Esempio n. 1
0
    def __init__(self,
                 Domain,
                 P=IdentityProjection(),
                 Delta0=1e-2,
                 GrowthLimit=2,
                 MinStep=-1e10,
                 MaxStep=1e10):

        self.F = Domain.F

        self.Proj = P

        self.Proj_Norm = IdentityProjection()

        self.StorageSize = 1

        self.TempStorage = {}

        self.Delta0 = Delta0

        self.GrowthLimit = GrowthLimit

        self.MinStep = MinStep

        self.MaxStep = MaxStep
Esempio n. 2
0
    def __init__(self,
                 Domain,
                 P=IdentityProjection(),
                 Delta0=1e-2,
                 GrowthLimit=2,
                 MinStep=-1e10,
                 MaxStep=1e10,
                 NTopLEs=None):

        self.F = Domain.F

        try:
            self.Jv = partial(Jv, Jac=Domain.Jac)
        except AttributeError:
            self.Jv = partial(Jv_num, F=self.F)

        self.Proj = P

        self.StorageSize = 1

        self.TempStorage = {}

        self.Delta0 = Delta0

        self.GrowthLimit = GrowthLimit

        self.MinStep = MinStep

        self.MaxStep = MaxStep

        self.NTopLEs = NTopLEs
Esempio n. 3
0
    def __init__(self, Domain, P=IdentityProjection(), Delta0=1e-4,
                 GrowthLimit=2, MinStep=-1e10, MaxStep=1e10):

        self.F = Domain.F

        self.Proj = P

        self.StorageSize = 1

        self.TempStorage = {}

        self.Delta0 = Delta0

        self.GrowthLimit = GrowthLimit

        self.MinStep = MinStep

        self.MaxStep = MaxStep

        self.BT = np.array([
            [1./5.,0.,0.,0.,0.,0.],
            [3./40.,9./40.,0.,0.,0.,0.],
            [3./10.,-9./10.,6./5.,0.,0.,0.],
            [-11./54.,5./2.,-70./27.,35./27.,0.,0.],
            [1631./55296.,175./512.,575./13824.,44275./110592.,253./4096.,0.],
            [37./378.,0.,250./621.,125./594.,0.,512./1771.],
            [2825./27648.,0.,18575./48384.,13525./55296.,277./14336.,0.25]
        ])
    def __init__(self, Domain, P=IdentityProjection()):

        self.F = Domain.F

        self.Proj = P

        self.StorageSize = 1

        self.TempStorage = {}
Esempio n. 5
0
    def __init__(self, Domain, P=IdentityProjection(), FixStep=False):

        self.F = Domain.F

        self.Proj = P

        self.FixStep = FixStep

        self.StorageSize = 1

        self.TempStorage = {}
Esempio n. 6
0
    def __init__(self,Domain,P=IdentityProjection(),eps=1e-8):

        self.F = Domain.F

        self.Proj = P

        self.StorageSize = 1

        self.TempStorage = {}

        self.eps = eps

        self.factor = 1.
Esempio n. 7
0
    def __init__(self,
                 Domain,
                 P=IdentityProjection(),
                 Delta0=1e-4,
                 GrowthLimit=2,
                 MinStep=-1e10,
                 MaxStep=1e10,
                 NTopLEs=None):

        self.F = Domain.F

        try:
            self.Jv = partial(Jv, Jac=Domain.Jac)
        except AttributeError:
            self.Jv = partial(Jv_num, F=self.F)

        self.Proj = P

        self.StorageSize = 1

        self.TempStorage = {}

        self.Delta0 = Delta0

        self.GrowthLimit = GrowthLimit

        self.MinStep = MinStep

        self.MaxStep = MaxStep

        self.NTopLEs = NTopLEs

        self.BT = np.array(
            [[1. / 5., 0., 0., 0., 0., 0.],
             [3. / 40., 9. / 40., 0., 0., 0., 0.],
             [3. / 10., -9. / 10., 6. / 5., 0., 0., 0.],
             [-11. / 54., 5. / 2., -70. / 27., 35. / 27., 0., 0.],
             [
                 1631. / 55296., 175. / 512., 575. / 13824., 44275. / 110592.,
                 253. / 4096., 0.
             ], [37. / 378., 0., 250. / 621., 125. / 594., 0., 512. / 1771.],
             [
                 2825. / 27648., 0., 18575. / 48384., 13525. / 55296.,
                 277. / 14336., 0.25
             ]])
Esempio n. 8
0
    def __init__(self,
                 Domain,
                 P=IdentityProjection(),
                 FixStep=True,
                 factor=0.5):

        self.F = Domain.F

        self.Jac = Domain.J

        self.Proj = P

        self.FixStep = FixStep

        self.StorageSize = 1

        self.TempStorage = {}

        self.factor = factor
Esempio n. 9
0
def Demo():

    #__SPHERE__##################################################

    # Define Dimension and Domain
    Domain = Sphere(Dim=100)

    # Set Method
    Method = HeunEuler(Domain=Domain, P=IdentityProjection(), Delta0=1e-2)

    # Set Options
    Init = Initialization(Step=-1e-1)
    Term = Termination(MaxIter=1000, Tols=[[Domain.f_Error, 1e-3]])
    Repo = Reporting(Requests=[Domain.f_Error])
    Misc = Miscellaneous()
    Options = DescentOptions(Init, Term, Repo, Misc)

    # Initialize Starting Point
    Start = 100 * np.ones(Domain.Dim)

    # Print Stats
    PrintSimStats(Domain, Method, Options)

    # Start Solver
    tic = time.time()
    SPHERE_Results = Solve(Start, Method, Domain, Options)
    toc = time.time() - tic

    # Print Results
    PrintSimResults(Options, SPHERE_Results, Method, toc)

    #__KOJIMA-SHINDO__##################################################

    # Define Dimension and Domain
    Domain = KojimaShindo()

    # Set Method
    Method = HeunEuler(Domain=Domain, P=EntropicProjection(), Delta0=1e-1)

    # Set Options
    Init = Initialization(Step=-1e-1)
    Term = Termination(MaxIter=1000, Tols=[[Domain.gap_simplex, 1e-3]])
    Repo = Reporting(Requests=[Domain.gap_simplex])
    Misc = Miscellaneous()
    Options = DescentOptions(Init, Term, Repo, Misc)

    # Initialize Starting Point
    Start = np.ones(Domain.Dim) / np.double(Domain.Dim)

    # Print Stats
    PrintSimStats(Domain, Method, Options)

    # Start Solver
    tic = time.time()
    KS_Results = Solve(Start, Method, Domain, Options)
    toc = time.time() - tic

    # Print Results
    PrintSimResults(Options, KS_Results, Method, toc)

    #__WATSON__##################################################

    trials = xrange(10)
    WAT_Results = [[] for i in trials]

    for p in trials:

        #Define Dimension and Domain
        Domain = Watson(Pos=p)

        # Set Method
        Method = HeunEuler(Domain=Domain, P=EntropicProjection(), Delta0=1e-1)

        # Set Options
        Init = Initialization(Step=-1e-1)
        Term = Termination(MaxIter=1000, Tols=[[Domain.gap_simplex, 1e-3]])
        Repo = Reporting(Requests=[Domain.gap_simplex])
        Misc = Miscellaneous()
        Options = DescentOptions(Init, Term, Repo, Misc)

        #Initialize Starting Point
        Start = np.ones(Domain.Dim) / np.double(Domain.Dim)

        # Print Stats
        PrintSimStats(Domain, Method, Options)

        tic = time.time()
        WAT_Results[p] = Solve(Start, Method, Domain, Options)
        toc = time.time() - tic

        # Print Results
        PrintSimResults(Options, WAT_Results[p], Method, toc)

    #__SUN__##################################################

    trials = xrange(8000, 10000 + 1, 2000)
    Sun_Results = [[] for i in trials]

    for n in trials:

        #Define Dimension and Domain
        Domain = Sun(Dim=n)

        # Set Method
        Method = HeunEuler(Domain=Domain, P=EntropicProjection(), Delta0=1e-1)

        # Set Options
        Init = Initialization(Step=-1e-1)
        Term = Termination(MaxIter=1000, Tols=[[Domain.gap_simplex, 1e-3]])
        Repo = Reporting(Requests=[Domain.gap_simplex])
        Misc = Miscellaneous()
        Options = DescentOptions(Init, Term, Repo, Misc)

        #Initialize Starting Point
        Start = np.ones(Domain.Dim) / np.double(Domain.Dim)

        # Print Stats
        PrintSimStats(Domain, Method, Options)

        tic = time.time()
        ind = n / 2000 - 4
        Sun_Results[ind] = Solve(Start, Method, Domain, Options)
        toc = time.time() - tic

        # Print Results
        PrintSimResults(Options, Sun_Results[ind], Method, toc)
Esempio n. 10
0
def Demo():

    #__SPHERE__##################################################

    # Define Dimension and Domain
    Domain = MonotoneCycle()

    # Set Method
    MethodEuler = Euler(Domain=Domain,P=IdentityProjection(),FixStep=True)
    MethodEG = EG(Domain=Domain,P=IdentityProjection(),FixStep=True)

    # Set Options
    Init = Initialization(Step=-1e-1)
    Term = Termination(MaxIter=100)
    Repo = Reporting(Requests=['Data'])
    Misc = Miscellaneous()
    Options = DescentOptions(Init,Term,Repo,Misc)

    # Initialize Starting Point
    Start = np.ones(Domain.Dim)

    # Print Stats
    PrintSimStats(Domain,MethodEuler,Options)

    # Start Solver
    tic = time.time()
    Euler_Results = Solve(Start,MethodEuler,Domain,Options)
    toc = time.time() - tic

    # Print Results
    PrintSimResults(Options,Euler_Results,MethodEuler,toc)

    # Print Stats
    PrintSimStats(Domain,MethodEG,Options)

    # Start Solver
    tic = time.time()
    EG_Results = Solve(Start,MethodEG,Domain,Options)
    toc = time.time() - tic

    # Print Results
    PrintSimResults(Options,EG_Results,MethodEG,toc)

    data_Euler = ListONP2NP(Euler_Results.PermStorage['Data'])
    data_EG = ListONP2NP(EG_Results.PermStorage['Data'])
    

    X, Y = np.meshgrid(np.arange(-2.5, 2.5, .2), np.arange(-2.5, 2.5, .2))
    U = np.zeros_like(X)
    V = np.zeros_like(Y)
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            vec = -Domain.F([X[i,j],Y[i,j]])
            U[i,j] = vec[0]
            V[i,j] = vec[1]

    # plt.figure()
    # plt.title('Arrows scale with plot width, not view')
    # Q = plt.quiver(X, Y, U, V, units='width')
    # qk = plt.quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',
    #                    coordinates='figure')

    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.6, 0.75])
    plt.title("Extragradient vs Simultaneous Gradient Descent")
    Q = plt.quiver(X[::3, ::3], Y[::3, ::3], U[::3, ::3], V[::3, ::3],
                   pivot='mid', units='inches')
    vec_Euler = -Domain.F(data_Euler[-1,:])
    vec_EG = -Domain.F(data_EG[-1,:])
    print(data_Euler[-1])
    print(vec_Euler)
    plt.quiver(data_Euler[-1][0], data_Euler[-1][1], vec_Euler[0], vec_Euler[1], pivot='mid', units='inches', color='b',
            headwidth=5)
    plt.quiver(data_EG[-1][0], data_EG[-1][1], vec_EG[0], vec_EG[1], pivot='mid', units='inches', color='r',
            headwidth=5)
    plt.scatter(X[::3, ::3], Y[::3, ::3], color='gray', s=5)
    plt.plot(data_Euler[:,0],data_Euler[:,1],'b',linewidth=5,label='Simultaneous\nGradient Descent')
    plt.plot(data_EG[:,0],data_EG[:,1],'r',linewidth=5,label='Extragradient')
    plt.plot([0],[0],linestyle="None",marker=(5,1,0),markersize=20,color='gold',label='Equilibrium')
    plt.axis([-2.5,2.5,-2.5,2.5])
    plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), borderaxespad=0.5)
    # plt.ion()
    # plt.show()
    plt.savefig('EGvsEuler.png')