Esempio n. 1
0
 def from_base_network(cls,
                       base_network,
                       json_content=None,
                       share_params=False,
                       base_as_calc_step=False,
                       **kwargs):
     """
 :param LayerNetwork base_network: base network to derive from
 :param dict[str]|None json_content: JSON content for subnetwork. if None, will use from base network
 :param bool share_params: will use the same params as the base network
 :param bool base_as_calc_step: base is calc step 0. see below
 :param dict[str] kwargs: kwargs for __init__
 :rtype: LayerNetwork
 """
     if "n_out" in kwargs and "n_in" not in kwargs:
         kwargs["n_in"] = None
     network = cls(
         base_network=base_network,
         shared_params_network=base_network if share_params else None,
         **dict_joined(base_network.init_args(), kwargs))
     if base_as_calc_step:
         network.calc_step_base = base_network  # used by CalcStepLayer. see also get_calc_step()
     if json_content is None:
         json_content = base_network.to_json_content()
     cls.from_json(json_content, network=network)
     if share_params:
         trainable_params = network.get_all_params_vars()
         assert len(trainable_params) == 0
     return network
Esempio n. 2
0
 def from_json_and_config(cls, json_content, config, **kwargs):
   """
   :type config: Config.Config
   :type json_content: str | dict
   :rtype: LayerNetwork
   """
   network = cls.from_json(json_content, **dict_joined(kwargs, cls.init_args_from_config(config)))
   network.recurrent = network.recurrent or config.bool('recurrent', False)
   return network
Esempio n. 3
0
 def from_json_and_config(cls, json_content, config, **kwargs):
   """
   :type config: Config.Config
   :type json_content: str | dict
   :rtype: LayerNetwork
   """
   network = cls.from_json(json_content, **dict_joined(kwargs, cls.init_args_from_config(config)))
   network.recurrent = network.recurrent or config.bool('recurrent', False)
   return network
Esempio n. 4
0
 def from_base_network(cls, base_network, json_content=None, share_params=False, base_as_calc_step=False, **kwargs):
   """
   :param LayerNetwork base_network: base network to derive from
   :param dict[str]|None json_content: JSON content for subnetwork. if None, will use from base network
   :param bool share_params: will use the same params as the base network
   :param bool base_as_calc_step: base is calc step 0. see below
   :param dict[str] kwargs: kwargs for __init__
   :rtype: LayerNetwork
   """
   network = cls(
     base_network=base_network,
     shared_params_network=base_network if share_params else None,
     **dict_joined(base_network.init_args(), kwargs))
   if base_as_calc_step:
     network.calc_step_base = base_network  # used by CalcStepLayer. see also get_calc_step()
   if json_content is None:
     json_content = base_network.to_json_content()
   cls.from_json(json_content, network=network)
   if share_params:
     trainable_params = network.get_all_params_vars()
     assert len(trainable_params) == 0
   return network