Esempio n. 1
0
def pts_euclidean(input_pts1, input_pts2, warning=True, debug=True):
    '''
    calculate the euclidean distance between two sets of points

    parameters:
        input_pts1:     2 x N or (2, ) numpy array, a list of 2 elements, a listoflist of 2 elements: (x, y)
        input_pts2:     same as above

    outputs:
        ave_euclidean:      averaged euclidean distance
        eculidean_list:     a list of the euclidean distance for all data points
    '''
    pts1 = safe_2dptsarray(input_pts1, warning=warning, debug=debug)
    pts2 = safe_2dptsarray(input_pts2, warning=warning, debug=debug)
    if debug:
        assert pts1.shape == pts2.shape, 'the shape of two points is not equal'
        assert is2dptsarray(pts1) and is2dptsarray(pts2), 'the input points are not correct'

    # calculate the distance
    eculidean_list = np.zeros((pts1.shape[1], ), dtype='float32')
    num_pts = pts1.shape[1]
    ave_euclidean = 0
    for pts_index in xrange(num_pts):
        pts1_tmp = pts1[:, pts_index]
        pts2_tmp = pts2[:, pts_index]
        n = float(pts_index + 1)
        distance_tmp = math.sqrt((pts1_tmp[0] - pts2_tmp[0])**2 + (pts1_tmp[1] - pts2_tmp[1])**2)               # TODO check the start
        ave_euclidean = (n - 1) / n * ave_euclidean + distance_tmp / n
        eculidean_list[pts_index] = distance_tmp

    return ave_euclidean, eculidean_list.tolist()
Esempio n. 2
0
def pts2bbox(pts, debug=True, vis=False):
    '''
    convert a set of 2d points to a bounding box

    parameter:  
        pts:    2 x N numpy array, N should >= 2

    return:
        bbox:   1 x 4 numpy array, TLBR format
    '''
    if debug:
        assert is2dptsarray(pts) or is2dptsarray_occlusion(
            pts
        ), 'the input points should have shape: 2 or 3 x num_pts vs %d x %s' % (
            pts.shape[0], pts.shape[1])
        assert pts.shape[
            1] >= 2, 'number of points should be larger or equal than 2'

    bbox = np.zeros((1, 4), dtype='float32')
    bbox[0, 0] = np.min(pts[0, :])  # x coordinate of left top point
    bbox[0, 1] = np.min(pts[1, :])  # y coordinate of left top point
    bbox[0, 2] = np.max(pts[0, :])  # x coordinate of bottom right point
    bbox[0, 3] = np.max(pts[1, :])  # y coordinate of bottom right point

    # if vis:
    #     fig = plt.figure()
    #     pts = imagecoor2cartesian(pts)
    #     plt.scatter(pts[0, :], pts[1, :], color='r')
    #     plt.scatter(bbox[0, 0], -bbox[0, 1], color='b')         # -1 is to convert the coordinate from image to cartesian
    #     plt.scatter(bbox[0, 2], -bbox[0, 3], color='b')
    #     plt.show()
    #     plt.close(fig)
    return bbox
Esempio n. 3
0
def anno_writer(pts_array,
                pts_savepath,
                num_pts=68,
                anno_version=1,
                debug=True):
    '''
    write the point array to a .pts file
    parameter:
        pts_array:      2 or 3 x num_pts numpy array
        
    '''
    if debug:
        assert is_path_exists_or_creatable(
            pts_savepath), 'the save path is not correct'
        assert (
            is2dptsarray(pts_array) or is2dptsarray_occlusion(pts_array)
            or is2dptsarray_confidence(pts_array)
        ) and pts_array.shape[1] == num_pts, 'the input point is not correct'

    with open(pts_savepath, 'w') as file:
        file.write('version: %d\n' % anno_version)
        file.write('n_points: %d\n' % num_pts)
        file.write('{\n')

        # main content
        for pts_index in xrange(num_pts):
            if is2dptsarray(pts_array):
                file.write('%.3f %.3f %f\n' %
                           (pts_array[0, pts_index], pts_array[1, pts_index],
                            1.0))  # all visible
            else:
                file.write('%.3f %.3f %f\n' %
                           (pts_array[0, pts_index], pts_array[1, pts_index],
                            pts_array[2, pts_index]))

        file.write('}')
        file.close()
Esempio n. 4
0
def safe_2dptsarray(input_pts, homogeneous=False, warning=True, debug=True):
    '''
	make sure to copy the pts array without modifying it and make the dimension to 2(3 if homogenous) x N

	parameters:
		input_pts: 		a list of 2(3 if homogenous) elements, a listoflist of 2 elements: 
						e.g., [[1,2], [5,6]], a numpy array with shape or (2, N) or (2, )
		homogeneous:		the input points are in the homogenous coordinate
	
	outputs:
		np_pts:			2 (3 if homogenous) X N numpy array
	'''
    if homogeneous: dimension = 3
    else: dimension = 2

    if islist(input_pts):
        if islistoflist(input_pts):
            if debug:
                assert all(
                    len(list_tmp) == dimension for list_tmp in input_pts
                ), 'all sub-lists should have length of %d' % dimension
            np_pts = np.array(input_pts).transpose()
        else:
            if debug:
                assert len(
                    input_pts
                ) == dimension, 'the input pts list does not have a good shape'
            np_pts = np.array(input_pts).reshape((dimension, 1))
    elif isnparray(input_pts):
        input_pts = input_pts.copy()
        if input_pts.shape == (dimension, ):
            np_pts = input_pts.reshape((dimension, 1))
        else:
            np_pts = input_pts
    else:
        assert False, 'only list and numpy array for pts are supported'

    if debug:
        if homogeneous:
            assert is2dptsarray_homogeneous(
                np_pts), 'the input pts array does not have a good shape'
        else:
            assert is2dptsarray(
                np_pts), 'the input pts array does not have a good shape'

    return np_pts
Esempio n. 5
0
def pts_rotate2D(pts_array, rotation_angle, im_height, im_width, warning=True, debug=True):
    '''
    rotate the point array in 2D plane counter-clockwise

    parameters:
        pts_array:          2 x num_pts
        rotation_angle:     e.g. 90

    return
        pts_array:          2 x num_pts
    '''
    if debug: assert is2dptsarray(pts_array), 'the input point array does not have a good shape'
    rotation_angle = safe_angle(rotation_angle, warning=warning, debug=True)             # ensure to be in [-180, 180]

    if rotation_angle > 0: cols2rotated, rows2rotated = im_width, im_width
    else: cols2rotated, rows2rotated = im_height, im_height
    rotation_matrix = cv2.getRotationMatrix2D((cols2rotated/2, rows2rotated/2), rotation_angle, 1)         # 2 x 3
    num_pts = pts_array.shape[1]
    pts_rotate = np.ones((3, num_pts), dtype='float32')             # 3 x num_pts
    pts_rotate[0:2, :] = pts_array         

    return np.dot(rotation_matrix, pts_rotate)         # 2 x num_pts
Esempio n. 6
0
def pts_conversion_back_bbox(pts_array, bboxes_in, debug=True):
    '''
    convert pts in the cropped image to the pts in the original image 

    parameters:
        bboxes_in:      1 X 4 numpy array, TLBR or TLWH format
        pts_array:      2(3) x N numpy array, N should >= 1
    '''
    np_bboxes = safe_bbox(bboxes_in, debug=debug)
    if debug:
        assert is2dptsarray(pts_array) or is2dptsarray_occlusion(
            pts_array
        ) or is2dptsarray_confidence(
            pts_array
        ), 'the input points should have shape: 2 or 3 x num_pts vs %d x %s' % (
            pts_array.shape[0], pts_array.shape[1])
        assert isbbox(np_bboxes), 'the input bounding box is not correct'

    pts_out = pts_array.copy()
    pts_out[0, :] = pts_array[0, :] + np_bboxes[0, 0]
    pts_out[1, :] = pts_array[1, :] + np_bboxes[0, 1]

    return pts_out