for i in range(0, len(ref_image_list)): im_greyscale_reference, im_depth_reference = ref_image_list[i] im_greyscale_target, im_depth_target = target_image_list[i] im_depth_reference /= depth_factor im_depth_target /= depth_factor #depth_t = (im_depth_reference != 0).astype(Utils.depth_data_type_float) #im_depth_reference = np.add(im_depth_reference,depth_t) #depth_t = (im_depth_target != 0).astype(Utils.depth_data_type_float) #im_depth_target = np.add(im_depth_target,depth_t) # We only need the gradients of the target frame frame_reference = Frame.Frame(im_greyscale_reference, im_depth_reference, camera_reference, False) frame_target = Frame.Frame(im_greyscale_target, im_depth_target, camera_target, True) solver_manager = SolverThreadManager.Manager(1, "Solver Manager", frame_reference, frame_target, max_its=50, eps=0.002, #0.001, 0.00001, 0.00005, 0.00000001 alpha_step=0.63, # 0.1, 0.04, 0.005, 0.55 - motion prior gradient_monitoring_window_start=0, image_range_offset_start=0, twist_prior=twist_prior, motion_cov_inv = motion_cov_inv, use_ndc=use_ndc, use_robust=True,
def test_init_raise(self): with self.assertRaises(TypeError): Frame.Frame(self.pixels_uint8, self.depth_float32, self.camera_identity, False)
#im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Bench/rgbd_dataset_freiburg2_desk/rgb/1311868164.363181.png',cv2.IMREAD_GRAYSCALE) im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Rust/open-cv/images/calib.png',cv2.IMREAD_GRAYSCALE) #im_greyscale = im_greyscale.astype(Utils.image_data_type) pixels_standardised = ImageProcessing.z_standardise(im_greyscale) pixels_norm = im_greyscale.astype(np.float64) pixels_normalized_disp = ImageProcessing.normalize_to_image_space(pixels_standardised) pixels_disp = ImageProcessing.normalize_to_image_space(pixels_norm) depth_image = pixels_standardised.astype(Utils.depth_data_type_int) se3_identity = np.identity(4, dtype=Utils.matrix_data_type) intrinsic_identity = Intrinsic.Intrinsic(-1, -1, 0, 0) camera_identity = Camera.Camera(intrinsic_identity, se3_identity) frame = Frame.Frame(pixels_standardised, depth_image, camera_identity, True) #cv2.imshow('grad x',frame.grad_x) cv2.imshow('grad x abs',np.abs(frame.grad_x)) #cv2.imshow('neg sobel x',-frame.grad_x) #cv2.imshow('sobel y',frame.grad_y) #cv2.imshow('image',pixels_disp) #cv2.imshow('image z-standard',pixels_normalized_disp) #grayscale_image = ImageProcessing.normalize_to_image_space(frame.grad_x) #abs = np.absolute(frame.grad_x) #normed = cv2.normalize(abs, None, alpha=0, beta=65535, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_16UC1) #cv2.imwrite("grad_x_scharr.png",abs) while True:
def test_init(self): Frame.Frame(self.pixels_float32, self.depth_float32, self.camera_identity, False)