Esempio n. 1
0
    def dump_tabular(self):
        """
        Write all of the diagnostics from the current iteration.

        Writes both to stdout, and to the output file.
        """
        if proc_id() == 0:
            vals = []
            key_lens = [len(key) for key in self.log_headers]
            max_key_len = max(15, max(key_lens))
            keystr = '%' + '%d' % max_key_len
            fmt = "| " + keystr + "s | %15s |"
            n_slashes = 22 + max_key_len
            print("-" * n_slashes)
            for key in self.log_headers:
                val = self.log_current_row.get(key, "")
                valstr = "%8.3g" % val if hasattr(val, "__float__") else val
                print(fmt % (key, valstr))
                vals.append(val)
            print("-" * n_slashes, flush=True)
            if self.output_file is not None:
                if self.first_row:
                    self.output_file.write("\t".join(self.log_headers) + "\n")
                self.output_file.write("\t".join(map(str, vals)) + "\n")
                self.output_file.flush()
        self.log_current_row.clear()
        self.first_row = False
Esempio n. 2
0
    def save_state(self, state_dict, itr=None):
        """
        Saves the state of an experiment.

        To be clear: this is about saving *state*, not logging diagnostics.
        All diagnostic logging is separate from this function. This function
        will save whatever is in ``state_dict``---usually just a copy of the
        environment---and the most recent parameters for the model you 
        previously set up saving for with ``setup_tf_saver``. 

        Call with any frequency you prefer. If you only want to maintain a
        single state and overwrite it at each call with the most recent 
        version, leave ``itr=None``. If you want to keep all of the states you
        save, provide unique (increasing) values for 'itr'.

        Args:
            state_dict (dict): Dictionary containing essential elements to
                describe the current state of training.

            itr: An int, or None. Current iteration of training.
        """
        if proc_id() == 0:
            fname = 'vars.pkl' if itr is None else 'vars%d.pkl' % itr
            try:
                joblib.dump(state_dict, osp.join(self.output_dir, fname))
            except:
                self.log('Warning: could not pickle state_dict.', color='red')
            if hasattr(self, 'tf_saver_elements'):
                self._tf_simple_save(itr)
            if hasattr(self, 'pytorch_saver_elements'):
                self._pytorch_simple_save(itr)
Esempio n. 3
0
    def save_config(self, config):
        """
        Log an experiment configuration.

        Call this once at the top of your experiment, passing in all important
        config vars as a dict. This will serialize the config to JSON, while
        handling anything which can't be serialized in a graceful way (writing
        as informative a string as possible). 

        Example use:

        .. code-block:: python

            logger = EpochLogger(**logger_kwargs)
            logger.save_config(locals())
        """
        config_json = convert_json(config)
        if self.exp_name is not None:
            config_json['exp_name'] = self.exp_name
        if proc_id() == 0:
            output = json.dumps(config_json,
                                separators=(',', ':\t'),
                                indent=4,
                                sort_keys=True)
            print(colorize('Saving config:\n', color='cyan', bold=True))
            print(output)
            with open(osp.join(self.output_dir, "config.json"), 'w') as out:
                out.write(output)
Esempio n. 4
0
 def _tf_simple_save(self, itr=None):
     """
     Uses simple_save to save a trained model, plus info to make it easy
     to associated tensors to variables after restore. 
     """
     if proc_id() == 0:
         assert hasattr(self, 'tf_saver_elements'), \
             "First have to setup saving with self.setup_tf_saver"
         fpath = 'tf1_save' + ('%d' % itr if itr is not None else '')
         fpath = osp.join(self.output_dir, fpath)
         if osp.exists(fpath):
             # simple_save refuses to be useful if fpath already exists,
             # so just delete fpath if it's there.
             shutil.rmtree(fpath)
         tf.saved_model.simple_save(export_dir=fpath,
                                    **self.tf_saver_elements)
         joblib.dump(self.tf_saver_info, osp.join(fpath, 'model_info.pkl'))
Esempio n. 5
0
    def __init__(self,
                 output_dir=None,
                 output_fname='progress.txt',
                 exp_name=None):
        """
        Initialize a Logger.

        Args:
            output_dir (string): A directory for saving results to. If 
                ``None``, defaults to a temp directory of the form
                ``/tmp/experiments/somerandomnumber``.

            output_fname (string): Name for the tab-separated-value file 
                containing metrics logged throughout a training run. 
                Defaults to ``progress.txt``. 

            exp_name (string): Experiment name. If you run multiple training
                runs and give them all the same ``exp_name``, the plotter
                will know to group them. (Use case: if you run the same
                hyperparameter configuration with multiple random seeds, you
                should give them all the same ``exp_name``.)
        """
        if proc_id() == 0:
            self.output_dir = output_dir or "/tmp/experiments/%i" % int(
                time.time())
            if osp.exists(self.output_dir):
                print(
                    "Warning: Log dir %s already exists! Storing info there anyway."
                    % self.output_dir)
            else:
                os.makedirs(self.output_dir)
            self.output_file = open(osp.join(self.output_dir, output_fname),
                                    'w')
            atexit.register(self.output_file.close)
            print(
                colorize("Logging data to %s" % self.output_file.name,
                         'green',
                         bold=True))
        else:
            self.output_dir = None
            self.output_file = None
        self.first_row = True
        self.log_headers = []
        self.log_current_row = {}
        self.exp_name = exp_name
Esempio n. 6
0
 def _pytorch_simple_save(self, itr=None):
     """
     Saves the PyTorch model (or models).
     """
     if proc_id() == 0:
         assert hasattr(self, 'pytorch_saver_elements'), \
             "First have to setup saving with self.setup_pytorch_saver"
         fpath = 'pyt_save'
         fpath = osp.join(self.output_dir, fpath)
         fname = 'model' + ('%d' % itr if itr is not None else '') + '.pt'
         fname = osp.join(fpath, fname)
         os.makedirs(fpath, exist_ok=True)
         with warnings.catch_warnings():
             warnings.simplefilter("ignore")
             # We are using a non-recommended way of saving PyTorch models,
             # by pickling whole objects (which are dependent on the exact
             # directory structure at the time of saving) as opposed to
             # just saving network weights. This works sufficiently well
             # for the purposes of Spinning Up, but you may want to do
             # something different for your personal PyTorch project.
             # We use a catch_warnings() context to avoid the warnings about
             # not being able to save the source code.
             torch.save(self.pytorch_saver_elements, fname)
Esempio n. 7
0
 def log(self, msg, color='green'):
     """Print a colorized message to stdout."""
     if proc_id() == 0:
         print(colorize(msg, color, bold=True))