Esempio n. 1
0
def SS_selection(lep1, lep2):
    selection = PackedSelection()

    is_dilep   = ((ak.num(lep1) + ak.num(lep2))==2)
    pos_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))<0)
    neg_charge = ((ak.sum(lep1.pdgId, axis=1) + ak.sum(lep2.pdgId, axis=1))>0)

    dilep2    = choose(lep2, 2)
    dilep1   = choose(lep1, 2)
    dilep   = cross(lep2, lep1)

    is_SS = ( ak.any((dilep2['0'].charge * dilep2['1'].charge)>0, axis=1) | \
              ak.any((dilep1['0'].charge * dilep1['1'].charge)>0, axis=1) | \
              ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) )

    selection.add('SS', is_SS)
    ss_reqs = ['SS']

    ss_reqs_d = {sel: True for sel in ss_reqs}
    ss_selection = selection.require(**ss_reqs_d)
    return ss_selection
Esempio n. 2
0
    def dilep_baseline(self, omit=[], cutflow=None, tight=False, SS=True):
        '''
        give it a cutflow object if you want it to be filed.
        cuts in the omit list will not be applied
        '''
        self.selection = PackedSelection()

        is_dilep   = ((ak.num(self.ele) + ak.num(self.mu))==2)
        pos_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))<0)
        neg_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))>0)
        lep0pt     = ((ak.num(self.ele[(self.ele.pt>25)]) + ak.num(self.mu[(self.mu.pt>25)]))>0)
        lep1pt     = ((ak.num(self.ele[(self.ele.pt>20)]) + ak.num(self.mu[(self.mu.pt>20)]))>1)
        lepveto    = ((ak.num(self.ele_veto) + ak.num(self.mu_veto))==2)

        dimu    = choose(self.mu, 2)
        diele   = choose(self.ele, 2)
        dilep   = cross(self.mu, self.ele)

        if SS:
            is_SS = ( ak.any((dimu['0'].charge * dimu['1'].charge)>0, axis=1) | \
                      ak.any((diele['0'].charge * diele['1'].charge)>0, axis=1) | \
                      ak.any((dilep['0'].charge * dilep['1'].charge)>0, axis=1) )
        else:
            is_OS = ( ak.any((dimu['0'].charge * dimu['1'].charge)<0, axis=1) | \
                      ak.any((diele['0'].charge * diele['1'].charge)<0, axis=1) | \
                      ak.any((dilep['0'].charge * dilep['1'].charge)<0, axis=1) )

        lepton = ak.concatenate([self.ele, self.mu], axis=1)
        lepton_pdgId_pt_ordered = ak.fill_none(
            ak.pad_none(
                lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True),
        0)

        triggers  = getTriggers(self.events,
            ak.flatten(lepton_pdgId_pt_ordered[:,0:1]),
            ak.flatten(lepton_pdgId_pt_ordered[:,1:2]), year=self.year, dataset=self.dataset)

        ht = ak.sum(self.jet_all.pt, axis=1)
        st = self.met.pt + ht + ak.sum(self.mu.pt, axis=1) + ak.sum(self.ele.pt, axis=1)

        self.selection.add('lepveto',       lepveto)
        self.selection.add('dilep',         is_dilep)
        #self.selection.add('filter',        self.filters)
        self.selection.add('trigger',       triggers)
        self.selection.add('p_T(lep0)>25',  lep0pt)
        self.selection.add('p_T(lep1)>20',  lep1pt)
        if SS:
            self.selection.add('SS',            is_SS )
        else:
            self.selection.add('OS',            is_OS )
        self.selection.add('N_jet>3',       (ak.num(self.jet_all)>3) )
        self.selection.add('N_jet>4',       (ak.num(self.jet_all)>4) )
        self.selection.add('N_central>2',   (ak.num(self.jet_central)>2) )
        self.selection.add('N_central>3',   (ak.num(self.jet_central)>3) )
        self.selection.add('N_btag>0',      (ak.num(self.jet_btag)>0) )
        self.selection.add('N_fwd>0',       (ak.num(self.jet_fwd)>0) )
        self.selection.add('MET>30',        (self.met.pt>30) )
        self.selection.add('MET>50',        (self.met.pt>50) )
        self.selection.add('ST>600',        (st>600) )

        ss_reqs = [
        #    'filter',
            'lepveto',
            'dilep',
            'p_T(lep0)>25',
            'p_T(lep1)>20',
            'trigger',
            'SS' if SS else 'OS',
            'N_jet>3',
            'N_central>2',
            'N_btag>0',
            'MET>30',
            'N_fwd>0',
        ]
        
        if tight:
            ss_reqs += [
                'N_jet>4',
                'N_central>3',
                'ST>600',
                'MET>50',
                #'delta_eta',
            ]

        ss_reqs_d = { sel: True for sel in ss_reqs if not sel in omit }
        ss_selection = self.selection.require(**ss_reqs_d)

        if cutflow:
            #
            cutflow_reqs_d = {}
            for req in ss_reqs:
                cutflow_reqs_d.update({req: True})
                cutflow.addRow( req, self.selection.require(**cutflow_reqs_d) )

        return ss_selection
Esempio n. 3
0
    def trilep_baseline(self, omit=[], cutflow=None, tight=False):
        '''
        give it a cutflow object if you want it to be filed.
        cuts in the omit list will not be applied
        '''
        self.selection = PackedSelection()

        is_trilep  = ((ak.num(self.ele) + ak.num(self.mu))==3)
        los_trilep = ((ak.num(self.ele) + ak.num(self.mu))>=2)
        pos_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))<0)
        neg_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))>0)
        lep0pt     = ((ak.num(self.ele[(self.ele.pt>25)]) + ak.num(self.mu[(self.mu.pt>25)]))>0)
        lep1pt     = ((ak.num(self.ele[(self.ele.pt>20)]) + ak.num(self.mu[(self.mu.pt>20)]))>1)
        lepveto    = ((ak.num(self.ele_veto) + ak.num(self.mu_veto))==3)

        dimu    = choose(self.mu, 2)
        diele   = choose(self.ele, 2)
        dimu_veto = choose(self.mu_veto,2)
        diele_veto = choose(self.ele_veto,2)
        #dilep   = cross(self.mu, self.ele)

        OS_dimu = dimu[(dimu['0'].charge*dimu['1'].charge < 0)]
        OS_diele = diele[(diele['0'].charge*diele['1'].charge < 0)]
        OS_dimu_veto = dimu_veto[(dimu_veto['0'].charge*dimu_veto['1'].charge < 0)]
        OS_diele_veto = diele_veto[(diele_veto['0'].charge*diele_veto['1'].charge < 0)]
        
        SFOS = ak.concatenate([OS_diele_veto, OS_dimu_veto], axis=1)

        offZ = (ak.all(abs(OS_dimu.mass-91.2)>10, axis=1) & ak.all(abs(OS_diele.mass-91.2)>10, axis=1))
        offZ_veto = (ak.all(abs(OS_dimu_veto.mass-91.2)>10, axis=1) & ak.all(abs(OS_diele_veto.mass-91.2)>10, axis=1))

        lepton = ak.concatenate([self.ele, self.mu], axis=1)
        lepton_pdgId_pt_ordered = ak.fill_none(ak.pad_none(lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True), 0)
        dilep = choose(lepton,2)
        SS_dilep = (dilep['0'].charge*dilep['1'].charge > 0)
        los_trilep_SS = (ak.any(SS_dilep, axis=1))

        vetolepton   = ak.concatenate([self.ele_veto, self.mu_veto], axis=1)    
        vetotrilep = choose3(vetolepton, 3)
        pos_trilep = ak.any((vetotrilep['0'].charge+vetotrilep['1'].charge+vetotrilep['2'].charge > 0),axis=1)
        neg_trilep = ak.any((vetotrilep['0'].charge+vetotrilep['1'].charge+vetotrilep['2'].charge < 0),axis=1)
        
        triggers  = getTriggers(self.events,
            ak.flatten(lepton_pdgId_pt_ordered[:,0:1]),
            ak.flatten(lepton_pdgId_pt_ordered[:,1:2]), year=self.year, dataset=self.dataset)

        ht = ak.sum(self.jet_all.pt, axis=1)
        st = self.met.pt + ht + ak.sum(self.mu.pt, axis=1) + ak.sum(self.ele.pt, axis=1)
        st_veto = self.met.pt + ht + ak.sum(self.mu_veto.pt, axis=1) + ak.sum(self.ele_veto.pt, axis=1)

        lep0pt_veto     = ((ak.num(self.ele_veto[(self.ele_veto.pt>25)]) + ak.num(self.mu_veto[(self.mu_veto.pt>25)]))>0)
        lep1pt_veto     = ((ak.num(self.ele_veto[(self.ele_veto.pt>20)]) + ak.num(self.mu_veto[(self.mu_veto.pt>20)]))>1)

        self.selection.add('lepveto',       lepveto)
        self.selection.add('trilep',        los_trilep_SS)
        self.selection.add('filter',        self.filters)
        self.selection.add('trigger',       triggers)
        self.selection.add('p_T(lep0)>25',  lep0pt_veto)
        self.selection.add('p_T(lep1)>20',  lep1pt_veto)
        self.selection.add('N_jet>2',       (ak.num(self.jet_all)>2) )
        self.selection.add('N_jet>3',       (ak.num(self.jet_all)>3) )
        self.selection.add('N_central>1',   (ak.num(self.jet_central)>1) )
        self.selection.add('N_central>2',   (ak.num(self.jet_central)>2) )
        self.selection.add('N_btag>0',      (ak.num(self.jet_btag)>0 ))
        self.selection.add('N_fwd>0',       (ak.num(self.jet_fwd)>0) )
        self.selection.add('MET>50',        (self.met.pt>50) )
        self.selection.add('ST>600',        (st_veto>600) )
        self.selection.add('offZ',          offZ_veto )
        #self.selection.add('SFOS>=1',          ak.num(SFOS)==0)
        #self.selection.add('charge_sum',          neg_trilep)
        
        reqs = [
            'filter',
            'lepveto',
            'trilep',
            'p_T(lep0)>25',
            'p_T(lep1)>20',
            'trigger',
            'offZ',
            'MET>50',
            'N_jet>2',
            'N_central>1',
            'N_btag>0',
            'N_fwd>0',
            #'SFOS>=1',
            #'charge_sum'
        ]
        
        if tight:
            reqs += [
                'N_jet>3',
                'N_central>2',
                'ST>600',
                #'MET>50',
                #'delta_eta',
            ]

        reqs_d = { sel: True for sel in reqs if not sel in omit }
        selection = self.selection.require(**reqs_d)

        self.reqs = [ sel for sel in reqs if not sel in omit ]

        if cutflow:
            #
            cutflow_reqs_d = {}
            for req in reqs:
                cutflow_reqs_d.update({req: True})
                cutflow.addRow( req, self.selection.require(**cutflow_reqs_d) )

        return selection
Esempio n. 4
0
    def process(self, events):

        output = self.accumulator.identity()

        # we can use a very loose preselection to filter the events. nothing is done with this presel, though
        presel = ak.num(events.Jet) > 0

        if self.year == 2016:
            lumimask = LumiMask(
                '../data/lumi/Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON.txt'
            )
        if self.year == 2017:
            lumimask = LumiMask(
                '../data/lumi/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt'
            )
        if self.year == 2018:
            lumimask = LumiMask(
                '../data/lumi/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt'
            )

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)

        if self.year == 2018:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2017:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2016:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ

        ## Electrons
        electron = Collections(ev, "Electron", "tightFCNC", 0, self.year).get()
        electron = electron[(electron.pt > 25) & (np.abs(electron.eta) < 2.4)]

        loose_electron = Collections(ev, "Electron", "looseFCNC", 0,
                                     self.year).get()
        loose_electron = loose_electron[(loose_electron.pt > 25)
                                        & (np.abs(loose_electron.eta) < 2.4)]

        SSelectron = (ak.sum(electron.charge, axis=1) != 0) & (ak.num(electron)
                                                               == 2)
        OSelectron = (ak.sum(electron.charge, axis=1) == 0) & (ak.num(electron)
                                                               == 2)

        dielectron = choose(electron, 2)
        dielectron_mass = (dielectron['0'] + dielectron['1']).mass
        dielectron_pt = (dielectron['0'] + dielectron['1']).pt

        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[(leading_electron_idx)]
        leading_electron = leading_electron[(leading_electron.pt > 30)]

        trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1))
        trailing_electron = electron[trailing_electron_idx]

        ##Muons

        loose_muon = Collections(ev, "Muon", "looseFCNC", 0, self.year).get()
        loose_muon = loose_muon[(loose_muon.pt > 20)
                                & (np.abs(loose_muon.eta) < 2.4)]

        #jets
        jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt')
        jet = jet[~match(jet, loose_muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        #weights
        weight = Weights(len(ev))
        weight2 = Weights(len(ev))
        weight2.add("charge flip",
                    self.charge_flip_ratio.flip_weight(electron))

        #selections
        filters = getFilters(ev, year=self.year, dataset=dataset, UL=False)
        mask = lumimask(ev.run, ev.luminosityBlock)
        ss = (SSelectron)
        os = (OSelectron)
        mass = (ak.min(np.abs(dielectron_mass - 91.2), axis=1) < 15)
        lead_electron = (ak.min(leading_electron.pt, axis=1) > 30)
        jet1 = (ak.num(jet) >= 1)
        jet2 = (ak.num(jet) >= 2)
        num_loose = ((ak.num(loose_electron) == 2) & (ak.num(loose_muon) == 0))

        selection = PackedSelection()
        selection.add('filter', (filters))
        selection.add('mask', (mask))
        selection.add('ss', ss)
        selection.add('os', os)
        selection.add('mass', mass)
        selection.add('leading', lead_electron)
        selection.add('triggers', triggers)
        selection.add('one jet', jet1)
        selection.add('two jets', jet2)
        selection.add('num_loose', num_loose)

        bl_reqs = ['filter'] + ['triggers'] + ['mask']

        bl_reqs_d = {sel: True for sel in bl_reqs}
        baseline = selection.require(**bl_reqs_d)

        s_reqs = bl_reqs + ['ss'] + ['mass'] + ['num_loose'] + ['leading']
        s_reqs_d = {sel: True for sel in s_reqs}
        ss_sel = selection.require(**s_reqs_d)

        o_reqs = bl_reqs + ['os'] + ['mass'] + ['num_loose'] + ['leading']
        o_reqs_d = {sel: True for sel in o_reqs}
        os_sel = selection.require(**o_reqs_d)

        j1s_reqs = s_reqs + ['one jet']
        j1s_reqs_d = {sel: True for sel in j1s_reqs}
        j1ss_sel = selection.require(**j1s_reqs_d)

        j1o_reqs = o_reqs + ['one jet']
        j1o_reqs_d = {sel: True for sel in j1o_reqs}
        j1os_sel = selection.require(**j1o_reqs_d)

        j2s_reqs = s_reqs + ['two jets']
        j2s_reqs_d = {sel: True for sel in j2s_reqs}
        j2ss_sel = selection.require(**j2s_reqs_d)

        j2o_reqs = o_reqs + ['two jets']
        j2o_reqs_d = {sel: True for sel in j2o_reqs}
        j2os_sel = selection.require(**j2o_reqs_d)

        #outputs

        output["electron_data1"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[os_sel].phi)),
            weight=weight2.weight()[os_sel])

        output["electron_data2"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[os_sel].phi)),
            weight=weight2.weight()[os_sel])

        output["electron_data3"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].phi)),
            weight=weight2.weight()[j1os_sel])

        output["electron_data4"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].phi)),
            weight=weight2.weight()[j1os_sel])

        output["electron_data5"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].phi)),
            weight=weight2.weight()[j2os_sel])

        output["electron_data6"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].phi)),
            weight=weight2.weight()[j2os_sel])

        output["electron_data7"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[ss_sel].phi)),
            weight=weight.weight()[ss_sel])

        output["electron_data8"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].phi)),
            weight=weight.weight()[ss_sel])

        output["electron_data9"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].phi)),
            weight=weight.weight()[j1ss_sel])

        output["electron_data10"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].phi)),
            weight=weight.weight()[j1ss_sel])

        output["electron_data11"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].phi)),
            weight=weight.weight()[j2ss_sel])

        output["electron_data12"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].phi)),
            weight=weight.weight()[j2ss_sel])

        output["dilep_mass1"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[os_sel])),
            weight=weight2.weight()[os_sel])

        output["dilep_mass2"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j1os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j1os_sel])),
            weight=weight2.weight()[j1os_sel])

        output["dilep_mass3"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j2os_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j2os_sel])),
            weight=weight2.weight()[j2os_sel])

        output["dilep_mass4"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[ss_sel])),
            weight=weight.weight()[ss_sel])

        output["dilep_mass5"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j1ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j1ss_sel])),
            weight=weight.weight()[j1ss_sel])

        output["dilep_mass6"].fill(
            dataset=dataset,
            mass=ak.to_numpy(ak.flatten(dielectron_mass[j2ss_sel])),
            pt=ak.to_numpy(ak.flatten(dielectron_pt[j2ss_sel])),
            weight=weight.weight()[j2ss_sel])

        output["MET"].fill(dataset=dataset,
                           pt=met_pt[os_sel],
                           weight=weight2.weight()[os_sel])

        output["MET2"].fill(dataset=dataset,
                            pt=met_pt[j1os_sel],
                            weight=weight2.weight()[j1os_sel])

        output["MET3"].fill(dataset=dataset,
                            pt=met_pt[j2os_sel],
                            weight=weight2.weight()[j2os_sel])

        output["MET4"].fill(dataset=dataset,
                            pt=met_pt[ss_sel],
                            weight=weight.weight()[ss_sel])

        output["MET5"].fill(dataset=dataset,
                            pt=met_pt[j1ss_sel],
                            weight=weight.weight()[j1ss_sel])

        output["MET6"].fill(dataset=dataset,
                            pt=met_pt[j2ss_sel],
                            weight=weight.weight()[j2ss_sel])

        output["N_jet"].fill(dataset=dataset,
                             multiplicity=ak.num(jet)[os_sel],
                             weight=weight2.weight()[os_sel])

        output["N_jet2"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j1os_sel],
                              weight=weight2.weight()[j1os_sel])

        output["N_jet3"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j2os_sel],
                              weight=weight2.weight()[j2os_sel])

        output["N_jet4"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[ss_sel],
                              weight=weight.weight()[ss_sel])

        output["N_jet5"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j1ss_sel],
                              weight=weight.weight()[j1ss_sel])

        output["N_jet6"].fill(dataset=dataset,
                              multiplicity=ak.num(jet)[j2ss_sel],
                              weight=weight.weight()[j2ss_sel])

        output["PV_npvsGood"].fill(dataset=dataset,
                                   multiplicity=ev.PV[os_sel].npvsGood,
                                   weight=weight2.weight()[os_sel])

        output["PV_npvsGood2"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j1os_sel].npvsGood,
                                    weight=weight2.weight()[j1os_sel])

        output["PV_npvsGood3"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j2os_sel].npvsGood,
                                    weight=weight2.weight()[j2os_sel])

        output["PV_npvsGood4"].fill(dataset=dataset,
                                    multiplicity=ev.PV[ss_sel].npvsGood,
                                    weight=weight.weight()[ss_sel])

        output["PV_npvsGood5"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j1ss_sel].npvsGood,
                                    weight=weight.weight()[j1ss_sel])

        output["PV_npvsGood6"].fill(dataset=dataset,
                                    multiplicity=ev.PV[j2ss_sel].npvsGood,
                                    weight=weight.weight()[j2ss_sel])

        return output