.get_value("lrs_learning_rate") lrs_n_bad_epochs = config.get_value("lrs_n_bad_epochs") else: f1 = 0 # LRS "Plateu" if lrs_plateu: # update scheduler if lrs_is_better(lrs_best, f1): lrs_best = f1 lrs_n_bad_epochs = 0 else: lrs_n_bad_epochs += 1 # update learning rate if lrs_n_bad_epochs > lrs_patience: lrs_learning_rate = max(lrs_learning_rate * lrs_factor, 0) lrs_n_bad_epochs = 0 with tqdm(total=len(train_loader), desc="Training [{}/{}]".format(ep + 1, len(epochs))) as pbar: for mbi, mb in enumerate(train_loader): # LRS "Plateu" if lrs_plateu: feed_dict = { model.X: mb['input'].numpy(), model.y_: mb['target'].numpy(), model.dropout: dropout, learning_rate: lrs_learning_rate } else: feed_dict = { model.X: mb['input'].numpy(), model.y_: mb['target'].numpy(), model.dropout: dropout } # TRAINING pred, loss_train, _ = session.run( [prediction, loss, update], feed_dict=feed_dict) # Update status pbar.set_description_str( "Training [{}/{}] Loss: {:.4f}".format( ep + 1, len(epochs), loss_train)) pbar.update() step += 1 validate(val_loader, n_classes, session, loss_val, prediction_val, model, workspace, step, batchsize, tell) except AbortRun: print("Aborting...") finally: tell.close(global_step=step, save_checkpoint=True)
def main(_): # ------------------------------------------------------------------------------------------------------------------ # Setup training # ------------------------------------------------------------------------------------------------------------------ # Initialize config, parses command line and reads specified file; also supports overriding of values from cmd config = Config() # # Load datasets for training and validation # with Timer(name="Loading Data", verbose=True): # Make sure datareader is reproducible random_seed = config.get_value('random_seed', 12345) np.random.seed( random_seed) # not threadsafe, use rnd_gen object where possible rnd_gen = np.random.RandomState(seed=random_seed) print("Loading training data...") trainingset = MovingDotDataset(n_timesteps=5, n_samples=50, batchsize=config.batchsize, rnd_gen=rnd_gen) print("Loading validation data...") validationset = MovingDotDataset(n_timesteps=5, n_samples=25, batchsize=config.batchsize, rnd_gen=rnd_gen) # # Initialize TeLL session # tell = TeLLSession(config=config, summaries=["train", "validation"], model_params={"dataset": trainingset}) # Get some members from the session for easier usage sess = tell.tf_session summary_writer_train, summary_writer_validation = tell.tf_summaries[ "train"], tell.tf_summaries["validation"] model = tell.model workspace, config = tell.workspace, tell.config # # Define loss functions and update steps # print("Initializing loss calculation...") pos_target_weight = np.prod( trainingset.y_shape[2:] ) - 1 # only 1 pixel per sample is of positive class -> up-weight! loss = tf.reduce_mean( tf.nn.weighted_cross_entropy_with_logits(targets=model.y_, logits=model.output, pos_weight=pos_target_weight)) # loss = tf.reduce_mean(-tf.reduce_sum((model.y_ * tf.log(model.output)) * # -tf.reduce_sum(model.y_ - 1) / tf.reduce_sum(model.y_), # axis=[1, 2, 3, 4])) train_summary = tf.summary.scalar( "Training Loss", loss) # create summary to add to tensorboard # Loss function for validationset val_loss = tf.reduce_mean( tf.nn.weighted_cross_entropy_with_logits(targets=model.y_, logits=model.output, pos_weight=pos_target_weight)) # val_loss = tf.reduce_mean(-tf.reduce_sum(model.y_ * tf.log(model.output) * # -tf.reduce_sum(model.y_ - 1) / tf.reduce_sum(model.y_), # axis=[1, 2, 3, 4])) val_loss_summary = tf.summary.scalar( "Validation Loss", val_loss) # create summary to add to tensorboard # Regularization reg_penalty = regularize(layers=model.get_layers(), l1=config.l1, l2=config.l2, regularize_weights=True, regularize_biases=True) regpen_summary = tf.summary.scalar( "Regularization Penalty", reg_penalty) # create summary to add to tensorboard # Update step for weights update = update_step(loss + reg_penalty, config) # # Prepare plotting # plot_elements_sym = list(model.get_plot_dict().values()) plot_elements = list() plot_ranges = model.get_plot_range_dict() # # Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint) # global_step = tell.initialize_tf_variables().global_step # # Finalize graph # This makes our tensorflow graph read-only and prevents further additions to the graph # sess.graph.finalize() if sess.graph.finalized: print("Graph is finalized!") else: raise ValueError("Could not finalize graph!") sys.stdout.flush() # ------------------------------------------------------------------------------------------------------------------ # Start training # ------------------------------------------------------------------------------------------------------------------ try: epoch = int(global_step / trainingset.n_mbs) epochs = range(epoch, config.n_epochs) # Loop through epochs print("Starting training") for ep in epochs: epoch = ep print("Starting training epoch: {}".format(ep)) # Initialize variables for over-all loss per epoch train_loss = 0 # Load one minibatch at a time and perform a training step t_mb = Timer(verbose=True, name="Load Minibatch") mb_training = trainingset.batch_loader(rnd_gen=rnd_gen) # # Loop through minibatches # for mb_i, mb in enumerate(mb_training): sys.stdout.flush() # Print minibatch load time t_mb.print() # Abort if indicated by file check_kill_file(workspace) # # Calculate scores on validation set # if global_step % config.score_at == 0: print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, sess, model, summary_writer_validation, val_loss_summary, val_loss, workspace) # # Perform weight updates and do plotting # if (mb_i % config.plot_at) == 0 and os.path.isfile( workspace.get_plot_file()): # Perform weight update, return summary_str and values for plotting with Timer(verbose=True, name="Weight Update"): train_summ, regpen_summ, _, cur_loss, cur_output, *plot_elements = sess.run( [ train_summary, regpen_summary, update, loss, model.output, *plot_elements_sym ], feed_dict={ model.X: mb['X'], model.y_: mb['y'] }) # Add current summary values to tensorboard summary_writer_train.add_summary(train_summ, global_step=global_step) summary_writer_train.add_summary(regpen_summ, global_step=global_step) # Re-associate returned tensorflow values to plotting keys plot_dict = OrderedDict( zip(list(model.get_plot_dict().keys()), plot_elements)) # # Plot subplots in plot_dict # Loop through each element in plotlist and pass it to the save_subplots function for plotting # (adapt this to your needs for plotting) # with Timer(verbose=True, name="Plotting", precision="msec"): for plotlist_i, plotlist in enumerate( model.get_plotsink()): for frame in range(len(plot_dict[plotlist[0]])): subplotlist = [] subfigtitles = [] subplotranges = [] n_cols = int(np.ceil(np.sqrt(len(plotlist)))) for col_i, col_i in enumerate(range(n_cols)): subfigtitles.append( plotlist[n_cols * col_i:n_cols * col_i + n_cols]) subplotlist.append([ plot_dict[p] [frame * (frame < len(plot_dict[p])), :] for p in plotlist[n_cols * col_i:n_cols * col_i + n_cols] ]) subplotranges.append([ plot_ranges.get(p, False) for p in plotlist[n_cols * col_i:n_cols * col_i + n_cols] ]) # remove rows/columns without images subplotlist = [ p for p in subplotlist if p != [] ] plot_args = dict( images=subplotlist, filename=os.path.join( workspace.get_result_dir(), "plot{}_ep{}_mb{}_fr{}.png".format( plotlist_i, ep, mb_i, frame)), subfigtitles=subfigtitles, subplotranges=subplotranges) plotter.set_plot_kwargs(plot_args) plotter.plot() # Plot outputs and cell states over frames if specified if config.store_states and 'ConvLSTMLayer_h' in plot_dict: convh = plot_dict['ConvLSTMLayer_h'] convrh = [c[0, :, :, 0] for c in convh] convrh = [ convrh[:6], convrh[6:12], convrh[12:18], convrh[18:24], convrh[24:] ] plot_args = dict(images=convrh, filename=os.path.join( workspace.get_result_dir(), "plot{}_ep{}_mb{}_h.png".format( plotlist_i, ep, mb_i))) plotter.set_plot_kwargs(plot_args) plotter.plot() if config.store_states and 'ConvLSTMLayer_c' in plot_dict: convc = plot_dict['ConvLSTMLayer_c'] convrc = [c[0, :, :, 0] for c in convc] convrc = [ convrc[:6], convrc[6:12], convrc[12:18], convrc[18:24], convrc[24:] ] plot_args = dict(images=convrc, filename=os.path.join( workspace.get_result_dir(), "plot{}_ep{}_mb{}_c.png".format( plotlist_i, ep, mb_i))) plotter.set_plot_kwargs(plot_args) plotter.plot() else: # # Perform weight update without plotting # with Timer(verbose=True, name="Weight Update"): train_summ, regpen_summ, _, cur_loss = sess.run( [train_summary, regpen_summary, update, loss], feed_dict={ model.X: mb['X'], model.y_: mb['y'] }) # Add current summary values to tensorboard summary_writer_train.add_summary(train_summ, global_step=global_step) summary_writer_train.add_summary(regpen_summ, global_step=global_step) # Add current loss to running average loss train_loss += cur_loss # Print some status info print("ep {} mb {} loss {} (avg. loss {})".format( ep, mb_i, cur_loss, train_loss / (mb_i + 1))) # Reset timer t_mb = Timer(name="Load Minibatch") # Free the memory allocated for the minibatch data mb.clear() del mb global_step += 1 # # Calculate scores on validation set # # Perform scoring on validation set print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, sess, model, summary_writer_validation, val_loss_summary, val_loss, workspace) # Save the model tell.save_checkpoint(global_step=global_step) # Abort if indicated by file check_kill_file(workspace) except AbortRun: print("Detected kill file, aborting...") finally: # # If the program executed correctly or an error was raised, close the data readers and save the model and exit # trainingset.close() validationset.close() tell.close(save_checkpoint=True, global_step=global_step) plotter.close()
def main(_): np.random.seed(0) rng = np.random.RandomState(seed=0) config = Config() # # Load Data # with Timer(name="Load data"): training_data = BouncingMNISTDataHandler( config, config.mnist_train_images, config.mnist_train_labels, rng) test_data = BouncingMNISTDataHandler( config, config.mnist_test_images, config.mnist_test_labels, rng) dataset = DataSet((config.batch_size, config.num_frames, config.image_size, config.image_size, 1), (config.batch_size, config.num_frames, config.image_size, config.image_size)) # Create new TeLL session with two summary writers tell = TeLLSession(config=config, summaries=["train", "validation"], model_params={"dataset": dataset}) # Get some members from the session for easier usage session = tell.tf_session summary_writer_train, summary_writer_validation = tell.tf_summaries["train"], tell.tf_summaries["validation"] model = tell.model workspace, config = tell.workspace, tell.config # Parameters learning_rate = config.get_value("learning_rate", 1e-3) iterations = config.get_value("iterations", 1000) batch_size = config.get_value("batch_size", 256) display_step = config.get_value("display_step", 10) calc_statistics = config.get_value("calc_statistics", False) blur_filter_size = config.get_value("blur_filter_size", None) training_summary_tensors = OrderedDict() # Define loss and optimizer #with tf.name_scope("Cost"): # sem_seg_loss, _ = image_crossentropy(pred=model.output, target=model.y_, # calc_statistics=calc_statistics, reduce_by="sum") # optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(sem_seg_loss) # tf.summary.scalar("Loss", sem_seg_loss) # Evaluate model validation_summary_tensors = OrderedDict() # validationset always uses class weights for loss calculation with tf.name_scope('Cost'): blur_sampling_range = tf.placeholder(tf.float32) if blur_filter_size is not None: sem_seg_loss = blurred_cross_entropy(output=model.output, target=model.y_, filter_size=blur_filter_size, sampling_range=blur_sampling_range) else: sem_seg_loss, _ = image_crossentropy(pred=model.output, target=model.y_, reduce_by="mean", calc_statistics=calc_statistics) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(sem_seg_loss) iou, iou_op = tf.contrib.metrics.streaming_mean_iou( predictions=tf.squeeze(tf.arg_max(model.output, 4)), labels=tf.squeeze(model.y_), num_classes=model.output.get_shape()[-1]) loss_prot = tf.summary.scalar("Loss", sem_seg_loss) iou_prot = tf.summary.scalar("IoU", iou) train_summaries = tf.summary.merge([loss_prot]) valid_summaries = tf.summary.merge([loss_prot, iou_prot]) # Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint) step = tell.initialize_tf_variables().global_step # ------------------------------------------------------------------------- # Start training # ------------------------------------------------------------------------- plot_elements_sym = list(model.get_plot_dict().values()) plot_elements = list() plot_ranges = model.get_plot_range_dict() try: while step < iterations: check_kill_file(workspace=workspace) batch_x, batch_y = training_data.GetBatch() i = step * batch_size if step % display_step == 0: mean_loss = 0. for j in range(10): test_x, test_y = test_data.GetBatch() summary, loss, _, *plot_elements = session.run([valid_summaries, sem_seg_loss, iou_op, *plot_elements_sym], feed_dict={model.X: test_x, model.y_feed: test_y, blur_sampling_range: 3.5}) summary_writer_validation.add_summary(summary, i) mean_loss += loss # Re-associate returned tensorflow values to plotting keys plot_dict = OrderedDict(zip(list(model.get_plot_dict().keys()), plot_elements)) # Plot outputs and cell states over frames if specified if config.store_states and 'ConvLSTMLayer_h' in plot_dict and step % config.plot_at == 0: convh = plot_dict['ConvLSTMLayer_h'] convrh = [c[0, :, :, 0] for c in convh] convrh = [convrh[:6], convrh[6:12], convrh[12:18], convrh[18:24], convrh[24:]] plot_args = dict(images=convrh, filename=os.path.join(workspace.get_result_dir(), "step{}_h.png".format(step))) plotter.set_plot_kwargs(plot_args) plotter.plot() if config.store_states and 'ConvLSTMLayer_c' in plot_dict and step % config.plot_at == 0: convc = plot_dict['ConvLSTMLayer_c'] convrc = [c[0, :, :, 0] for c in convc] convrc = [convrc[:6], convrc[6:12], convrc[12:18], convrc[18:24], convrc[24:]] plot_args = dict(images=convrc, filename=os.path.join(workspace.get_result_dir(), "step{}_c.png".format(step))) plotter.set_plot_kwargs(plot_args) plotter.plot() print('Validation Loss at step {}: {}'.format(i, mean_loss / 10)) summary, loss, _ = session.run([train_summaries, sem_seg_loss, optimizer], feed_dict={model.X: batch_x, model.y_feed: batch_y, blur_sampling_range: 3.5}) summary_writer_train.add_summary(summary, i) step += 1 print("Training Finished!") # Final Eval mean_loss = 0. for j in range(100): test_x, test_y = test_data.GetBatch() summary, loss, _ = session.run([valid_summaries, sem_seg_loss, iou_op], feed_dict={model.X: test_x, model.y_feed: test_y, blur_sampling_range: 3.5}) mean_loss += loss test_x, test_y = test_data.GetBatch() pred = session.run(tf.argmax(model.output, 4), feed_dict={model.X: test_x}) pred = to_color(pred) true = to_color(test_y) out = to_image(pred, true) for i in range(pred.shape[0]): imsave(tell.workspace.get_result_dir() + '/sample_{:02d}.png'.format(i), out[i,]) print("Validation Loss {}".format(mean_loss / 100)) except AbortRun: print("Aborting...") finally: tell.close(global_step=step) plotter.close()
def main(_): # ------------------------------------------------------------------------------------------------------------------ # Setup training # ------------------------------------------------------------------------------------------------------------------ # Initialize config, parses command line and reads specified file; also supports overriding of values from cmd config = Config() # # Prepare input data # # Make sure datareader is reproducible random_seed = config.get_value('random_seed', 12345) np.random.seed(random_seed) # not threadsafe, use rnd_gen object where possible rnd_gen = np.random.RandomState(seed=random_seed) # Set datareaders n_timesteps = config.get_value('mnist_n_timesteps', 20) # Load datasets for trainingset with Timer(name="Loading Data"): readers = initialize_datareaders(config, required=("train", "val")) # Set Preprocessing trainingset = Normalize(readers["train"], apply_to=['X', 'y']) validationset = Normalize(readers["val"], apply_to=['X', 'y']) # Set minibatch loaders trainingset = DataLoader(trainingset, batchsize=2, batchsize_method='zeropad', verbose=False) validationset = DataLoader(validationset, batchsize=2, batchsize_method='zeropad', verbose=False) # # Initialize TeLL session # tell = TeLLSession(config=config, summaries=["train", "validation"], model_params={"dataset": trainingset}) # Get some members from the session for easier usage sess = tell.tf_session summary_writer_train, summary_writer_validation = tell.tf_summaries["train"], tell.tf_summaries["validation"] model = tell.model workspace, config = tell.workspace, tell.config # # Define loss functions and update steps # print("Initializing loss calculation...") loss, _ = image_crossentropy(target=model.y_[:, 10:, :, :], pred=model.output[:, 10:, :, :, :], pixel_weights=model.pixel_weights[:, 10:, :, :], reduce_by='mean') train_summary = tf.summary.scalar("Training Loss", loss) # create summary to add to tensorboard # Loss function for validationset val_loss = loss val_loss_summary = tf.summary.scalar("Validation Loss", val_loss) # create summary to add to tensorboard # Regularization reg_penalty = regularize(layers=model.get_layers(), l1=config.l1, l2=config.l2, regularize_weights=True, regularize_biases=True) regpen_summary = tf.summary.scalar("Regularization Penalty", reg_penalty) # create summary to add to tensorboard # Update step for weights update = update_step(loss + reg_penalty, config) # # Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint) # global_step = tell.initialize_tf_variables().global_step # # Set up plotting # (store tensors we want to plot in a dictionary for easier tensor-evaluation) # # We want to plot input, output and target for the 1st sample, 1st frame, and 1st channel in subplot 1 tensors_subplot1 = OrderedDict() tensors_subplot2 = OrderedDict() tensors_subplot3 = OrderedDict() for frame in range(n_timesteps): tensors_subplot1['input_{}'.format(frame)] = model.X[0, frame, :, :] tensors_subplot2['target_{}'.format(frame)] = model.y_[0, frame, :, :] - 1 tensors_subplot3['network_output_{}'.format(frame)] = tf.argmax(model.output[0, frame, :, :, :], axis=-1) - 1 # We also want to plot the cell states and hidden states for each frame (again of the 1st sample and 1st lstm unit) # in subplot 2 and 3 tensors_subplot4 = OrderedDict() tensors_subplot5 = OrderedDict() for frame in range(len(model.lstm_layer.c)): tensors_subplot4['hiddenstate_{}'.format(frame)] = model.lstm_layer.h[frame][0, :, :, 0] tensors_subplot5['cellstate_{}'.format(frame)] = model.lstm_layer.c[frame][0, :, :, 0] # Create a list to store all symbolic tensors for plotting plotting_tensors = list(tensors_subplot1.values()) + list(tensors_subplot2.values()) + \ list(tensors_subplot3.values()) + list(tensors_subplot4.values()) + \ list(tensors_subplot5.values()) # # Finalize graph # This makes our tensorflow graph read-only and prevents further additions to the graph # sess.graph.finalize() if sess.graph.finalized: print("Graph is finalized!") else: raise ValueError("Could not finalize graph!") sys.stdout.flush() # ------------------------------------------------------------------------------------------------------------------ # Start training # ------------------------------------------------------------------------------------------------------------------ try: epoch = int(global_step / trainingset.n_mbs) epochs = range(epoch, config.n_epochs) # Loop through epochs print("Starting training") for ep in epochs: epoch = ep print("Starting training epoch: {}".format(ep)) # Initialize variables for over-all loss per epoch train_loss = 0 # Load one minibatch at a time and perform a training step t_mb = Timer(verbose=True, name="Load Minibatch") mb_training = trainingset.batch_loader(rnd_gen=rnd_gen) # # Loop through minibatches # for mb_i, mb in enumerate(mb_training): sys.stdout.flush() # Print minibatch load time t_mb.print() # Abort if indicated by file check_kill_file(workspace) # # Calculate scores on validation set # if global_step % config.score_at == 0: print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, sess, model, summary_writer_validation, val_loss_summary, val_loss, workspace) # # Perform weight updates and do plotting # if (mb_i % config.plot_at) == 0 and os.path.isfile(workspace.get_plot_file()): # Perform weight update, return summary values and values for plotting with Timer(verbose=True, name="Weight Update"): plotting_values = [] train_summ, regpen_summ, _, cur_loss, *plotting_values = sess.run( [train_summary, regpen_summary, update, loss, *plotting_tensors], feed_dict={model.X: mb['X'], model.y_: mb['y']}) # Add current summary values to tensorboard summary_writer_train.add_summary(train_summ, global_step=global_step) summary_writer_train.add_summary(regpen_summ, global_step=global_step) # Create and save subplot 1 (input) save_subplots(images=plotting_values[:len(tensors_subplot1)], subfigtitles=list(tensors_subplot1.keys()), subplotranges=[(0, 1)] * n_timesteps, colorbar=True, automatic_positioning=True, tight_layout=True, filename=os.path.join(workspace.get_result_dir(), "input_ep{}_mb{}.png".format(ep, mb_i))) del plotting_values[:len(tensors_subplot1)] # Create and save subplot 2 (target) save_subplots(images=plotting_values[:len(tensors_subplot2)], subfigtitles=list(tensors_subplot2.keys()), subplotranges=[(0, 10) * n_timesteps], colorbar=True, automatic_positioning=True, tight_layout=True, filename=os.path.join(workspace.get_result_dir(), "target_ep{}_mb{}.png".format(ep, mb_i))) del plotting_values[:len(tensors_subplot2)] # Create and save subplot 3 (output) save_subplots(images=plotting_values[:len(tensors_subplot3)], subfigtitles=list(tensors_subplot3.keys()), # subplotranges=[(0, 10)] * n_timesteps, colorbar=True, automatic_positioning=True, tight_layout=True, filename=os.path.join(workspace.get_result_dir(), "output_ep{}_mb{}.png".format(ep, mb_i))) del plotting_values[:len(tensors_subplot3)] # Create and save subplot 2 (hidden states, i.e. ConvLSTM outputs) save_subplots(images=plotting_values[:len(tensors_subplot4)], subfigtitles=list(tensors_subplot4.keys()), title='ConvLSTM hidden states (outputs)', colorbar=True, automatic_positioning=True, tight_layout=True, filename=os.path.join(workspace.get_result_dir(), "hidden_ep{}_mb{}.png".format(ep, mb_i))) del plotting_values[:len(tensors_subplot4)] # Create and save subplot 3 (cell states) save_subplots(images=plotting_values[:len(tensors_subplot5)], subfigtitles=list(tensors_subplot5.keys()), title='ConvLSTM cell states', colorbar=True, automatic_positioning=True, tight_layout=True, filename=os.path.join(workspace.get_result_dir(), "cell_ep{}_mb{}.png".format(ep, mb_i))) del plotting_values[:len(tensors_subplot5)] else: # # Perform weight update without plotting # with Timer(verbose=True, name="Weight Update"): train_summ, regpen_summ, _, cur_loss = sess.run([ train_summary, regpen_summary, update, loss], feed_dict={model.X: mb['X'], model.y_: mb['y']}) # Add current summary values to tensorboard summary_writer_train.add_summary(train_summ, global_step=global_step) summary_writer_train.add_summary(regpen_summ, global_step=global_step) # Add current loss to running average loss train_loss += cur_loss # Print some status info print("ep {} mb {} loss {} (avg. loss {})".format(ep, mb_i, cur_loss, train_loss / (mb_i + 1))) # Reset timer t_mb = Timer(name="Load Minibatch") # Free the memory allocated for the minibatch data mb.clear() del mb global_step += 1 # # Calculate scores on validation set # # Perform scoring on validation set print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, sess, model, summary_writer_validation, val_loss_summary, val_loss, workspace) # Save the model tell.save_checkpoint(global_step=global_step) # Abort if indicated by file check_kill_file(workspace) except AbortRun: print("Detected kill file, aborting...") finally: # # If the program executed correctly or an error was raised, close the data readers and save the model and exit # trainingset.close() validationset.close() tell.close(save_checkpoint=True, global_step=global_step)
def main(_): config = Config() # Create new TeLL session with two summary writers tell = TeLLSession(config=config, summaries=["train", "validation"]) # Get some members from the session for easier usage session = tell.tf_session summary_writer_train, summary_writer_validation = tell.tf_summaries["train"], tell.tf_summaries["validation"] model = tell.model workspace, config = tell.workspace, tell.config # Parameters learning_rate = config.get_value("learning_rate", 1e-3) iterations = config.get_value("iterations", 1000) batchsize = config.get_value("batchsize", 250) display_step = config.get_value("display_step", 10) dropout = config.get_value("dropout_prob", 0.25) # # Load Data # with Timer(name="Load data"): mnist = input_data.read_data_sets("../MNIST_data", one_hot=True) # Define loss and optimizer with tf.name_scope("Cost"): cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model.output, labels=model.y_)) ##entropy = tf.reduce_mean(tf.contrib.bayesflow.entropy.entropy_shannon( ## tf.contrib.distributions.Categorical(p=tf.nn.softmax(logits=model.output)))) probs = tf.nn.softmax(logits=model.output) entropy = tf.reduce_mean(-tf.reduce_sum(tf.log(tf.maximum(probs, 1e-15)) * probs, 1)) # test decor regularization #decor_penalty(model.hidden1, model.y_, 10, [1], 0.) #decor_penalty(model.hidden2, model.y_, 10, [1], 0.) optimizer = tell.tf_optimizer.minimize(cost - config.get_value("entropy_w", 0.) * entropy) tf.summary.scalar("Loss", cost) #tf.summary.scalar("Decor", decor1 + decor2) #tf.summary.scalar("Entropy", entropy) tf.summary.scalar("O-Prob", tf.reduce_mean(tf.reduce_sum(tf.nn.softmax(logits=model.output) * model.y_, 1))) # Evaluate model with tf.name_scope("Accuracy"): correct_pred = tf.equal(tf.argmax(model.output, 1), tf.argmax(model.y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) tf.summary.scalar("Accuracy", accuracy) merged_summaries = tf.summary.merge_all() # Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint) step = tell.initialize_tf_variables(reset_optimizer_on_restore=True).global_step # ------------------------------------------------------------------------- # Start training # ------------------------------------------------------------------------- acc_train = 0. val_acc_best = 0. try: while step < iterations: check_kill_file(workspace=workspace) batch_x, batch_y = mnist.train.next_batch(batchsize) i = step * batchsize if step % display_step == 0: summary, acc = session.run([merged_summaries, accuracy], feed_dict={model.X: mnist.validation.images[:2048], model.y_: mnist.validation.labels[:2048], model.dropout: 0}) summary_writer_validation.add_summary(summary, i) print('step {}: train acc {}, valid acc {}'.format(i, acc_train, acc)) if acc > val_acc_best: val_acc_best = acc else: summary, acc_train, _ = session.run([merged_summaries, accuracy, optimizer], feed_dict={model.X: batch_x, model.y_: batch_y, model.dropout: dropout}) summary_writer_train.add_summary(summary, i) step += 1 print("Training Finished! best valid acc {}".format(val_acc_best)) # Final Eval print("Test Accuracy:", session.run(accuracy, feed_dict={model.X: mnist.test.images[:2048], model.y_: mnist.test.labels[:2048], model.dropout: 0})) except AbortRun: print("Aborting...") finally: tell.close(global_step=step)
def main(_): # ------------------------------------------------------------------------------------------------------------------ # Setup training # ------------------------------------------------------------------------------------------------------------------ # Initialize config, parses command line and reads specified file; also supports overriding of values from cmd config = Config() random_seed = config.get_value('random_seed', 12345) np.random.seed(random_seed) # not threadsafe, use rnd_gen object where possible rnd_gen = np.random.RandomState(seed=random_seed) # Load datasets for trainingset with Timer(name="Loading Data"): readers = initialize_datareaders(config, required=("train", "val")) trainingset = DataLoader(readers["train"], batchsize=config.batchsize) #validationset = DataLoader(readers["val"], batchsize=config.batchsize) # Initialize TeLL session tell = TeLLSession(config=config, model_params={"input_shape": [300]}) # Get some members from the session for easier usage session = tell.tf_session model = tell.model workspace, config = tell.workspace, tell.config # Initialize Tensorflow variables global_step = tell.initialize_tf_variables().global_step sys.stdout.flush() # ------------------------------------------------------------------------------------------------------------------ # Start training # ------------------------------------------------------------------------------------------------------------------ try: epoch = int(global_step / trainingset.n_mbs) epochs = range(epoch, config.n_epochs) # # Loop through epochs # print("Starting training") for ep in epochs: print("Starting training epoch: {}".format(ep)) # Initialize variables for over-all loss per epoch train_loss = 0 # Load one minibatch at a time and perform a training step t_mb = Timer(name="Load Minibatch") mb_training = trainingset.batch_loader(rnd_gen=rnd_gen) # # Loop through minibatches # for mb_i, mb in enumerate(mb_training): sys.stdout.flush() #Print minibatch load time t_mb.print() # Abort if indicated by file check_kill_file(workspace) # # Calculate scores on validation set # if global_step % config.score_at == 0: print("Starting scoring on validation set...") # Get new sample training_sample = np.ones(shape=(1,np.random.randint(low=20,high=100),300)) # # Perform weight update # with Timer(name="Weight Update"): # # Set placeholder values # placeholder_values = OrderedDict( input_placeholder=training_sample, sequence_length_placeholder = training_sample.shape[1] ) feed_dict = dict(((model.placeholders[k], placeholder_values[k]) for k in placeholder_values.keys())) # # Decide which tensors to compute # data_keys = ['lstm_internals_enc', 'lstm_internals_dec', 'lstm_h_enc', 'lstm_h_dec', 'loss' , 'loss_last_time_prediction','loss_last_time_prediction', 'reg_loss'] data_tensors = [model.data_tensors[k] for k in data_keys] operation_keys = ['ae_update'] operation_tensors = [model.operation_tensors[k] for k in operation_keys] summary_keys = ['all_summaries'] summary_tensors = [model.summaries[k] for k in summary_keys] # # Run graph and re-associate return values with keys in dictionary # ret = session.run(data_tensors + summary_tensors + operation_tensors, feed_dict) data_keys = ['loss'] data_tensors = [model.data_tensors[k] for k in data_keys] session.run(model.data_tensors['loss'] , feed_dict) session.run(model.data_tensors['latent_space'], feed_dict) ret_dict = OrderedDict(((k, ret[i]) for i, k in enumerate(data_keys))) del ret[:len(data_keys)] ret_dict.update(OrderedDict(((k, ret[i]) for i, k in enumerate(summary_keys)))) # Print some status info #print("ep {} mb {} loss {} (avg. loss {})".format(ep, mb_i, cur_loss, train_loss / (mb_i + 1))) # Reset timer #t_mb = Timer(name="Load Minibatch") # Free the memory allocated for the minibatch data #mb.clear() #del mb global_step += 1 # # Calculate scores on validation set after training is done # # Perform scoring on validation set print("Starting scoring on validation set...") tell.save_checkpoint(global_step=global_step) # Abort if indicated by file check_kill_file(workspace) except AbortRun: print("Detected kill file, aborting...") finally: tell.close(save_checkpoint=True, global_step=global_step)
def main(_): # ------------------------------------------------------------------------------------------------------------------ # Setup training # ------------------------------------------------------------------------------------------------------------------ # Initialize config, parses command line and reads specified file; also supports overriding of values from cmd config = Config() # Load datasets for trainingset with Timer(name="Loading Training Data"): # Make sure datareader is reproducible random_seed = config.get_value('random_seed', 12345) np.random.seed( random_seed) # not threadsafe, use rnd_gen object where possible rnd_gen = np.random.RandomState(seed=random_seed) print("Loading training data...") trainingset = ShortLongDataset(n_timesteps=250, n_samples=3000, batchsize=config.batchsize, rnd_gen=rnd_gen) # Load datasets for validationset validationset = ShortLongDataset(n_timesteps=250, n_samples=300, batchsize=config.batchsize, rnd_gen=rnd_gen) # Initialize TeLL session tell = TeLLSession(config=config, summaries=["train"], model_params={"dataset": trainingset}) # Get some members from the session for easier usage session = tell.tf_session summary_writer = tell.tf_summaries["train"] model = tell.model workspace, config = tell.workspace, tell.config # Loss function for trainingset print("Initializing loss calculation...") loss = tf.reduce_mean( tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits( model.y_, model.output, -tf.reduce_sum(model.y_ - 1) / tf.reduce_sum(model.y_)), axis=[1])) train_summary = tf.summary.scalar("Training Loss", loss) # add loss to tensorboard # Loss function for validationset val_loss = tf.reduce_mean( tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits( model.y_, model.output, -tf.reduce_sum(model.y_ - 1) / tf.reduce_sum(model.y_)), axis=[1])) val_loss_summary = tf.summary.scalar( "Validation Loss", val_loss) # add val_loss to tensorboard # Regularization reg_penalty = regularize(layers=model.get_layers(), l1=config.l1, l2=config.l2, regularize_weights=True, regularize_biases=True) regpen_summary = tf.summary.scalar( "Regularization Penalty", reg_penalty) # add reg_penalty to tensorboard # Update step for weights update = update_step(loss + reg_penalty, config) # Initialize Tensorflow variables global_step = tell.initialize_tf_variables().global_step sys.stdout.flush() # ------------------------------------------------------------------------------------------------------------------ # Start training # ------------------------------------------------------------------------------------------------------------------ try: epoch = int(global_step / trainingset.n_mbs) epochs = range(epoch, config.n_epochs) # # Loop through epochs # print("Starting training") for ep in epochs: print("Starting training epoch: {}".format(ep)) # Initialize variables for over-all loss per epoch train_loss = 0 # Load one minibatch at a time and perform a training step t_mb = Timer(name="Load Minibatch") mb_training = trainingset.batch_loader(rnd_gen=rnd_gen) # # Loop through minibatches # for mb_i, mb in enumerate(mb_training): sys.stdout.flush() # Print minibatch load time t_mb.print() # Abort if indicated by file check_kill_file(workspace) # # Calculate scores on validation set # if global_step % config.score_at == 0: print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, session, model, summary_writer, val_loss_summary, val_loss, workspace) # # Perform weight update # with Timer(name="Weight Update"): train_summ, regpen_summ, _, cur_loss = session.run( [train_summary, regpen_summary, update, loss], feed_dict={ model.X: mb['X'], model.y_: mb['y'] }) # Add current summary values to tensorboard summary_writer.add_summary(train_summ, global_step=global_step) summary_writer.add_summary(regpen_summ, global_step=global_step) # Add current loss to running average loss train_loss += cur_loss # Print some status info print("ep {} mb {} loss {} (avg. loss {})".format( ep, mb_i, cur_loss, train_loss / (mb_i + 1))) # Reset timer t_mb = Timer(name="Load Minibatch") # Free the memory allocated for the minibatch data mb.clear() del mb global_step += 1 # # Calculate scores on validation set after training is done # # Perform scoring on validation set print("Starting scoring on validation set...") evaluate_on_validation_set(validationset, global_step, session, model, summary_writer, val_loss_summary, val_loss, workspace) tell.save_checkpoint(global_step=global_step) # Abort if indicated by file check_kill_file(workspace) except AbortRun: print("Detected kill file, aborting...") finally: tell.close(save_checkpoint=True, global_step=global_step)
def evaluate(self, step: int, summary_writer, prefix='validation ', num_cached=5, num_threads=3, rnd_gen=None, plotter=None, model=None): # Reset streaming measures self.reset_tensors() # Get tensors to evaluate for plotting if plotter is not None: plot_tensors = plotter.get_tensors() # Set up progress bar _pbw = ['Evaluating on {}set:'.format(prefix), progressbar.ETA()] progress = progressbar.ProgressBar(widgets=_pbw, maxval=self.dataset.n_mbs - 1).start() # # Iterate over dataset minibatches # mb_validation = self.dataset.batch_loader(num_cached=num_cached, num_threads=num_threads, rnd_gen=rnd_gen) with Timer(verbose=True, name="Evaluate on {}set".format(prefix)): summary_values_filled = None for mb_i, mb in enumerate(mb_validation): # Abort if indicated by file check_kill_file(self.workspace) if mb.get('pixel_weights', None) is None: feed_dict = {self.model.X: mb['X'], self.model.y_: mb['y']} else: feed_dict = { self.model.X: mb['X'], self.model.y_: mb['y'], self.model.pixel_weights: mb['pixel_weights'] } if plotter is not None: evaluated_tensors = self.session.run([ *self.summary_ops, *self.summary_tensors, *plot_tensors ], feed_dict=feed_dict) else: evaluated_tensors = self.session.run( [*self.summary_ops, *self.summary_tensors], feed_dict=feed_dict) # Discard return values from summary_ops (=update operations) evaluated_tensors = evaluated_tensors[len(self.summary_ops):] summary_values = evaluated_tensors[:len(self.summary_tensors)] # Perform plotting if plotter is not None: plotter.set_tensor_values( evaluated_tensors[len(self.summary_tensors ):len(self.plot_tensors) + len(plot_tensors)]) plotter.plot(evaluate_tensors=False) # Re-associate returned tensorflow values to keys and incorporate new minibatch values if summary_values_filled is None: # Fill summary_values_filled for the first time summary_values_filled = OrderedDict( zip(list(self.summary_tensor_dict.keys()), summary_values)) for key_i, key in enumerate(summary_values_filled.keys()): if not self.summary_tensor_is_op[key_i]: if isinstance(summary_values_filled[key], np.ndarray): summary_values_filled[key] = [ summary_values_filled[key] ] elif np.isfinite(summary_values_filled[key]): summary_values_filled[key] = [ summary_values_filled[key] ] else: summary_values_filled[key] = [] else: for key_i, key in enumerate(summary_values_filled.keys()): if not self.summary_tensor_is_op[key_i]: if isinstance(summary_values[key_i], np.ndarray): summary_values_filled[key].append( summary_values[key_i]) elif np.isfinite(summary_values[key_i]): summary_values_filled[key].append( summary_values[key_i]) else: summary_values_filled[key] = summary_values[key_i] # Update progress bar and clear minibatch progress.update(mb_i) mb.clear() del mb progress.finish() # # Divide sums by number of samples for tensors that do not have an update function # if len(summary_values_filled): for key_i, key in enumerate(summary_values_filled.keys()): if not self.summary_tensor_is_op[key_i]: if len(summary_values_filled[key]): if not isinstance(summary_values_filled[key][0], np.ndarray): summary_values_filled[key] = np.mean( summary_values_filled[key]) else: summary_values_filled[key] = np.concatenate( summary_values_filled[key]) else: summary_values_filled[key] = np.nan # # Go through values to use as summaries, create histograms if values are not scalars # values_to_print = OrderedDict() if len(summary_values_filled): for key_i, key in enumerate(summary_values_filled.keys()): if not isinstance(summary_values_filled[key], np.ndarray): values_to_print.update({key: summary_values_filled[key]}) summary = tf.Summary(value=[ tf.Summary.Value(tag=prefix + key, simple_value=float( summary_values_filled[key])) ]) else: hist = custom_tensorflow_histogram( summary_values_filled[key], bins=100) summary = tf.Summary( value=[tf.Summary.Value(tag=prefix + key, histo=hist)]) summary_writer.add_summary(summary, step) print("{}scores:\n\tstep {}, {}".format(prefix, step, values_to_print)) summary_writer.flush() sys.stdout.flush()