def GetLastTradeDate(): end_date = date.today() count = w.tdayscount(end_date) if count.Data == 0 or datetime.now().hour <= 15: return w.tdaysoffset(-1, end_date).Data[0][0].date() return end_date
def func11(): yesterday = (datetime.datetime.now() - datetime.timedelta(days = 1)).strftime("%Y-%m-%d") df_industry=pd.read_csv('industry.csv') last_date_industry = time.strftime("%Y-%m-%d",time.strptime(str(int(df_industry.iloc[-1,0])),"%Y%m%d")) day_gap_industry = w.tdayscount(last_date_industry, yesterday).Data[0][0]-1 print 11 w_wsd_data={} stock_ls=[] for stock in list(df_industry.columns.values)[1:] : stock_ls.append(stock) w_wsd_data[stock] = w.wsd(stock, 'close', (w.tdaysoffset(1,last_date_industry).Data[0][0]).strftime("%Y-%m-%d"),yesterday) print w_wsd_data f=open('industry.csv','a') for i in xrange(day_gap_industry): this_day = w.tdaysoffset(i+1,last_date_industry) ls = [] this_day_csv = (this_day.Data[0][0]).strftime("%Y%m%d") for stock in stock_ls: ls.append(w_wsd_data[stock].Data[0][i]) f.write(this_day_csv) for stock_data in ls: f.write(",") f.write(str(stock_data)) f.write("\n") f.close() print 'finish'
def func2(): yesterday = (datetime.datetime.now() - datetime.timedelta(days = 1)).strftime("%Y-%m-%d") df_openA=pd.read_csv('openA.csv') last_date_openA = time.strftime("%Y-%m-%d",time.strptime(str(int(df_openA.iloc[-1,0])),"%Y%m%d")) day_gap_openA = w.tdayscount(last_date_openA, yesterday).Data[0][0]-1 print 2 w_wsd_data={} stock_ls=[] for stock in universe: if stock[0]=='1': stock = stock + '.SZ' else: stock += '.SH' stock_ls.append(stock) w_wsd_data[stock] = w.wsd(stock, 'open', (w.tdaysoffset(1,last_date_openA).Data[0][0]).strftime("%Y-%m-%d"),yesterday) for i in xrange(day_gap_openA): this_day = w.tdaysoffset(i+1,last_date_openA) ls = [] this_day_csv = (this_day.Data[0][0]).strftime("%Y%m%d") for stock in stock_ls: ls.append(w_wsd_data[stock].Data[0][i]) f=open('openA.csv','a') f.write(this_day_csv) for stock_data in ls: f.write(",") f.write(str(stock_data)) f.write("\n") f.close() print 'finish'
def func9(): yesterday = (datetime.datetime.now() - datetime.timedelta(days = 1)).strftime("%Y-%m-%d") df_discount_ratio_M = pd.read_csv('discount_ratio_M.csv') last_date_discount_ratio_M = time.strftime("%Y-%m-%d",time.strptime(str(int(df_discount_ratio_M.iloc[-1,0])),"%Y%m%d")) day_gap_discount_ratio_M = w.tdayscount(last_date_discount_ratio_M, yesterday).Data[0][0]-1 w_wsd_data={} print 9 stock_ls=[] for stock in universe: if stock[0]=='1': stock = stock + '.SZ' else: stock = stock + '.SH' mA_code = w.wsd(stock, 'fund_smfcode', yesterday).Data[0][0] stock_ls.append(mA_code) w_wsd_data[mA_code] = w.wsd(mA_code, 'anal_tdiscountratio', (w.tdaysoffset(1,last_date_discount_ratio_M).Data[0][0]).strftime("%Y-%m-%d"),yesterday) for i in xrange(day_gap_discount_ratio_M): this_day = w.tdaysoffset(i+1,last_date_discount_ratio_M) ls = [] this_day_csv = (this_day.Data[0][0]).strftime("%Y%m%d") for stock in stock_ls: ls.append(w_wsd_data[stock].Data[0][i]) f=open('discount_ratio_M.csv','a') f.write(this_day_csv) for stock_data in ls: f.write(",") f.write(str(stock_data)) f.write("\n") f.close() print 'finish'
def volitility(code, T, numOfYearBefore): EndDay = datetime.date.today() BeginDay = EndDay - relativedelta(years=numOfYearBefore) LogRet = RevisedLogRet(code, BeginDay, EndDay) days = w.tdayscount(EndDay - relativedelta(months=T), EndDay, "").Data[0][0] vol = (LogRet.rolling(window=days, center=False).std() * np.sqrt(252)).dropna().iloc[-1][0] return vol
def get_tdays_count(self, begin_date, end_date, style=""): """ 获取日期间的周期数 输入参数: begin_date 起始日期 end_date 截止日期 style 日期类型 函数返回: 返回周期数N 返回类型:int """ option = {"Days": style} td = w.tdayscount(begin_date, end_date, **option) return td.Data[0][0]
def func6(): yesterday = (datetime.datetime.now() - datetime.timedelta(days = 1)).strftime("%Y-%m-%d") df_closeB=pd.read_csv('closeB.csv') last_date_closeB = time.strftime("%Y-%m-%d",time.strptime(str(int(df_closeB.iloc[-1,0])),"%Y%m%d")) day_gap_closeB = w.tdayscount(last_date_closeB, yesterday).Data[0][0]-1 print 6 w_wsd_data={} stock_ls=[] for stock in universe: if stock =='150073': stock='150075.SZ' else: if stock[0]=='1': stock = str(int(stock[:6])+1) + '.SZ' else: stock = str(int(stock[:6])+1) + '.SH' stock_ls.append(stock) w_wsd_data[stock] = w.wsd(stock, 'close', (w.tdaysoffset(1,last_date_closeB).Data[0][0]).strftime("%Y-%m-%d"),yesterday) # print 1 print stock #if w_wsd_data[stock].Data[0][0]==None: for i in xrange(day_gap_closeB): this_day = w.tdaysoffset(i+1,last_date_closeB) ls = [] this_day_csv = (this_day.Data[0][0]).strftime("%Y%m%d") for stock in stock_ls: ls.append(w_wsd_data[stock].Data[0][i]) f=open('closeB.csv','a') f.write(this_day_csv) for stock_data in ls: f.write(",") f.write(str(stock_data)) f.write("\n") f.close() print 'finish'
def tdays_count(begin_date, end_date): w.start() result = w.tdayscount(begin_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d"), "").Data[0][0] return result
def updatePal(palPath=None): start = time.time() md.init('18201141877', 'Wqxl7309') if not w.isconnected(): w.start() palPath = r'E:\bqfcts\bqfcts\data\Paltest' if palPath is None else palPath tempFilePath = os.path.join(palPath,'temp_files') if not os.path.exists(tempFilePath): os.mkdir(tempFilePath) matName = 'data_20150701_now.mat' savedPal = h5py.File(os.path.join(palPath,matName)) # print(read_cell(savedPal,'sec_names')) nextTrd = dt.datetime.strptime(str(int(savedPal['nexttrd'][0][0])),'%Y%m%d') nextTrdStr = nextTrd.strftime('%Y-%m-%d') updateTime = dt.datetime(nextTrd.year,nextTrd.month,nextTrd.day,15,30,0) if updateTime > dt.datetime.now(): print('not update time yet') return else: availableDateStr = md.get_last_dailybars('SHSE.000001')[0].strtime[:10] if int(availableDateStr.replace('-','')) <= int(nextTrdStr.replace('-','')): print('new data not avaliable yet') return else: print('will update from {0} to {1}'.format(nextTrdStr,availableDateStr)) betweenDays = [tdt.strtime[:10] for tdt in md.get_calendar('SHSE',nextTrdStr,availableDateStr)] if nextTrdStr!=availableDateStr: # 避免同一日期重复 betweenDays.append(availableDateStr) betweenDaysNumber = [int(tdt.replace('-','')) for tdt in betweenDays] newDateNum = len(betweenDaysNumber) # 更新前 先备份数据 backupPath = os.path.join(palPath,'backup') cpResult = os.system(r'COPY {0} {1} /Y'.format(os.path.join(palPath,matName),os.path.join(backupPath,matName))) assert cpResult==0,'backup failed' gmDateFmt = 'yyyy-mm-dd' # update indice indiceNames = ['sh','hs300','zz500','sz50'] indiceCodes = ['000001','000300','000905','000016'] symbols = ','.join(['SHSE.{}'.format(sbl) for sbl in indiceCodes]) indiceBars = md.get_dailybars(symbols,nextTrdStr,availableDateStr) for dumi,idx in enumerate(indiceNames): bars = indiceBars[dumi::4] idxret = np.array([bar.close for bar in bars])/np.array([bar.pre_close for bar in bars]) - 1 idxArray = np.array([betweenDaysNumber, [bar.open for bar in bars], [bar.high for bar in bars], [bar.low for bar in bars], [bar.close for bar in bars], [bar.volume for bar in bars], [bar.amount for bar in bars], idxret ]) # newIndex = np.column_stack([savedPal['index_{}'.format(idx)][:], idxArray]) pd.DataFrame(np.transpose(idxArray)).to_csv(os.path.join(tempFilePath,'index_{}.csv'.format(idx)),index=False,header=False) # update stock info nCut = savedPal['N_cut'][0][0] # 6000 nEnd = savedPal['N_end'][0][0] # last end date id ex.6732 stockNames = read_cell(savedPal, 'stockname') savedStkcdsGM = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in stockNames] savedStkNum = len(stockNames) listedStkcdsWind = w.wset('sectorconstituent','date={};sectorid=a001010100000000'.format(availableDateStr)).Data[1] newStkcdsWind = sorted(list(set(listedStkcdsWind) - set(stockNames))) if newStkcdsWind: stockNames.extend( newStkcdsWind ) newStkIpos = [int(tdt.strftime('%Y%m%d')) for tdt in w.wss(newStkcdsWind, 'ipo_date').Data[0]] newIpoIds = [(w.tdayscount(nextTrd,str(ipo)).Data[0][0]+nEnd) for ipo in newStkIpos] newStockip = pd.DataFrame([[int(newStkcdsWind[dumi][:6]), newStkIpos[dumi], newIpoIds[dumi],0,0,0,0,0] for dumi in range(len(newStkcdsWind))]) newStockip.to_csv( os.path.join(tempFilePath,'stockip.csv'),index=False,header=False ) else: pd.DataFrame([]).to_csv(os.path.join(tempFilePath, 'stockip.csv'), index=False, header=False) newStkcdsGm = ['.'.join([stk[-2:]+'SE',stk[:6]]) for stk in newStkcdsWind] allStkcdsGM = savedStkcdsGM + newStkcdsGm # 全体股票包含已退市 与pal行数相同 # allSecNames = pd.DataFrame(w.wss(stockNames,'sec_name').Data[0]) allInstruments = md.get_instruments('SZSE', 1, 0) + md.get_instruments('SHSE', 1, 0) allInstrumentsDF = pd.DataFrame([[inds.symbol, inds.sec_name] for inds in allInstruments],columns=['symbol','sec_name']).set_index('symbol') allSecNames = allInstrumentsDF.loc[allStkcdsGM,'sec_name'] allSecNames.to_csv( os.path.join(tempFilePath, 'sec_names.csv'), index=False, header=False ) pd.DataFrame(newStkcdsWind).to_csv( os.path.join(tempFilePath, 'stockname.csv'), index=False, header=False ) # update trade info pages = ['date','open','high','low','close','volume','amount','pctchg','flow_a_share','total_share','adjfct','adjprc','isst'] newPal = {} for page in pages: newPal[page] = pd.DataFrame(np.zeros([len(allStkcdsGM), newDateNum]),index=allStkcdsGM,columns=betweenDays) lastPal = pd.DataFrame(savedPal['Pal'][:,-1,:],columns=savedStkcdsGM) barsDaily = md.get_dailybars(','.join(allStkcdsGM), nextTrdStr, availableDateStr) for bar in barsDaily: tdt = bar.strtime[:10] stk = '.'.join([bar.exchange,bar.sec_id]) newPal['date'].loc[stk, tdt] = int(tdt.replace('-','')) newPal['open'].loc[stk, tdt] = bar.open newPal['high'].loc[stk, tdt] = bar.high newPal['low'].loc[stk, tdt] = bar.low newPal['close'].loc[stk, tdt] = bar.close newPal['volume'].loc[stk, tdt] = bar.volume newPal['amount'].loc[stk, tdt] = bar.amount newPal['pctchg'].loc[stk, tdt] = bar.close/bar.pre_close - 1 # 计算自算复权因子 : 前一日收盘价*(1+当日收益率)/当日收盘价 s.t. (当日收盘价*当日复权因子)/前一日收盘价 = 1+ret # 若当日没有交易 : 沿用前一日 复权因子 循环外处理 # 若前一日没有交易 前一日收盘价 特殊处理: # 当日有交易 : 取停牌前最后一个交易日的 收盘价 # 当日没交易 没有退市 : 沿用前一日复权因子 循环外处理 # 当日没交易 已经退市 : 沿用前一日复权因子 循环外处理 # 若新股上市第一天 : 复权因子为1 if stk in newStkcdsGm: newPal['adjfct'].loc[stk, tdt] = 1 else: noTrdLast = (lastPal.loc[0, stk] == 0) if tdt == nextTrdStr else (newPal['date'].loc[stk, betweenDays[betweenDays.index(tdt) - 1]] == 0) if noTrdLast: # 前一日没交易 今日有交易(否则不应出现在bars里面) lastBar = md.get_last_n_dailybars(stk, 2, end_time=tdt)[-1] newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * lastBar.close * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close else: preClose = lastPal.loc[4,stk] if tdt==nextTrdStr else newPal['close'].loc[stk,betweenDays[betweenDays.index(tdt)-1]] newPal['adjfct'].loc[stk, tdt] = lastPal.loc[15, stk] * preClose * (1 + newPal['pctchg'].loc[stk, tdt]) / bar.close for dumi,tdt in enumerate(betweenDays): idx = newPal['adjfct'].loc[:,tdt]==0 idx = idx.values if tdt==nextTrdStr: newPal['adjfct'].loc[idx[:savedStkNum], tdt] = lastPal.loc[15,:].values[idx[:savedStkNum]] else: newPal['adjfct'].loc[idx, tdt] = newPal['adjfct'].loc[idx, betweenDays[dumi-1]] newPal['adjprc'] = newPal['adjfct']*newPal['close'] shareBar = md.get_share_index(','.join(allStkcdsGM), nextTrdStr, availableDateStr) for bar in shareBar: tdt = bar.pub_date stk = bar.symbol newPal['flow_a_share'].loc[stk, tdt] = bar.flow_a_share newPal['total_share'].loc[stk, tdt] = bar.total_share isST = np.array([int('ST' in sn) for sn in allSecNames.values]) newPal['isst'] = pd.DataFrame(np.repeat(np.reshape(isST,(isST.shape[0],1)),len(betweenDays),axis=1), index=allStkcdsGM, columns=betweenDays) for page in newPal: newPal[page].to_csv(os.path.join(tempFilePath,'{}.csv'.format(page)),index=False,header=False ) print('Pal temp files update finished with {0} stocks and {1} days in {2} seconds '.format(len(newStkcdsWind),len(betweenDays),time.time() - start))
] r = 0.038 l = len(code) # df = pd.DataFrame(columns = [u'公司名称',u'品种',u'品种代码', # u'期权类型',u'行权价',u'到期日/交易期限', # u'最小交易单位',u'买价',u'卖价', # u'标的价格',u'报价日期']) df = pd.DataFrame(columns=[ u'报价日期', u'品种', u'品种代码', u'期权类型', u'标的价格', u'行权价', u'到期日/交易期限', u'最小交易单位', u'买价', u'卖价', u'', u'25%分位波动率', u'50%分位波动率', u'75%分位波动率', u'今日波动率', u'买价波动率', u'卖价波动率', u'对冲成本波动率', u'设定卖价溢出波动率', u'设定买价溢出波动率' ]) T = w.tdayscount(datetime.date.today(), datetime.date.today() + relativedelta(months=1), "").Data[0][0] for i in range(l): OriTickData = w.wss(code[i], "mfprice").Data[0][0] tick = float(re.search(r'\d+(\.\d+)?', OriTickData).group(0)) S0 = w.wsq(code[i], "rt_last").Data[0][0] K = S0 a = BidAsk(code[i], tick, T, r) df1 = a.QuoteOneSpecies(S0, K) df = df.append(df1) print(code[i]) # bookname = u'场外期权报价-渤海融盛'
def ttradedayscount(begt, endt): w.start() days = w.tdayscount(begt, endt).Data[0] return days[0]
__author__ = 'aming.tao' from WindPy import w from datetime import * w.start() data=w.wsd("600000.SH","close,amt","2013-04-30", datetime.today()-timedelta(1))#取浦发银行收盘价等信 data=w.wsd("600000.SH","close,amt", datetime.today()-timedelta(100))# data=w.wsi("600000.SH","close,amt","2015-10-01 9:00:00")#取浦发银行分钟收盘价等信息 data=w.wst("600000.SH","open", datetime.today()-timedelta(0,2*3600), datetime.now())#取浦发银行tick数据信息 data=w.wss("600000.SH,000001.SZ","eps_ttm,orps,surpluscapitalps","rptDate=20121231")#取浦发银行等财务数据信息 data=w.wset("SectorConstituent",u"date=20130608;sector=全部A股")#取全部A 股股票代码、名称信息 w.wset("IndexConstituent","date=20130608;windcode=000300.SH;field=wind_code,i_weight")#取沪深300 指数中股票代码和权重 w.wset("TradeSuspend","startdate=20130508;enddate=20130608;field=wind_code,sec_name,suspend_type,suspend_reason")#取停牌信息 w.wset("SectorConstituent",u"date=20130608;sector=风险警示股票;field=wind_code,sec_name")#取ST 股票等风险警示股票信息 w.tdays("2013-05-01","2013-06-08")#返回5 月1 日到6 月8 日之间的交易日序列 w.tdays("2013-05-01")#返回5 月1 日到当前时间的交易日序列 w.tdaysoffset(-5,"2013-05-01")#返回5 月1 日前推五个交易日的日期,返回2013-4-19 w.tdaysoffset(-5)#返回当前时间前推五个交易日的日期 w.tdayscount("2013-05-01","2013-06-08")#返回5 月1 日到6 月8 日之间的交易日序列长度,为27 w.stop()