Esempio n. 1
0
class Synthesizer(object):
    def __init__(self, config):
        self.wavernn = None
        self.pwgan = None
        self.config = config
        self.use_cuda = self.config.use_cuda
        if self.use_cuda:
            assert torch.cuda.is_available(
            ), "CUDA is not availabe on this machine."
        self.load_tts(self.config.tts_checkpoint, self.config.tts_config,
                      self.config.use_cuda)
        if self.config.wavernn_lib_path:
            self.load_wavernn(self.config.wavernn_lib_path,
                              self.config.wavernn_file,
                              self.config.wavernn_config, self.config.use_cuda)
        if self.config.pwgan_lib_path:
            self.load_pwgan(self.config.pwgan_lib_path, self.config.pwgan_file,
                            self.config.pwgan_config, self.config.use_cuda)

    def load_tts(self, tts_checkpoint, tts_config, use_cuda):
        # pylint: disable=global-statement
        global symbols, phonemes

        print(" > Loading TTS model ...")
        print(" | > model config: ", tts_config)
        print(" | > checkpoint file: ", tts_checkpoint)

        self.tts_config = load_config(tts_config)
        self.use_phonemes = self.tts_config.use_phonemes
        self.ap = AudioProcessor(**self.tts_config.audio)

        if 'characters' in self.tts_config.keys():
            symbols, phonemes = make_symbols(**self.tts_config.characters)

        if self.use_phonemes:
            self.input_size = len(phonemes)
        else:
            self.input_size = len(symbols)
        # TODO: fix this for multi-speaker model - load speakers
        if self.config.tts_speakers is not None:
            self.tts_speakers = load_speaker_mapping(self.config.tts_speakers)
            num_speakers = len(self.tts_speakers)
        else:
            num_speakers = 0
        self.tts_model = setup_model(self.input_size,
                                     num_speakers=num_speakers,
                                     c=self.tts_config)
        # load model state
        cp = torch.load(tts_checkpoint, map_location=torch.device('cpu'))
        # load the model
        self.tts_model.load_state_dict(cp['model'])
        if use_cuda:
            self.tts_model.cuda()
        self.tts_model.eval()
        self.tts_model.decoder.max_decoder_steps = 3000
        if 'r' in cp:
            self.tts_model.decoder.set_r(cp['r'])

    def load_wavernn(self, lib_path, model_file, model_config, use_cuda):
        # TODO: set a function in wavernn code base for model setup and call it here.
        sys.path.append(
            lib_path)  # set this if WaveRNN is not installed globally
        #pylint: disable=import-outside-toplevel
        from WaveRNN.models.wavernn import Model
        print(" > Loading WaveRNN model ...")
        print(" | > model config: ", model_config)
        print(" | > model file: ", model_file)
        self.wavernn_config = load_config(model_config)
        # This is the default architecture we use for our models.
        # You might need to update it
        self.wavernn = Model(
            rnn_dims=512,
            fc_dims=512,
            mode=self.wavernn_config.mode,
            mulaw=self.wavernn_config.mulaw,
            pad=self.wavernn_config.pad,
            use_aux_net=self.wavernn_config.use_aux_net,
            use_upsample_net=self.wavernn_config.use_upsample_net,
            upsample_factors=self.wavernn_config.upsample_factors,
            feat_dims=80,
            compute_dims=128,
            res_out_dims=128,
            res_blocks=10,
            hop_length=self.ap.hop_length,
            sample_rate=self.ap.sample_rate,
        ).cuda()

        check = torch.load(model_file, map_location="cpu")
        self.wavernn.load_state_dict(check['model'])
        if use_cuda:
            self.wavernn.cuda()
        self.wavernn.eval()

    def load_pwgan(self, lib_path, model_file, model_config, use_cuda):
        sys.path.append(
            lib_path)  # set this if ParallelWaveGAN is not installed globally
        #pylint: disable=import-outside-toplevel
        from parallel_wavegan.models import ParallelWaveGANGenerator
        print(" > Loading PWGAN model ...")
        print(" | > model config: ", model_config)
        print(" | > model file: ", model_file)
        with open(model_config) as f:
            self.pwgan_config = yaml.load(f, Loader=yaml.Loader)
        self.pwgan = ParallelWaveGANGenerator(
            **self.pwgan_config["generator_params"])
        self.pwgan.load_state_dict(
            torch.load(model_file, map_location="cpu")["model"]["generator"])
        self.pwgan.remove_weight_norm()
        if use_cuda:
            self.pwgan.cuda()
        self.pwgan.eval()

    def save_wav(self, wav, path):
        # wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
        wav = np.array(wav)
        self.ap.save_wav(wav, path)

    @staticmethod
    def split_into_sentences(text):
        text = " " + text + "  <stop>"
        text = text.replace("\n", " ")
        text = re.sub(prefixes, "\\1<prd>", text)
        text = re.sub(websites, "<prd>\\1", text)
        if "Ph.D" in text:
            text = text.replace("Ph.D.", "Ph<prd>D<prd>")
        text = re.sub(r"\s" + alphabets + "[.] ", " \\1<prd> ", text)
        text = re.sub(acronyms + " " + starters, "\\1<stop> \\2", text)
        text = re.sub(
            alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]",
            "\\1<prd>\\2<prd>\\3<prd>", text)
        text = re.sub(alphabets + "[.]" + alphabets + "[.]",
                      "\\1<prd>\\2<prd>", text)
        text = re.sub(" " + suffixes + "[.] " + starters, " \\1<stop> \\2",
                      text)
        text = re.sub(" " + suffixes + "[.]", " \\1<prd>", text)
        text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
        if "”" in text:
            text = text.replace(".”", "”.")
        if "\"" in text:
            text = text.replace(".\"", "\".")
        if "!" in text:
            text = text.replace("!\"", "\"!")
        if "?" in text:
            text = text.replace("?\"", "\"?")
        text = text.replace(".", ".<stop>")
        text = text.replace("?", "?<stop>")
        text = text.replace("!", "!<stop>")
        text = text.replace("<prd>", ".")
        sentences = text.split("<stop>")
        sentences = sentences[:-1]
        sentences = list(filter(
            None, [s.strip() for s in sentences]))  # remove empty sentences
        return sentences

    def tts(self, text, speaker_id=None):
        wavs = []
        sens = self.split_into_sentences(text)
        print(sens)
        speaker_id = id_to_torch(speaker_id)
        if speaker_id is not None and self.use_cuda:
            speaker_id = speaker_id.cuda()

        for sen in sens:
            # preprocess the given text
            inputs = text_to_seqvec(sen, self.tts_config)
            inputs = numpy_to_torch(inputs, torch.long, cuda=self.use_cuda)
            inputs = inputs.unsqueeze(0)
            # synthesize voice
            decoder_output, postnet_output, alignments, stop_tokens = run_model_torch(
                self.tts_model, inputs, self.tts_config, False, speaker_id,
                None)
            # convert outputs to numpy
            postnet_output, decoder_output, _, _ = parse_outputs_torch(
                postnet_output, decoder_output, alignments, stop_tokens)

            if self.pwgan:
                vocoder_input = torch.FloatTensor(
                    postnet_output.T).unsqueeze(0)
                if self.use_cuda:
                    vocoder_input.cuda()
                wav = self.pwgan.inference(vocoder_input,
                                           hop_size=self.ap.hop_length)
            elif self.wavernn:
                vocoder_input = None
                if self.tts_config.model == "Tacotron":
                    vocoder_input = torch.FloatTensor(
                        self.ap.out_linear_to_mel(
                            linear_spec=postnet_output.T).T).T.unsqueeze(0)
                else:
                    vocoder_input = torch.FloatTensor(
                        postnet_output.T).unsqueeze(0)

                if self.use_cuda:
                    vocoder_input.cuda()
                wav = self.wavernn.generate(
                    vocoder_input,
                    batched=self.config.is_wavernn_batched,
                    target=11000,
                    overlap=550)
            else:
                wav = inv_spectrogram(postnet_output, self.ap, self.tts_config)
            # trim silence
            wav = trim_silence(wav, self.ap)

            wavs += list(wav)
            wavs += [0] * 10000

        out = io.BytesIO()
        self.save_wav(wavs, out)
        return out
Esempio n. 2
0
class Synthesizer(object):
    def __init__(self, config):
        self.wavernn = None
        self.config = config
        self.use_cuda = self.config.use_cuda
        print(self.config)
        if self.use_cuda:
            assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
        self.load_tts(self.config.tts_checkpoint, self.config.tts_config,
                      self.config.use_cuda)
        if self.config.wavernn_lib_path:
            self.load_wavernn(self.config.wavernn_lib_path, self.config.wavernn_path,
                              self.config.wavernn_file, self.config.wavernn_config,
                              self.config.use_cuda)

    def load_tts(self, tts_checkpoint, tts_config, use_cuda):
        print(" > Loading TTS model ...")
        print(" | > model config: ", tts_config)
        print(" | > checkpoint file: ", tts_checkpoint)
        self.tts_config = load_config(tts_config)
        self.use_phonemes = self.tts_config.use_phonemes
        self.ap = AudioProcessor(**self.tts_config.audio)
        if self.use_phonemes:
            self.input_size = len(phonemes)
        else:
            self.input_size = len(symbols)
        # load speakers
        if self.config.tts_speakers is not None:
            self.tts_speakers = load_speaker_mapping(os.path.join(model_path, self.config.tts_speakers))
            num_speakers = len(self.tts_speakers)
        else:
            num_speakers = 0
        self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config) 
        # load model state
        cp = torch.load(tts_checkpoint, map_location=torch.device('cpu'))
        # load the model
        self.tts_model.load_state_dict(cp['model'])
        if use_cuda:
            self.tts_model.cuda()
        self.tts_model.eval()
        self.tts_model.decoder.max_decoder_steps = 3000
        if 'r' in cp:
            self.tts_model.decoder.set_r(cp['r'])

    def load_wavernn(self, lib_path, model_path, model_file, model_config, use_cuda):
        # TODO: set a function in wavernn code base for model setup and call it here.
        sys.path.append(lib_path) # set this if TTS is not installed globally
        from WaveRNN.models.wavernn import Model
        wavernn_config = os.path.join(model_path, model_config)
        model_file = os.path.join(model_path, model_file)
        print(" > Loading WaveRNN model ...")
        print(" | > model config: ", wavernn_config)
        print(" | > model file: ", model_file)
        self.wavernn_config = load_config(wavernn_config)
        self.wavernn = Model(
            rnn_dims=512,
            fc_dims=512,
            mode=self.wavernn_config.mode,
            mulaw=self.wavernn_config.mulaw,
            pad=self.wavernn_config.pad,
            use_aux_net=self.wavernn_config.use_aux_net,
            use_upsample_net = self.wavernn_config.use_upsample_net,
            upsample_factors=self.wavernn_config.upsample_factors,
            feat_dims=80,
            compute_dims=128,
            res_out_dims=128,
            res_blocks=10,
            hop_length=self.ap.hop_length,
            sample_rate=self.ap.sample_rate,
        ).cuda()

        check = torch.load(model_file)
        self.wavernn.load_state_dict(check['model'])
        if use_cuda:
            self.wavernn.cuda()
        self.wavernn.eval()

    def save_wav(self, wav, path):
        # wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
        wav = np.array(wav)
        self.ap.save_wav(wav, path)

    def split_into_sentences(self, text):
        text = " " + text + "  "
        text = text.replace("\n", " ")
        text = re.sub(prefixes, "\\1<prd>", text)
        text = re.sub(websites, "<prd>\\1", text)
        if "Ph.D" in text:
            text = text.replace("Ph.D.", "Ph<prd>D<prd>")
        text = re.sub(r"\s" + alphabets + "[.] ", " \\1<prd> ", text)
        text = re.sub(acronyms+" "+starters, "\\1<stop> \\2", text)
        text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>\\3<prd>", text)
        text = re.sub(alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>", text)
        text = re.sub(" "+suffixes+"[.] "+starters, " \\1<stop> \\2", text)
        text = re.sub(" "+suffixes+"[.]", " \\1<prd>", text)
        text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
        if "”" in text:
            text = text.replace(".”", "”.")
        if "\"" in text:
            text = text.replace(".\"", "\".")
        if "!" in text:
            text = text.replace("!\"", "\"!")
        if "?" in text:
            text = text.replace("?\"", "\"?")
        text = text.replace(".", ".<stop>")
        text = text.replace("?", "?<stop>")
        text = text.replace("!", "!<stop>")
        text = text.replace("<prd>", ".")
        sentences = text.split("<stop>")
        sentences = sentences[:-1]
        sentences = [s.strip() for s in sentences]
        return sentences

    def tts(self, text):
        wavs = []
        sens = self.split_into_sentences(text)
        print(sens)
        if not sens:
            sens = [text+'.']
        for sen in sens:
            # preprocess the given text
            inputs = text_to_seqvec(sen, self.tts_config, self.use_cuda)
            # synthesize voice
            decoder_output, postnet_output, alignments, _ = run_model(
                self.tts_model, inputs, self.tts_config, False, None, None)
            # convert outputs to numpy
            postnet_output, decoder_output, _ = parse_outputs(
                postnet_output, decoder_output, alignments)

            if self.wavernn:
                postnet_output = postnet_output[0].data.cpu().numpy()
                wav = self.wavernn.generate(torch.FloatTensor(postnet_output.T).unsqueeze(0).cuda(), batched=self.config.is_wavernn_batched, target=11000, overlap=550)
            else:
                wav = inv_spectrogram(postnet_output, self.ap, self.tts_config)
            # trim silence
            wav = trim_silence(wav, self.ap)

            wavs += list(wav)
            wavs += [0] * 10000

        out = io.BytesIO()
        self.save_wav(wavs, out)
        return out
Esempio n. 3
0
class Synthesizer(object):
    def __init__(self, config):
        self.wavernn = None
        self.config = config
        self.use_cuda = config.use_cuda
        if self.use_cuda:
            assert torch.cuda.is_available(
            ), "CUDA is not availabe on this machine."
        self.load_tts(self.config.tts_path, self.config.tts_file,
                      self.config.tts_config, config.use_cuda)
        if self.config.wavernn_lib_path:
            self.load_wavernn(config.wavernn_lib_path, config.wavernn_path,
                              config.wavernn_file, config.wavernn_config,
                              config.use_cuda)

    def load_tts(self, model_path, model_file, model_config, use_cuda):
        tts_config = os.path.join(model_path, model_config)
        self.model_file = os.path.join(model_path, model_file)
        print(" > Loading TTS model ...")
        print(" | > model config: ", tts_config)
        print(" | > model file: ", model_file)
        self.tts_config = load_config(tts_config)
        self.use_phonemes = self.tts_config.use_phonemes
        self.ap = AudioProcessor(**self.tts_config.audio)
        if self.use_phonemes:
            self.input_size = len(phonemes)
            self.input_adapter = lambda sen: phoneme_to_sequence(
                sen, [self.tts_config.text_cleaner], self.tts_config.
                phoneme_language, self.tts_config.enable_eos_bos_chars)
        else:
            self.input_size = len(symbols)
            self.input_adapter = lambda sen: text_to_sequence(
                sen, [self.tts_config.text_cleaner])
        self.tts_model = setup_model(self.input_size, self.tts_config)
        # load model state
        if use_cuda:
            cp = torch.load(self.model_file)
        else:
            cp = torch.load(self.model_file,
                            map_location=lambda storage, loc: storage)
        # load the model
        self.tts_model.load_state_dict(cp['model'])
        if use_cuda:
            self.tts_model.cuda()
        self.tts_model.eval()
        self.tts_model.decoder.max_decoder_steps = 3000

    def load_wavernn(self, lib_path, model_path, model_file, model_config,
                     use_cuda):
        sys.path.append(lib_path)  # set this if TTS is not installed globally
        from WaveRNN.models.wavernn import Model
        wavernn_config = os.path.join(model_path, model_config)
        model_file = os.path.join(model_path, model_file)
        print(" > Loading WaveRNN model ...")
        print(" | > model config: ", wavernn_config)
        print(" | > model file: ", model_file)
        self.wavernn_config = load_config(wavernn_config)
        self.wavernn = Model(
            rnn_dims=512,
            fc_dims=512,
            mode=self.wavernn_config.mode,
            pad=2,
            upsample_factors=self.wavernn_config.
            upsample_factors,  # set this depending on dataset
            feat_dims=80,
            compute_dims=128,
            res_out_dims=128,
            res_blocks=10,
            hop_length=self.ap.hop_length,
            sample_rate=self.ap.sample_rate,
        ).cuda()

        check = torch.load(model_file)
        self.wavernn.load_state_dict(check['model'])
        if use_cuda:
            self.wavernn.cuda()
        self.wavernn.eval()

    def save_wav(self, wav, path):
        # wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
        wav = np.array(wav)
        self.ap.save_wav(wav, path)

    def split_into_sentences(self, text):
        text = " " + text + "  "
        text = text.replace("\n", " ")
        text = re.sub(prefixes, "\\1<prd>", text)
        text = re.sub(websites, "<prd>\\1", text)
        if "Ph.D" in text: text = text.replace("Ph.D.", "Ph<prd>D<prd>")
        text = re.sub("\s" + alphabets + "[.] ", " \\1<prd> ", text)
        text = re.sub(acronyms + " " + starters, "\\1<stop> \\2", text)
        text = re.sub(
            alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]",
            "\\1<prd>\\2<prd>\\3<prd>", text)
        text = re.sub(alphabets + "[.]" + alphabets + "[.]",
                      "\\1<prd>\\2<prd>", text)
        text = re.sub(" " + suffixes + "[.] " + starters, " \\1<stop> \\2",
                      text)
        text = re.sub(" " + suffixes + "[.]", " \\1<prd>", text)
        text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
        if "”" in text: text = text.replace(".”", "”.")
        if "\"" in text: text = text.replace(".\"", "\".")
        if "!" in text: text = text.replace("!\"", "\"!")
        if "?" in text: text = text.replace("?\"", "\"?")
        text = text.replace(".", ".<stop>")
        text = text.replace("?", "?<stop>")
        text = text.replace("!", "!<stop>")
        text = text.replace("<prd>", ".")
        sentences = text.split("<stop>")
        sentences = sentences[:-1]
        sentences = [s.strip() for s in sentences]
        return sentences

    def tts(self, text):
        wavs = []
        sens = self.split_into_sentences(text)
        if len(sens) == 0:
            sens = [text + '.']
        for sen in sens:
            if len(sen) < 3:
                continue
            sen = sen.strip()
            print(sen)

            seq = np.array(self.input_adapter(sen))
            text_hat = sequence_to_phoneme(seq)
            print(text_hat)

            chars_var = torch.from_numpy(seq).unsqueeze(0).long()

            if self.use_cuda:
                chars_var = chars_var.cuda()
            decoder_out, postnet_out, alignments, stop_tokens = self.tts_model.inference(
                chars_var)
            postnet_out = postnet_out[0].data.cpu().numpy()
            if self.tts_config.model == "Tacotron":
                wav = self.ap.inv_spectrogram(postnet_out.T)
            elif self.tts_config.model == "Tacotron2":
                if self.wavernn:
                    wav = self.wavernn.generate(
                        torch.FloatTensor(postnet_out.T).unsqueeze(0).cuda(),
                        batched=self.config.is_wavernn_batched,
                        target=11000,
                        overlap=550)
                else:
                    wav = self.ap.inv_mel_spectrogram(postnet_out.T)
            wavs += list(wav)
            wavs += [0] * 10000

        out = io.BytesIO()
        self.save_wav(wavs, out)
        return out
Esempio n. 4
0
            mulaw=VC.mulaw,
            pad=VC.pad,
            upsample_factors=VC.upsample_factors,
            feat_dims=VC.audio["num_mels"],
            compute_dims=128,
            res_out_dims=128,
            res_blocks=10,
            hop_length=ap.hop_length,
            sample_rate=ap.sample_rate,
        )

        check = torch.load(args.vocoder_path)
        vocoder_model.load_state_dict(check['model'])
        vocoder_model.eval()
        if args.use_cuda:
            vocoder_model.cuda()
    else:
        vocoder_model = None
        VC = None

    # synthesize voice
    print(" > Text: {}".format(args.text))
    _, _, _, wav = tts(model,
                       vocoder_model,
                       C,
                       VC,
                       args.text,
                       ap,
                       args.use_cuda,
                       args.batched_vocoder,
                       figures=False)
Esempio n. 5
0
            pad=VOCODER_CONFIG.pad,
            upsample_factors=VOCODER_CONFIG.upsample_factors,
            feat_dims=VOCODER_CONFIG.audio["num_mels"],
            compute_dims=128,
            res_out_dims=128,
            res_blocks=10,
            hop_length=ap_vocoder.hop_length,
            sample_rate=ap_vocoder.sample_rate,
            use_upsample_net = True,
            use_aux_net = True
        ).cuda()

    check = torch.load(VOCODER_MODEL_PATH)
    wavernn.load_state_dict(check['model'], strict=False)
    if use_cuda:
        wavernn.cuda()
    wavernn.eval();
    print(check['step'])


# ### Comparision with https://mycroft.ai/blog/available-voices/

model.eval()
model.decoder.max_decoder_steps = 2000
# speaker_id = 0
for speaker_id in range(5):
    sentence =  "怎么网络不好啊,为什么上不去"
    align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=False, use_pinyin=use_pinyin)
        
    sentence =  "晚饭吃什么"
    align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=False, use_pinyin=use_pinyin)