save_best_only=True, period=5, ) reduce_lr = ReduceLROnPlateau( monitor="val_loss", factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping( monitor="val_loss", min_delta=0, patience=10, verbose=1 ) val_split = FLAGS.val_split with open(FLAGS.annotation_file) as f: lines = f.readlines() lines = ChangeToOtherMachine(lines) np.random.seed(42) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines) * val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a not # bad model. if True: model.compile( optimizer=Adam(lr=1e-3), loss={ # use custom yolo_loss Lambda layer. "yolo_loss": lambda y_true, y_pred: y_pred
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) val_split = FLAGS.val_split with open(FLAGS.annotation_file) as f: lines = f.readlines() # This step makes sure that the path names correspond to the local machine # This is important if annotation and training are done on different machines (e.g. training on AWS) lines = ChangeToOtherMachine(lines, remote_machine='') np.random.shuffle(lines) num_val = int(len(lines) * val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a decent model. if True: model.compile( optimizer=Adam(lr=1e-3), loss={ # use custom yolo_loss Lambda layer. 'yolo_loss': lambda y_true, y_pred: y_pred }) batch_size = 32
reduce_lr = ReduceLROnPlateau(monitor="val_loss", factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor="val_loss", min_delta=0, patience=10, verbose=1) val_split = FLAGS.val_split with open(FLAGS.annotation_file) as f: lines = f.readlines() # This step makes sure that the path names correspond to the local machine # This is important if annotation and training are done on different machines (e.g. training on AWS) lines = ChangeToOtherMachine(lines, repo="gtav-vision", remote_machine="") np.random.shuffle(lines) num_val = int(len(lines) * val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a decent model. frozen_callbacks = [logging, checkpoint] if _has_wandb: wandb.init(project="TrainYourOwnYOLO", config=vars(FLAGS), sync_tensorboard=False) wandb_callback = WandbCallback(save_model=False) frozen_callbacks.append(wandb_callback)