Esempio n. 1
0
 def V_EH_computation(self, CFIE_coeff, TENETHNH, target_mesh, J_dip, r_dip,
                      w, eps_r, mu_r, list_of_test_edges_numbers,
                      EXCITATION, FORMULATION):
     V_EH_tmp = computeV_EH(target_mesh, J_dip, r_dip, w, eps_r, mu_r,
                            list_of_test_edges_numbers, EXCITATION, 'F')
     N_test = len(list_of_test_edges_numbers)
     V_EH = zeros((2 * N_test, 4), 'D')
     V_EH[:N_test] = V_EH_tmp
     eta_0 = sqrt(mu_0 / (eps_0 * eps_r_out))
     if (FORMULATION == "CFIE"):  # we have CFIE
         coeff = CFIE_coeff
         TE, NE, TH, NH = TENETHNH[0], TENETHNH[1], TENETHNH[2], TENETHNH[3]
         CFIE = array([
             TE * coeff, NE * coeff, -TH * (1.0 - coeff) * eta_0, -NH *
             (1.0 - coeff) * eta_0
         ], 'D')
         self.V = V_EH[:, 0] * CFIE[0]
         for i in range(1, 4):
             self.V += V_EH[:, i] * CFIE[i]
     elif (FORMULATION == "PMCHWT"):
         self.V = 1.0 / eta_0 * V_EH[:, 0]
         self.V[N_test:2 * N_test] = eta_0 * V_EH[:N_test, 2]
     elif (FORMULATION == "JMCFIE"):
         coeff = CFIE_coeff
         self.V = zeros(2 * N_test, 'D')
         self.V[:N_test] = coeff * V_EH_tmp[:, 0] + (1.0 - coeff) * sqrt(
             mu_0 / (eps_0 * eps_r_out)) * V_EH_tmp[:, 3]
         self.V[N_test:2 * N_test] = coeff * sqrt(
             mu_0 / (eps_0 * eps_r_out)) * V_EH_tmp[:, 2] - (
                 1.0 - coeff) * V_EH_tmp[:, 1]
     else:
         pass
Esempio n. 2
0
 def V_EH_computation(self, CFIE, target_mesh, J_dip, r_dip, w, eps_r, mu_r,
                      list_of_test_edges_numbers, EXCITATION):
     self.V_EH = computeV_EH(target_mesh, J_dip, r_dip, w, eps_r, mu_r,
                             list_of_test_edges_numbers, EXCITATION, 'F')
     self.V_CFIE = self.V_EH[:, 0] * CFIE[0]
     for i in range(1, 4):
         self.V_CFIE += self.V_EH[:, i] * CFIE[
             i] * target_mesh.RWGNumber_CFIE_OK
Esempio n. 3
0
def testVolakisMoM(path, targetName, f, M0M_FULL_PRECISION):
    # data generation of Volakis article, IEEE Antennas and Propagation Magazine, December 1992
    # for this purpose we use the MoM routines with no FMM or MLFMA
    write_geo(path, targetName, 'lc', c/f/10.0)
    executeGmsh(path, targetName, 0)
    z_offset = 0.0
    targetDimensions_scaling_factor = 1.0
    languageForMeshConstruction = "Python"
    target_mesh = MeshClass(path, targetName, targetDimensions_scaling_factor, z_offset, languageForMeshConstruction, 'GMSH', '.msh')
    target_mesh.constructFromGmshFile()
    N_RWG = target_mesh.N_RWG
    w = 2. * pi * f
    eps_r = 1.
    mu_r = 1.
    coeff = 0.2
    TDS_APPROX = 0
    Z_s = 0.0
    CFIE = array([coeff, 0.0, 0.0, -(1.0-coeff) * 377], 'D')
    list_of_test_edges_numbers = arange(N_RWG,dtype='i')#.astype('i')#[0::6]
    list_of_src_edges_numbers = arange(N_RWG,dtype='i')#.astype('i')#[2::6]
    print("Target_MoM instanciation")
    target_MoM = Target_MoM(CFIE, list_of_test_edges_numbers, list_of_src_edges_numbers, target_mesh, w, eps_r, mu_r, TDS_APPROX, Z_s, MOM_FULL_PRECISION)
    print("Matrix inversion...")
    target_MoM.compute_Y_CFIE()
    T = target_mesh.T
    if 'plate' in targetName:
        theta = 80.0/180.0 * pi # cone angle in radians
    else:
        theta = 90.0/180.0 * pi
    phis = arange(0., 181, 1) / 180.0 * pi
    sigmas_HH = zeros(len(phis), 'f')
    sigmas_VV = zeros(len(phis), 'f')
    for polarization in ['HH', 'VV']:
        print("polarization " + polarization)
        index = 0
        r_obs = zeros(3).astype('d') # observation point for the incoming field
        for phi in phis:
            sys.stdout.write("\r" + "%.4s" %str(phis[0]/pi*180.) + " -> phi = %.4s" %str(phi/pi*180.) + " -> %.4s" %str(phis[-1]/pi*180.))
            sys.stdout.flush()
            # unit vectors computation
            r_hat = array([sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)], 'd')
            theta_hat = array([cos(theta)*cos(phi), cos(theta)*sin(phi), -sin(theta)], 'd')
            phi_hat = array([-sin(phi), cos(phi), 0.0], 'd')
            # excitation parameters computation
            J_dip_factor = 1.0
            if polarization=='HH':
                J_dip = J_dip_factor * phi_hat # HH polarization
                E_0 = phi_hat * (1.0 + 0.0j)
            else:
                J_dip = J_dip_factor * -theta_hat # VV polarization
                E_0 = -theta_hat * (1.0 + 0.0j)
            R_dip = 300.0 * c/f # we wanna be in far field
            r_dip = R_dip * r_hat
            # excitation vector computation
            k_hat = -r_hat
            r_ref = r_obs
            V_EH = V_EH_plane(E_0, k_hat, r_ref, list_of_test_edges_numbers, target_mesh.RWGNumber_CFIE_OK, target_mesh.RWGNumber_signedTriangles, target_mesh.RWGNumber_edgeVertexes, target_mesh.RWGNumber_oppVertexes, target_mesh.vertexes_coord, w, eps_r, mu_r)
            V_CFIE = zeros(V_EH.shape[0], complex)
            for i in range(4):
                V_CFIE += V_EH[:,i] * CFIE[i]
            # scattered field computation
            I_CFIE = dot(target_MoM.Y_CFIE, V_CFIE)
            # we compute the scattered fields by reciprocity
            V_EH = computeV_EH(target_mesh, J_dip, r_dip, w, eps_r, mu_r, list_of_test_edges_numbers, 'dipole', 'F')
            E_scatt = sum(I_CFIE * V_EH[:,0])/J_dip_factor
            # incoming field computation
            Delta_r = (r_dip - r_obs)
            # sigma computation
            P_scatt = real(E_scatt*conj(E_scatt))
            P_inc = real(dot(E_0, conj(E_0)))
            if polarization=='HH':
                sigmas_HH[index] = 4*pi* sum(Delta_r**2) * P_scatt/P_inc
            else:
                sigmas_VV[index] = 4*pi* sum(Delta_r**2) * P_scatt/P_inc
            index = index + 1
        print
    return sigmas_HH, sigmas_VV
Esempio n. 4
0
            #computeCurrentsVisualization(w, target_mesh, target_MoM.I_CFIE)
            # now we try the iterative method
            #count = 0
            #I_CFIE_bicgstab = bicgstab(target_MoM.Z_CFIE_J, target_MoM.V_CFIE, x0=None, tol=1.0e-05, maxiter=1000, xtype=None, callback=itercount)
            #V = V_EH_computation(self, CFIE_coeff, TENETHNH, target_mesh, J_dip, r_dip, w, eps_r, mu_r, list_of_test_edges_numbers, 'dipole', FORMULATION)

            #print("bicgstab MoM RCS =", -sum(I_CFIE_bicgstab[0]*V[:,0]), "# of iterations =", count)
            ## computation of the scattered fields
            E_0 = array([-1.0, 0.0, 0.0], 'D')
            k_hat = array([0., 0., -1.0], 'd')
            r_ref = zeros(3, 'd')  #sum(triangles_centroids, axis=0)/T
            J_obs = array([1.0, 0.0, 0.0], 'D')
            E_x, E_inc_x, E_tot_x = [], [], []
            for z in arange(-3., -2., 0.05):
                r_obs = array([0.0, 0.0, z], 'd')
                V_EH = computeV_EH(target_mesh, J_obs, r_obs, w, eps_r, mu_r,
                                   list_of_test_edges_numbers, 'dipole', 'F')
                E_x.append(sum(-target_MoM.I_CFIE * V_EH[:, 0]))
                E_inc_x.append(E_0[0] *
                               exp(-1.j * k_out * dot(k_hat, r_obs - r_ref)))
                E_tot_x.append(E_x[-1] + E_inc_x[-1])
                print(z, E_x[-1], E_tot_x[-1])

            fr = open('E_tot_x_real.txt', 'w')
            fi = open('E_tot_x_imag.txt', 'w')
            for elem in E_tot_x:
                fr.write(str(real(elem)) + '\n')
                fi.write(str(imag(elem)) + '\n')
            fr.close()
            fi.close()
            from pylab import rc, plot, show, xlabel, ylabel, xticks, yticks, grid, legend, title
            #rc('text', usetex=True)