Esempio n. 1
0
def azimuthCompression(Srx, h):
    """
    Method to apply matched filter h on azimuth dimension
    """
    # pad received and emitted signals on common time stemp
    # to obtain common fft
    n1 = len(h)
    n2 = Srx.shape[0]

    Nsa = n1 + n2 - 1
##    Nsa2 = int(np.power(2.0, np.ceil(np.log2( Nsa ))))
    Nsa2 = Nsa if Nsa % 2 == 0 else Nsa+1

    SrxMF=np.zeros((Nsa2, Srx.shape[1]),dtype=complex)
    hMF = np.concatenate((np.zeros(np.floor((Nsa2-n1)*0.5)), h, np.zeros(np.ceil((Nsa2-n1)*0.5))))
    HMF = GC.fft(hMF)

    for i in range(Srx.shape[1]):
        col = Srx[:,i]
        colMF = np.concatenate((np.zeros(np.floor((Nsa2-len(col))*0.5)), col, np.zeros(np.ceil((Nsa2-len(col))*0.5))))
        ColMF = GC.fft(colMF)
        ColMF = ColMF * HMF
        SrxMF[:,i] = GC.ifft(ColMF)

    return SrxMF
Esempio n. 2
0
def rangeCompression(Srx, h):
    """

    Method to apply matched filter h on range dimension

    """

    # pad received and emitted signals on common time stemp
    # to obtain common fft
    n1 = len(h)
    n2 = Srx.shape[1]

    Nsa = n1 + n2 - 1
##    Nsa2 = int(np.power(2.0, np.ceil(np.log2( Nsa ))))
    Nsa2 = Nsa if Nsa % 2 == 0 else Nsa+1

    SrxMF=np.zeros((Srx.shape[0], Nsa2),dtype=complex)
    hMF = np.concatenate((np.zeros(np.floor((Nsa2-n1)*0.5)), h, np.zeros(np.ceil((Nsa2-n1)*0.5))))
    HMF = GC.fft(hMF)

    for i in range(Srx.shape[0]):
        row = Srx[i,:]
        rowMF = np.concatenate((np.zeros(np.floor((Nsa2-len(row))*0.5)), row, np.zeros(np.ceil((Nsa2-len(row))*0.5))))
        RowMF = GC.fft(rowMF)
        RowMF = RowMF * HMF
        SrxMF[i,:] = GC.ifft(RowMF)

    return SrxMF
Esempio n. 3
0
def compression(Srx, h, dim0):
    """
    Matched filter alogorith with filter 'h' is applied on
    the image 'Srx' on the dimension 'dim'

    dim is 'range' or 'azimuth'

    """

    dim = 1 if dim0 is 'range' else 0 if dim0 is 'azimuth' else -1
    assert dim >= 0, logPrint("Parameter dim should be 'range' or 'azimuth'")
    # inverse of dim
    idim = np.abs(dim - 1)
    # pad received and emitted signals on common time stemp
    # to obtain common fft
    n1 = len(h)
    n2 = Srx.shape[dim]

    Nsa = n1 + n2 - 1
    ##    Nsa2 = int(np.power(2.0, np.ceil(np.log2( Nsa ))))
    Nsa2 = Nsa if Nsa % 2 == 0 else Nsa + 1

    ##    shape = (Srx.shape[0], Nsa2) if dim == 1 else (Nsa2, Srx.shape[1])
    ##    SrxMF=np.zeros(shape,dtype=complex)
    SrxMF = np.zeros(Srx.shape, dtype=complex)
    hMF = np.concatenate((np.zeros(np.floor(
        (Nsa2 - n1) * 0.5)), h, np.zeros(np.ceil((Nsa2 - n1) * 0.5))))
    HMF = GC.fft(hMF)

    m1 = np.floor((Nsa2 - n2) * 0.5)
    m2 = np.ceil((Nsa2 - n2) * 0.5)
    for i in range(Srx.shape[idim]):
        data = Srx[i, :] if dim == 1 else Srx[:, i]
        dataMF = np.concatenate((np.zeros(m1), data, np.zeros(m2)))
        DataMF = GC.fft(dataMF)
        DataMF = DataMF * HMF
        if dim == 1:
            SrxMF[i, :] = GC.ifft(DataMF)[n1 / 2:n1 / 2 + n2]
        else:
            SrxMF[:, i] = GC.ifft(DataMF)[n1 / 2:n1 / 2 + n2]

    return SrxMF
Esempio n. 4
0
def compression(Srx, h, dim0):
    """
    Matched filter alogorith with filter 'h' is applied on
    the image 'Srx' on the dimension 'dim'

    dim is 'range' or 'azimuth'

    """

    dim = 1 if dim0 is 'range' else 0 if dim0 is 'azimuth' else -1
    assert dim >= 0, logPrint("Parameter dim should be 'range' or 'azimuth'")
    # inverse of dim
    idim = np.abs(dim-1)
    # pad received and emitted signals on common time stemp
    # to obtain common fft
    n1 = len(h)
    n2 = Srx.shape[dim]

    Nsa = n1 + n2 - 1
##    Nsa2 = int(np.power(2.0, np.ceil(np.log2( Nsa ))))
    Nsa2 = Nsa if Nsa % 2 == 0 else Nsa+1


##    shape = (Srx.shape[0], Nsa2) if dim == 1 else (Nsa2, Srx.shape[1])
##    SrxMF=np.zeros(shape,dtype=complex)
    SrxMF=np.zeros(Srx.shape,dtype=complex)
    hMF = np.concatenate((np.zeros(np.floor((Nsa2-n1)*0.5)), h, np.zeros(np.ceil((Nsa2-n1)*0.5))))
    HMF = GC.fft(hMF)

    m1 = np.floor((Nsa2-n2)*0.5)
    m2 = np.ceil((Nsa2-n2)*0.5)
    for i in range(Srx.shape[idim]):
        data = Srx[i,:] if dim == 1 else Srx[:,i]
        dataMF = np.concatenate((np.zeros(m1), data, np.zeros(m2)))
        DataMF = GC.fft(dataMF)
        DataMF = DataMF * HMF
        if dim == 1:
            SrxMF[i,:] = GC.ifft(DataMF)[n1/2:n1/2+n2]
        else:
            SrxMF[:,i] = GC.ifft(DataMF)[n1/2:n1/2+n2]

    return SrxMF
Esempio n. 5
0
def rangeCompression(Srx, HMF):
    """
    Range compression with freq-domain filter H(f)
    """
    assert Srx.shape[1] == len(HMF), logPrint("Range dimension of the Srx is not equal to length of HMF")

    SrxMF=np.zeros(Srx.shape,dtype=complex)
    for i in range(Srx.shape[0]):
        data = Srx[i,:]
        DataMF = GC.fft(data) * HMF
        SrxMF[i,:] = GC.ifft(DataMF)

    return SrxMF
Esempio n. 6
0
def rangeCompression(Srx, HMF):
    """
    Range compression with freq-domain filter H(f)
    """
    assert Srx.shape[1] == len(HMF), logPrint(
        "Range dimension of the Srx is not equal to length of HMF")

    SrxMF = np.zeros(Srx.shape, dtype=complex)
    for i in range(Srx.shape[0]):
        data = Srx[i, :]
        DataMF = GC.fft(data) * HMF
        SrxMF[i, :] = GC.ifft(DataMF)

    return SrxMF
Esempio n. 7
0
def showEmittedSignal(tArray, Stx, signalName=""):
##    Stx = emittedSignal(tArray,Sat.Tp, Sat.Freq, Sat.K)
    StxFFT = GC.fft(Stx)
    fArray = Sat.Freq + Sat.K * tArray
    plt.subplot(221)
    plt.title(signalName + " signal, Re")
    plt.plot(tArray, np.real(Stx))
    plt.subplot(222)
    plt.title(signalName + " signal, Im")
    plt.plot(tArray, np.imag(Stx))
    plt.subplot(223)
    plt.title(signalName + " signal FFT, module")
    plt.plot(fArray, np.absolute(StxFFT))
    plt.subplot(224)
    plt.title(signalName + " signal FFT, phase")
    plt.plot(fArray, np.sign(np.absolute(StxFFT)) * np.angle(StxFFT))
    plt.show()
Esempio n. 8
0
def azimuthFFT(data):
    procDataAF = np.zeros(data.shape, dtype=complex)
    for i in range(procDataAF.shape[1]):
        # get range fixed column
        procDataAF[:,i] = GC.fft(data[:,i])
    return procDataAF
Esempio n. 9
0
    h=chirpSignal(tArray0, Sat.Tp, -Sat.K)
    Srx_RC = rangeCompression(Srx,h)

##    Nsa = SrxMF.shape[1]
##    tmin = tArrayR[0] - len(h)*0.5*dt
##    tmax = tmin + dt*Nsa
##    tArrayMF = np.arange(tmin,tmax,dt)
##    tArrayMF = np.resize(tArrayMF,Nsa)
    showResponse(Srx_RC)


    # 4) Azimuth FFT
    SrxAF_RC = np.zeros(Srx_RC.shape, dtype=complex)
    for i in range(SrxAF_RC.shape[1]):
        # get range fixed column
        SrxAF_RC[:,i] = GC.fft(Srx_RC[:,i])
    showResponse(SrxAF_RC)

    exit()

    # 5) Range cell migration Compensation (RCMC)
    # from range time to range distance :
    dist = lambda x : distSST(x, Sat.H, x_c, y_c)
    dR = deltaR(xArray, x_c, dist)
    dRI = np.round(dR).astype(np.int)
    Srx_RC_RCMC = rangeMigration(Srx_RC, dRI)




    # 6) Azimuth compression :
Esempio n. 10
0
    def compressRawData(self, showProgress=True):
        """
        Apply RDA on raw data
        1) Range compression
        2) Range Cell Migration Correction
        3) Azimuth compression

        Returns (compressed 2D array, azimuth positions, range time)
        """
        rawData = self._rawData
        assert rawData is not None, logPrint(
            "Raw data should be computed ( using computeRawData() ) or provided as argument"
        )
        assert self._dt is not None, logPrint(
            "Error : Simulator badly configured, dt is None")
        assert self._dx is not None, logPrint(
            "Error : Simulator badly configured, dx is None")
        assert self._xArray is not None, logPrint(
            "Error : Simulator badly configured, xArray is None")
        assert self._tArray is not None, logPrint(
            "Error : Simulator badly configured, tArray is None")

        Tp = self._platform.Tp
        Vsat = self._platform.Vsat
        K = self._platform.K
        PRF = self._platform.PRF
        H = self._platform.H
        Lambda = self._platform.Lambda

        # 1) Range compression :
        if showProgress:
            logPrint(" - Range compression ...")

        fRangeArray = GC.freq(rawData.shape[1], 1.0 / self._dt)
        HMF = GC.rect(fRangeArray / (np.abs(K) * Tp)) * np.exp(
            1j * np.pi * fRangeArray**2 / K)
        # Multiply by a phase due to different range zero time
        ##        tZero = self._tArray[len(self._tArray)/2]
        ##        HMF = HMF * np.exp( -1j* 2.0 * np.pi * fRangeArray * tZero)
        procData = rangeCompression(rawData, HMF)
        HMF = None

        if self.verbose:
            showResponse(procData, None, 'Range compression')

        # 2) Azimuth FFT :
        if showProgress:
            logPrint(" -- Azimuth FFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:, i] = GC.fft(procData[:, i])
        procData = procDataAF
        procDataAF = None

        fArray = GC.freq(procData.shape[0], self._platform.Vsat / self._dx)

        if self.verbose:
            ##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Azimuth FFT')
            showResponse(procData, None, 'Azimuth FFT')

        # 3) Range migration :
        if showProgress:
            logPrint(" --- Range migration ...")
        Dfreq = np.sqrt(1.0 - (0.5 * Lambda * fArray / Vsat)**2)
        procData = rangeMigration2(procData, self._tArray, Dfreq)

        if self.verbose:
            ##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'RCMC')
            showResponse(procData, None, 'RCMC')

        # 4) Azimuth compression :
        if showProgress:
            logPrint(" ---- Azimuth compression ...")

        etaZero = self._xArray[len(self._xArray) / 2] / Vsat
        for i in range(procData.shape[1]):
            # Use H(f) = exp( 1j * 4 * pi * R0 * D(f) * f0 / c )
            #
            HMF = np.exp(2 * np.pi * 1j * GC.C * self._tArray[i] / Lambda *
                         Dfreq)
            # Multiply by a phase due to different azimuth zero time
            HMF = HMF * np.exp(-1j * 2.0 * np.pi * fArray * etaZero)
            procData[:, i] = procData[:, i] * HMF

        # 5) Azimuth IFFT
        if showProgress:
            logPrint(" ----- Azimuth IFFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:, i] = GC.ifft(procData[:, i])
        procData = procDataAF
        procDataAF = None

        if self.verbose:
            showResponse(
                procData,
                [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]],
                'Compressed image', False)

        return procData, self._xArray, self._tArray
Esempio n. 11
0
    def compressRawData(self, showProgress=True):
        """
        Apply RDA on raw data
        1) Range compression
        2) Range Cell Migration Correction
        3) Azimuth compression

        Returns (compressed 2D array, azimuth positions, range time)
        """
        rawData = self._rawData
        assert rawData is not None, logPrint(
            "Raw data should be computed ( using computeRawData() ) or provided as argument"
        )
        assert self._dt is not None, logPrint(
            "Error : Simulator badly configured, dt is None")
        assert self._dx is not None, logPrint(
            "Error : Simulator badly configured, dx is None")
        assert self._xArray is not None, logPrint(
            "Error : Simulator badly configured, xArray is None")
        assert self._xSwath is not None, logPrint(
            "Error : Simulator badly configured, xSwath is None")
        assert self._tArray is not None, logPrint(
            "Error : Simulator badly configured, tArray is None")

        Tp = self._platform.Tp
        Vsat = self._platform.Vsat
        K = self._platform.K
        PRF = self._platform.PRF
        H = self._platform.H
        Lambda = self._platform.Lambda

        # 1) Range compression :
        if showProgress:
            logPrint(" - Range compression ...")

##        # !!! VERY VERY SLOW !!!
##        tArray0=np.arange(-Tp*0.5,Tp*0.5,self._dt)
##        h = GC.chirpSignal(tArray0, Tp, -K)
##        procData = compression(rawData, h, 'range')

        fRangeArray = GC.freq(rawData.shape[1], 1.0 / self._dt)
        HMF = GC.rect(fRangeArray / (np.abs(K) * Tp)) * np.exp(
            1j * np.pi * fRangeArray**2 / K)
        procData = rangeCompression(rawData, HMF)
        HMF = None

        if self.verbose:
            showResponse(procData, None, 'Range compression')

##        # TEMP
##        yc = self._params[2][1]
##        yArray = np.sqrt( (0.5 * GC.C * self._tArray)**2 - H**2 )
##        indices = [1050]
##        for index in indices:
##            f = plt.figure()
##            f.suptitle("Range compression")
##            plt.subplot(211)
##            plt.plot(yArray-yc, np.abs(rawData[index,:]))
##            plt.subplot(212)
##            plt.plot(yArray-yc, np.abs(procData[index,:]))
##            plt.show()
##        # TEMP

# 2) Azimuth FFT :
        if showProgress:
            logPrint(" -- Azimuth FFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:, i] = GC.fft(procData[:, i])
        procData = procDataAF
        procDataAF = None

        ##        fArray = np.fft.fftshift(np.fft.fftfreq( procData.shape[0], self._dx / self._platform.Vsat))
        fArray = GC.freq(procData.shape[0], self._platform.Vsat / self._dx)

        if self.verbose:
            ##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Azimuth FFT')
            showResponse(procData, None, 'Azimuth FFT')

        # 3) Range migration :
        if showProgress:
            logPrint(" --- Range migration ...")
        Dfreq = np.sqrt(1.0 - (0.5 * Lambda * fArray / Vsat)**2)
        procData = rangeMigration2(procData, self._tArray, Dfreq)

        if self.verbose:
            ##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'RCMC')
            showResponse(procData, None, 'RCMC')

        # 4) Azimuth compression :
        if showProgress:
            logPrint(" ---- Azimuth compression ...")


##        xc = self._params[2][0]
##        yc = self._params[2][1]
##        Rc = np.sqrt(H**2 + yc**2)
##        Ka = 2.0 / Lambda * 1.0 / Rc
##        h = GC.rect((self._xArray-xc)/self._xSwath) * np.exp(1j * np.pi * Ka * (self._xArray - xc)**2)
##        H = GC.fft(h)

        xc = self._xArray[len(self._xArray) / 2]
        for i in range(procData.shape[1]):
            # Small squint approximation
            ##            Ka = 4.0 * Vsat**2 / Lambda / GC.C / self._tArray[i]
            ##            hMF = GC.rect((self._xArray-xc)/self._xSwath) * np.exp(1j * np.pi * Ka/Vsat**2 * (self._xArray - xc)**2)
            ##            HMF = GC.fft(hMF)
            # Use H(f) = exp( 1j * 4 * pi * R0 * D(f) * f0 / c )
            HMF = np.exp(2 * np.pi * 1j * GC.C * self._tArray[i] / Lambda *
                         Dfreq)
            procData[:, i] = procData[:, i] * HMF

        # 5) Azimuth IFFT
        if showProgress:
            logPrint(" ----- Azimuth IFFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:, i] = GC.ifft(procData[:, i])
        procData = procDataAF
        procDataAF = None

        if self.verbose:
            showResponse(
                procData,
                [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]],
                'Compressed image', False)

        return procData, self._xArray, self._tArray
Esempio n. 12
0
    def compressRawData(self, showProgress=True):
        """
        Apply RDA on raw data
        1) Range compression
        2) Range Cell Migration Correction
        3) Azimuth compression

        Returns (compressed 2D array, azimuth positions, range time)
        """
        rawData = self._rawData
        assert rawData is not None, logPrint("Raw data should be computed ( using computeRawData() ) or provided as argument")
        assert self._dt is not None, logPrint("Error : Simulator badly configured, dt is None")
        assert self._dx is not None, logPrint("Error : Simulator badly configured, dx is None")
        assert self._xArray is not None, logPrint("Error : Simulator badly configured, xArray is None")
        assert self._tArray is not None, logPrint("Error : Simulator badly configured, tArray is None")

        Tp = self._platform.Tp
        Vsat = self._platform.Vsat
        K = self._platform.K
        PRF = self._platform.PRF
        H = self._platform.H
        Lambda = self._platform.Lambda

        # 1) Range compression :
        if showProgress:
            logPrint(" - Range compression ...")

        fRangeArray = GC.freq(rawData.shape[1], 1.0/self._dt)
        HMF = GC.rect(fRangeArray / (np.abs(K)*Tp)) * np.exp(1j*np.pi*fRangeArray**2 / K)
        # Multiply by a phase due to different range zero time
##        tZero = self._tArray[len(self._tArray)/2]
##        HMF = HMF * np.exp( -1j* 2.0 * np.pi * fRangeArray * tZero)
        procData = rangeCompression(rawData, HMF)
        HMF = None

        if self.verbose:
            showResponse(procData, None, 'Range compression')

        # 2) Azimuth FFT :
        if showProgress:
            logPrint(" -- Azimuth FFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:,i] = GC.fft(procData[:,i])
        procData = procDataAF
        procDataAF = None


        fArray = GC.freq(procData.shape[0], self._platform.Vsat/self._dx)

        if self.verbose:
##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Azimuth FFT')
            showResponse(procData, None, 'Azimuth FFT')

        # 3) Range migration :
        if showProgress:
            logPrint(" --- Range migration ...")
        Dfreq = np.sqrt(1.0 - (0.5 * Lambda * fArray / Vsat)**2)
        procData = rangeMigration2(procData, self._tArray, Dfreq)

        if self.verbose:
##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'RCMC')
            showResponse(procData, None, 'RCMC')


        # 4) Azimuth compression :
        if showProgress:
            logPrint(" ---- Azimuth compression ...")

        etaZero = self._xArray[len(self._xArray)/2] / Vsat
        for i in range(procData.shape[1]):
            # Use H(f) = exp( 1j * 4 * pi * R0 * D(f) * f0 / c )
            #
            HMF = np.exp( 2*np.pi*1j * GC.C * self._tArray[i] / Lambda * Dfreq)
            # Multiply by a phase due to different azimuth zero time
            HMF = HMF * np.exp( -1j* 2.0 * np.pi * fArray * etaZero)
            procData[:,i] = procData[:,i] * HMF


        # 5) Azimuth IFFT
        if showProgress:
            logPrint(" ----- Azimuth IFFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:,i] = GC.ifft(procData[:,i])
        procData = procDataAF
        procDataAF = None

        if self.verbose:
            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Compressed image', False)


        return procData, self._xArray, self._tArray
Esempio n. 13
0
    def compressRawData(self, showProgress=True):
        """
        Apply RDA on raw data
        1) Range compression
        2) Range Cell Migration Correction
        3) Azimuth compression

        Returns (compressed 2D array, azimuth positions, range time)
        """
        rawData = self._rawData
        assert rawData is not None, logPrint("Raw data should be computed ( using computeRawData() ) or provided as argument")
        assert self._dt is not None, logPrint("Error : Simulator badly configured, dt is None")
        assert self._dx is not None, logPrint("Error : Simulator badly configured, dx is None")
        assert self._xArray is not None, logPrint("Error : Simulator badly configured, xArray is None")
        assert self._xSwath is not None, logPrint("Error : Simulator badly configured, xSwath is None")
        assert self._tArray is not None, logPrint("Error : Simulator badly configured, tArray is None")

        Tp = self._platform.Tp
        Vsat = self._platform.Vsat
        K = self._platform.K
        PRF = self._platform.PRF
        H = self._platform.H
        Lambda = self._platform.Lambda

        # 1) Range compression :
        if showProgress:
            logPrint(" - Range compression ...")

##        # !!! VERY VERY SLOW !!!
##        tArray0=np.arange(-Tp*0.5,Tp*0.5,self._dt)
##        h = GC.chirpSignal(tArray0, Tp, -K)
##        procData = compression(rawData, h, 'range')

        fRangeArray = GC.freq(rawData.shape[1], 1.0/self._dt)
        HMF = GC.rect(fRangeArray / (np.abs(K)*Tp)) * np.exp(1j*np.pi*fRangeArray**2 / K)
        procData = rangeCompression(rawData, HMF)
        HMF = None

        if self.verbose:
            showResponse(procData, None, 'Range compression')

##        # TEMP
##        yc = self._params[2][1]
##        yArray = np.sqrt( (0.5 * GC.C * self._tArray)**2 - H**2 )
##        indices = [1050]
##        for index in indices:
##            f = plt.figure()
##            f.suptitle("Range compression")
##            plt.subplot(211)
##            plt.plot(yArray-yc, np.abs(rawData[index,:]))
##            plt.subplot(212)
##            plt.plot(yArray-yc, np.abs(procData[index,:]))
##            plt.show()
##        # TEMP


        # 2) Azimuth FFT :
        if showProgress:
            logPrint(" -- Azimuth FFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:,i] = GC.fft(procData[:,i])
        procData = procDataAF
        procDataAF = None


##        fArray = np.fft.fftshift(np.fft.fftfreq( procData.shape[0], self._dx / self._platform.Vsat))
        fArray = GC.freq(procData.shape[0], self._platform.Vsat/self._dx)

        if self.verbose:
##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Azimuth FFT')
            showResponse(procData, None, 'Azimuth FFT')

        # 3) Range migration :
        if showProgress:
            logPrint(" --- Range migration ...")
        Dfreq = np.sqrt(1.0 - (0.5 * Lambda * fArray / Vsat)**2)
        procData = rangeMigration2(procData, self._tArray, Dfreq)

        if self.verbose:
##            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'RCMC')
            showResponse(procData, None, 'RCMC')


        # 4) Azimuth compression :
        if showProgress:
            logPrint(" ---- Azimuth compression ...")
##        xc = self._params[2][0]
##        yc = self._params[2][1]
##        Rc = np.sqrt(H**2 + yc**2)
##        Ka = 2.0 / Lambda * 1.0 / Rc
##        h = GC.rect((self._xArray-xc)/self._xSwath) * np.exp(1j * np.pi * Ka * (self._xArray - xc)**2)
##        H = GC.fft(h)

        xc = self._xArray[len(self._xArray)/2]
        for i in range(procData.shape[1]):
            # Small squint approximation
##            Ka = 4.0 * Vsat**2 / Lambda / GC.C / self._tArray[i]
##            hMF = GC.rect((self._xArray-xc)/self._xSwath) * np.exp(1j * np.pi * Ka/Vsat**2 * (self._xArray - xc)**2)
##            HMF = GC.fft(hMF)
            # Use H(f) = exp( 1j * 4 * pi * R0 * D(f) * f0 / c )
            HMF = np.exp( 2*np.pi*1j * GC.C * self._tArray[i] / Lambda * Dfreq)
            procData[:,i] = procData[:,i] * HMF


        # 5) Azimuth IFFT
        if showProgress:
            logPrint(" ----- Azimuth IFFT ...")
        procDataAF = np.zeros(procData.shape, dtype=complex)
        for i in range(procDataAF.shape[1]):
            # get range fixed column
            procDataAF[:,i] = GC.ifft(procData[:,i])
        procData = procDataAF
        procDataAF = None

        if self.verbose:
            showResponse(procData, [self._tArray[0], self._tArray[-1], fArray[0], fArray[-1]], 'Compressed image', False)


        return procData, self._xArray, self._tArray