Esempio n. 1
0
def solver(num_files, x, sizes):
    sizes = sorted(sizes, reverse=True)
    printd(sizes)

    return search_size(x, sizes)

    pass
Esempio n. 2
0
def build_graph(w, h, table):
    g_w = nx.DiGraph()

    g_w.add_node("source")
    g_w.add_node("target")

    for i in xrange(h):
        for j in xrange(w):
            g_w.add_node("%d_%d" % (i, j))
            g_w.add_node("%d_%d_out" % (i, j))

    for i in xrange(h):
        for j in xrange(w):
            e_name = "%d_%d" % (i, j)
            e_out_name = get_out_name(i, j)
            g_w.add_edge(e_name, e_out_name, {'capacity': table[i][j]})

            #up
            if i > 0:
                out2 = get_out_name(i - 1, j)
                g_w.add_edge(out2, e_name, {'capacity': 1})

            #left
            if j > 0:
                out2 = get_out_name(i, j - 1)
                g_w.add_edge(out2, e_name, {'capacity': 1})

            #right
            if j < w - 1:
                out2 = get_out_name(i, j + 1)
                g_w.add_edge(out2, e_name, {'capacity': 1})

            #down
            if i < h - 1:
                out2 = get_out_name(i + 1, j)
                g_w.add_edge(out2, e_name, {'capacity': 1})

    for j in xrange(w):
        e_name = "%d_%d" % (0, j)
        g_w.add_edge("source", e_name, {'capacity': 1})


        e_name = get_out_name(h-1, j)
        g_w.add_edge(e_name, "target", {'capacity': 1})


    for e in sorted(g_w.edges()):
        (u, v) = e
        data = g_w.get_edge_data(u, v)
        printd(e, data)
    return g_w
Esempio n. 3
0
def solver(a):
    perms = itertools.permutations(a)

    min_swaps = None
    for p in perms:
        if is_valid_seq(p):
            printd("EVALUATING", a, p)
            s = num_swaps(list(a), p)
            printd("RESULT: ", s, "perm", p)

            if min_swaps is None or s < min_swaps:
                #printd("THIS IS LOWER", s, p)
                min_swaps = s
    return min_swaps
Esempio n. 4
0
def search_size(capacity, sizes):
    hi = len(sizes)
    lo = int(math.ceil(len(sizes) / 2))
    printd("HI", hi, "LO", lo)

    while hi != lo:
        mid = (hi + lo) // 2
        solved = is_solvable(mid, capacity, sizes)

        if solved:
            #printd("Checking ", hi, lo, "    MID=", mid, "   solved? YES", groups)
            hi = mid
        else:
            printd("Checking ", hi, lo, "    MID=", mid, "   solved? NO")
            if lo >= mid:
                lo += 1
            else:
                lo = mid
    return lo
Esempio n. 5
0
def solver(b, m):
    print "b", b, "m", m

    all_possibilities = [(i, p) for i in xrange(0, b) for p in possibilities(i, b)]
    print all_possibilities
    print b, len(all_possibilities) + 1
    for size in xrange(b-1, len(all_possibilities) + 1):
        #print "SIZE", size
        for edge_set in itertools.combinations(all_possibilities, size):
            edge_set = set(edge_set)
            if contains_b(edge_set, b) and not has_dup(edge_set):
                printd(edge_set)
                g = build_graph(b, edge_set)
                if num_paths(g, b) == m:
                    obj = next(nx.simple_cycles(g), None)
                    if obj == None:
                        return build_res(edge_set, b)

    return "IMPOSSIBLE"
Esempio n. 6
0
def solve_recursive(s, k, start, end):
    printd("s", s, "k", start, end)
    if (end - start) == k:
        if is_clean(s, start, end):
            return 0
        elif s[start:end] == list('-' * k):
            return 1
        else:
            return None

    if s[start] == '-' or s[end - 1] == '-':
        options = []
        if s[start] == '-':
            s2 = deepcopy(s)
            invert(s2, start, k)
            cost = solve_recursive(s2, k, start + 1, end)
            if cost is not None:
                options.append(cost)
        if s[end - 1] == '-':
            printd("HERE", start, end)
            s2 = deepcopy(s)
            invert(s2, end - k, k)
            printd("INVERTED", s, s2)
            cost = solve_recursive(s2, k, start, end - 1)
            if cost is not None:
                options.append(cost)
        if len(options) > 0:
            return 1 + min(options)
        else:
            return None
    else:
        return solve_recursive(s, k, start + 1, end)
Esempio n. 7
0
def solve_rec(pancakes):
    printd(pancakes)
    pancakes = sorted(pancakes)
    max = pancakes[-1]
    if max > 3:
        printd("moving pancakes", pancakes)
        diff_l = 1
        diff_r = int(pancakes[-1] / 2)
        t_times = []

        if diff_l <= diff_r:
            for i in xrange(diff_l, diff_r + 1):
                printd("testing" ,i)
                if i < 2:
                    continue

                pancakes[-1] -= i

                #move to another with emptier dish
                if len(pancakes) > 1 and pancakes[0] + i < pancakes[-1]:
                    pancakes[0] += i

                    t = solve_rec(pancakes) + 1
                    t_times.append(t)
                    pancakes[0] -= i

                # move to a new one
                pancakes.append(i)
                t = solve_rec(pancakes) + 1
                t_times.append(t)
                pancakes = pancakes[:-1]

                pancakes[-1] += i

        if len(t_times) > 0:
            t = min(max, min(t_times))
        else:
            t = max
        return t
    else:
        printd("p", pancakes, "not moved", "max", max)
        return max