Esempio n. 1
0
def eval_band_cv(X, y, times=10):
    """
    :param X:
    :param y:
    :param times: n times k-fold cv
    :return:  knn/svm/elm=>(OA+std, Kappa+std)
    """
    p = Processor()
    img_ = maxabs_scale(X)
    estimator = [
        KNN(n_neighbors=5),
        SVC(C=1e4, kernel='rbf', gamma=1.),
        ELM_Classifier(200)
    ]
    estimator_pre, y_test_all = [[], [], []], []
    for i in range(times):  # repeat N times K-fold CV
        skf = StratifiedKFold(n_splits=3, shuffle=True)
        for train_index, test_index in skf.split(img_, y):
            X_train, X_test = X[train_index], X[test_index]
            y_train, y_test = y[train_index], y[test_index]
            y_test_all.append(y_test)
            for c in range(3):
                estimator[c].fit(X_train, y_train)
                estimator_pre[c].append(estimator[c].predict(X_test))
    clf = ['knn', 'svm', 'elm']
    score = []
    for z in range(3):
        ca, oa, aa, kappa = p.save_res_4kfolds_cv(estimator_pre[z],
                                                  y_test_all,
                                                  file_name=clf[z] +
                                                  'score.npz',
                                                  verbose=True)
        score.append([oa, kappa])
    return score
Esempio n. 2
0
 def eval_feature_cv(self,
                     X,
                     y,
                     times=3,
                     test_size=0.95,
                     random_state=None):
     print(X.shape)
     # X = normalize(X)
     p = Processor()
     estimator = [KNN(n_neighbors=5), SVC(C=1e6, kernel='rbf')]
     estimator_pre, y_test_all = [[], []], []
     for i in range(times):  # repeat N times K-fold CV
         X_train, X_test, y_train, y_test = train_test_split(
             X,
             y,
             test_size=test_size,
             random_state=random_state,
             shuffle=True,
             stratify=y)
         # train_index, test_index = p_Cora.stratified_train_test_index(y, test_size)
         # X_train, X_test = X[train_index], X[test_index]
         # y_train, y_test = y[train_index], y[test_index]
         y_test_all.append(y_test)
         for c in range(len(estimator)):
             estimator[c].fit(X_train, y_train)
             y_pre = estimator[c].predict(X_test)
             estimator_pre[c].append(y_pre)
     # score_Cora = []
     score_dic = {
         'knn': {
             'ca': [],
             'oa': [],
             'aa': [],
             'kappa': []
         },
         'svm': {
             'ca': [],
             'oa': [],
             'aa': [],
             'kappa': []
         }
     }
     key_ = ['knn', 'svm']
     for z in range(len(estimator)):
         ca, oa, aa, kappa = p.save_res_4kfolds_cv(estimator_pre[z],
                                                   y_test_all,
                                                   file_name=None,
                                                   verbose=False)
         # score_Cora.append([oa, kappa, aa, ca])
         score_dic[key_[z]]['ca'] = ca
         score_dic[key_[z]]['oa'] = oa
         score_dic[key_[z]]['aa'] = aa
         score_dic[key_[z]]['kappa'] = kappa
     return score_dic
Esempio n. 3
0
def eval_band_cv(X, y, times=10, test_size=0.95):
    p = Processor()
    estimator = [KNN(n_neighbors=3), SVC(C=1e5, kernel='rbf', gamma=1.)]
    estimator_pre, y_test_all = [[], []], []
    for i in range(times):  # repeat N times K-fold CV
        X_train, X_test, y_train, y_test = train_test_split(
            X,
            y,
            test_size=test_size,
            random_state=None,
            shuffle=True,
            stratify=y)
        # skf = StratifiedKFold(n_splits=20, shuffle=True)
        # for test_index, train_index in skf.split(img_correct, gt_correct):
        #     X_train, X_test = img_correct[train_index], img_correct[test_index]
        #     y_train, y_test = gt_correct[train_index], gt_correct[test_index]
        y_test_all.append(y_test)
        for c in range(len(estimator)):
            estimator[c].fit(X_train, y_train)
            y_pre = estimator[c].predict(X_test)
            estimator_pre[c].append(y_pre)
    # score = []
    score_dic = {
        'knn': {
            'ca': [],
            'oa': [],
            'aa': [],
            'kappa': []
        },
        'svm': {
            'ca': [],
            'oa': [],
            'aa': [],
            'kappa': []
        }
    }
    key_ = ['knn', 'svm']
    for z in range(len(estimator)):
        ca, oa, aa, kappa = p.save_res_4kfolds_cv(estimator_pre[z],
                                                  y_test_all,
                                                  file_name=None,
                                                  verbose=False)
        # score.append([oa, kappa, aa, ca])
        score_dic[key_[z]]['ca'] = ca
        score_dic[key_[z]]['oa'] = oa
        score_dic[key_[z]]['aa'] = aa
        score_dic[key_[z]]['kappa'] = kappa
    return score_dic
Esempio n. 4
0
all_aa, all_oa, all_kappa, all_ca = [], [], [], []
skf = StratifiedKFold(n_splits=3, random_state=55, shuffle=True)
for j in range(X.shape[0]):
    X_ = X[j]
    y_pres = []
    y_tests = []
    for i in range(10):
        for train_index, test_index in skf.split(X_, y):  # [index]
            X_train, X_test = X_[train_index], X_[test_index]  # [index]
            y_train, y_test = y[train_index], y[test_index]
            elm = BaseELM(500, C=1e8)
            y_predicted = elm.fit(X_train, y_train).predict(X_test)
            y_pres.append(y_predicted)
            y_tests.append(y_test)
    ca, oa, aa, kappa = p.save_res_4kfolds_cv(np.asarray(y_pres),
                                              np.asarray(y_tests),
                                              file_name=None,
                                              verbose=True)
    all_oa.append(oa)
    all_aa.append(aa)
    all_kappa.append(kappa)
    all_ca.append(ca)

np.savez('./experimental_results/Acc_comparison/IndianPines-Box_plot_data.npz',
         ca=all_ca,
         oa=all_oa,
         aa=all_aa,
         kappa=all_kappa)
print('DONE')