def test_dataReader(self): reader = DataReader() removal = OutliersRemoval(cutoff=150) data_game, _ = reader.readGameResults(ASD_PATH) data_gaze, _, _ = reader.readGazeData(ASD_PATH) self.assertEqual(len(data_game), len(data_gaze))
################################## IMPORTS ################################## from Utils.SearchAbstractClass import SearchInputRecommenderArgs from Utils.SearchBayesianSkopt import SearchBayesianSkopt from skopt.space import Real, Integer, Categorical from Utils.Evaluator import EvaluatorHoldout from Utils.DataSplitter import DataSplitter from Utils.DataReader import DataReader import os # Model to be tuned from hybrid import Hybrid ################################# READ DATA ################################# reader = DataReader() splitter = DataSplitter() urm = reader.load_urm() ICM = reader.load_icm() URM_train, URM_val, URM_test = splitter.split(urm, validation=0.2, testing=0.1) ################################ EVALUATORS ################################## evaluator_validation = EvaluatorHoldout(URM_val, [10]) evaluator_test = EvaluatorHoldout(URM_test, [10]) ############################### OPTIMIZER SETUP ############################### recommender_class = Hybrid parameterSearch = SearchBayesianSkopt(
def fit(self, topK=50, shrink=100, similarity='cosine', normalization="none", feature_weighting="none", **similarity_args): self.topK = topK self.shrink = shrink reader = DataReader() icm = reader.load_icm() if normalization == "bm25": self.URM_train = similaripy.normalization.bm25(self.URM_train, axis=1) if normalization == "tfidf": self.URM_train = similaripy.normalization.tfidf(self.URM_train, axis=1) if normalization == "bm25plus": self.URM_train = similaripy.normalization.bm25plus(self.URM_train, axis=1) if feature_weighting == "bm25": icm = similaripy.normalization.bm25(icm, axis=1) if feature_weighting == "tfidf": icm = similaripy.normalization.tfidf(icm, axis=1) if feature_weighting == "bm25plus": icm = similaripy.normalization.bm25plus(icm, axis=1) matrix = sps.hstack((self.URM_train.transpose().tocsr(), icm)) if similarity == "cosine": similarity_matrix = similaripy.cosine(matrix, k=self.topK, shrink=self.shrink, binary=False, threshold=0) if similarity == "dice": similarity_matrix = similaripy.dice(matrix, k=self.topK, shrink=self.shrink, binary=False, threshold=0) if similarity == "jaccard": similarity_matrix = similaripy.jaccard(matrix, k=self.topK, shrink=self.shrink, binary=False, threshold=0) if similarity == "asym": similarity_matrix = similaripy.asymmetric_cosine( matrix, k=self.topK, shrink=self.shrink, binary=False, threshold=0) if similarity == "rp3beta": similarity_matrix = similaripy.rp3beta(matrix, k=self.topK, shrink=self.shrink, binary=False, threshold=0, alpha=0.3, beta=0.61) self.W_sparse = similarity_matrix self.W_sparse = check_matrix(self.W_sparse, format='csr')