Esempio n. 1
0
def plot_mean_boxplot_with_pearson(dataset_id):
    data = []
    pearson = []
    for i, technique_id in enumerate(technique_list):
        print(Globals.acronyms[technique_id], end=' ', flush=True)
        technique_pearson = []
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            delta_vis = DeltaMetrics.compute_delta_vis(history[revision],
                                                       history[revision + 1])
            delta_data = DeltaMetrics.compute_delta_data(
                history[revision], history[revision + 1])
            un_mov = UnavoidableMovement.compute_unavoidable_movement(
                history[revision], history[revision + 1])

            ratios = (1 - delta_vis) / (1 - delta_data)
            diffs = 1 - abs(delta_vis - delta_data)
            unavoidable = 1 - (delta_vis - un_mov)
            mean = (ratios + diffs + unavoidable) / 3
            technique_data.append(mean)

            # Compute linear regression statistics
            _, _, r_value, _, _ = stats.linregress(delta_data, delta_vis)
            technique_pearson.append(r_value if r_value > 0 else 0)

        data.append(technique_data)
        pearson.append(technique_pearson)

    TimeBoxplot.plot_with_pearson(data,
                                  technique_list,
                                  pearson,
                                  title='Mean with Pearson - ' + dataset_id)
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            shneiderman = compute_shneiderman(history[revision],
                                              history[revision + 1])
            technique_data.append(shneiderman)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list, title="Shneiderman - " + dataset_id)
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            rpc = relative_position_change_wrapper(history[revision],
                                                   history[revision + 1])
            technique_data.append(rpc)
        data.append(technique_data)
        print(Globals.acronyms[technique_id], end=' ', flush=True)

    TimeBoxplot.plot(data, technique_list, title="RPC - " + dataset_id)
Esempio n. 4
0
def delta_ratio_boxplots(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            delta_vis = compute_delta_vis(history[revision], history[revision + 1])
            delta_data = compute_delta_data(history[revision], history[revision + 1])
            ratios = (1 - delta_vis) / (1 - delta_data)
            technique_data.append(ratios)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list,
                     title="Delta Ratio - " + dataset_id)

    TimeBoxplot.plot(data, technique_list,
                     median_sorted=True,
                     title="Delta Ratio - " + dataset_id)
Esempio n. 5
0
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history)):
            ratios = compute_aspect_ratios(history[revision]).tolist()
            technique_data.append(ratios)
        data.append(technique_data)

    TimeBoxplot.plot(data,
                     technique_list,
                     title="Aspect Ratios - " + dataset_id)

    TimeBoxplot.plot(data,
                     technique_list,
                     median_sorted=True,
                     title="Aspect Ratios - " + dataset_id)
Esempio n. 6
0
def plot_mean_boxplot(
        dataset_id,
        metrics='VIS'):  # Default case was what was used at VIS18 paper
    data = []
    for i, technique_id in enumerate(technique_list):
        print(Globals.acronyms[technique_id], end=' ', flush=True)
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            if metrics == 'VIS':
                delta_vis = DeltaMetrics.compute_delta_vis(
                    history[revision], history[revision + 1])
                delta_data = DeltaMetrics.compute_delta_data(
                    history[revision], history[revision + 1])
                un_mov = UnavoidableMovement.compute_unavoidable_movement(
                    history[revision], history[revision + 1])

                ratios = (1 - delta_vis) / (1 - delta_data)
                diffs = 1 - abs(delta_vis - delta_data)
                unavoidable = 1 - (delta_vis - un_mov)

                mean = (ratios + diffs + unavoidable) / 3

            elif metrics == 'SIBGRAPI':
                delta_vis = DeltaMetrics.compute_delta_vis(
                    history[revision], history[revision + 1])
                delta_data = DeltaMetrics.compute_delta_data(
                    history[revision], history[revision + 1])

                ratios = (1 - delta_vis) / (1 - delta_data)
                shn = ShneidermanWattenberg.compute_shneiderman(
                    history[revision], history[revision + 1])

                mean = (ratios + shn) / 2

            technique_data.append(mean)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list, title='Mean - ' + dataset_id)

    TimeBoxplot.plot(data,
                     technique_list,
                     median_sorted=True,
                     title='Mean - ' + dataset_id)