nrepeats = len(forward_data_files) / args.ntrajs_per_block
ntotal_trajs = nrepeats * args.ntrajs_per_block
forward_data_files = forward_data_files[:ntotal_trajs]
backward_data_files = backward_data_files[:ntotal_trajs]

out_nc_handle = nc.Dataset(args.out, "w", format="NETCDF4")

k, lambda_t, z_t, w_t, indices = extract_multiple_nc(forward_data_files, TIME_STRIDE, nrepeats, args.ntrajs_per_block)
data = {"dt" : np.array([DT], dtype=float),
        "pulling_times" : DT*indices,
        "ks" : np.array([k]),
        "lambda_F" : lambda_t,
        "wF_t" : w_t,
        "zF_t" : z_t}
save_to_nc(data, out_nc_handle)


if len(backward_data_files) == 0:
    data = {"lambda_R": lambda_t[::-1], "wR_t": w_t[::-1, ::-1, :], "zR_t": z_t[::-1, ::-1, :]}
else:
    k, lambda_t, z_t, w_t, indices = extract_multiple_nc(backward_data_files, TIME_STRIDE, nrepeats, args.ntrajs_per_block)
    data = {"lambda_R": lambda_t, "wR_t": w_t, "zR_t": z_t}

save_to_nc(data, out_nc_handle)
out_nc_handle.close()

print("DONE")

Esempio n. 2
0
def _convert_2_acc_work(w_t, z_t, lambda_t, k):
    """
    use Eq. (31) in Hummer and Szabo 2005
    :param w_t: 2d array of shape (ntrajs, times)
    :param z_t: 2d array of shape (ntrajs, times)
    :param lambda_t: 1d array of shape (times,)
    :param k: float, pulling force constant
    :return: acc_work
    """
    v_t = V(z_t, k, lambda_t)       # v_t has shape (ntrajs, times)
    v_0 = v_t[:, [0]]               # v_0 has shape (ntrajs, 1)
    acc_w_t = w_t + v_t - v_0
    return acc_w_t


if args.work_in_file == args.work_out_file:
    raise ValueError("in and out files are the same")

with nc.Dataset(args.work_in_file, "r") as handle:
    data = {key: handle.variables[key][:] for key in handle.variables.keys()}

ks = data["ks"][0]   # kcal/mol/A^2quit

data["wF_t"] = _convert_2_acc_work(data["wF_t"], data["zF_t"], data["lambda_F"], ks)
data["wR_t"] = _convert_2_acc_work(data["wR_t"], data["zR_t"], data["lambda_R"], ks)

with nc.Dataset(args.work_out_file, "w", format="NETCDF4") as handle:
    save_to_nc(data, handle)

print("DONE")
Esempio n. 3
0
    print("Repeat ", repeat)
    #zF_t[repeat, :, :], wF_t[repeat, :, :] = switching(args.ks, lambda_F, args.equilibration_steps,
    #                                                   args.trajs_per_repeat, args.dt, U, dU_dx)
    lower = repeat * args.trajs_per_repeat
    upper = (repeat + 1) * args.trajs_per_repeat

    zF_t[lower : upper, :], wF_t[lower : upper, :] = switching(args.ks, lambda_F, args.equilibration_steps,
                                                               args.trajs_per_repeat, args.dt, U, dU_dx)

    #zR_t[repeat, :, :], wR_t[repeat, :, :] = switching(args.ks, lambda_R, args.equilibration_steps,
    #                                                   args.trajs_per_repeat, args.dt, U, dU_dx)
    zR_t[lower : upper, :], wR_t[lower : upper, :] = switching(args.ks, lambda_R, args.equilibration_steps,
                                                       args.trajs_per_repeat, args.dt, U, dU_dx)

data = {}
data["lambda_F"] = lambda_F
data["lambda_R"] = lambda_R
data["ks"] = np.array([args.ks], dtype=float)
data["dt"] = np.array([args.dt], dtype=float)

data["zF_t"] = zF_t
data["wF_t"] = wF_t 

data["zR_t"] = zR_t
data["wR_t"] = wR_t 

nc_handle   = nc.Dataset(args.out, "w", format="NETCDF4")
save_to_nc(data, nc_handle)
nc_handle.close()

COLVAR_SETUP_FILE_MATCH = "colvar_*.in"
COLVAR_TRAJ_FILE = "equilibrate.colvars.traj"
NAMD_LOGFILE = "logfile"

COLVAR_SETUP_PREFIX, COLVAR_SETUP_SUFFIX = COLVAR_SETUP_FILE_MATCH.split("*")

colvar_setup_files = [
    os.path.join(args.colvar_setup_dir,
                 COLVAR_SETUP_PREFIX + "%d" % i + COLVAR_SETUP_SUFFIX)
    for i in range(args.nwindows)
]

colvar_traj_files = [
    os.path.join(args.namd_dir, "%d" % i, COLVAR_TRAJ_FILE)
    for i in range(args.nwindows)
]

namd_logfiles = [
    os.path.join(args.namd_dir, "%d" % i, NAMD_LOGFILE)
    for i in range(args.nwindows)
]

u_kln, N_k = potential_energy_matrix(colvar_setup_files, colvar_traj_files,
                                     namd_logfiles)

nc_handle = nc.Dataset(args.out, mode="w", format="NETCDF4")

save_to_nc({"u_kln": u_kln, "N_k": N_k}, nc_handle)

nc_handle.close()
Esempio n. 5
0
coordinates = np.array(coordinates)
unbiased_potentials = np.array(unbiased_potentials)

if args.symmetrized_states:
    print("symmetrized states")
    us_centers = np.concatenate((us_centers, -us_centers))
    coordinates = np.concatenate((coordinates, -coordinates), axis=0)
    unbiased_potentials = np.concatenate((unbiased_potentials, unbiased_potentials), axis=0)

u_kln = cal_u_kln(args.force_constant, us_centers, coordinates, unbiased_potentials)
u_kln *= BETA  # kcal/mol to kT
us_centers /= 10.  # Angstrom to nm

nc_handle = nc.Dataset(args.u_kln_out, "w", format="NETCDF4")
save_to_nc({"u_kln":u_kln, "us_centers":us_centers}, nc_handle)
nc_handle.close()

K = u_kln.shape[0]
N = u_kln.shape[-1]
N_k = np.array([N]*K, dtype=int)

mbar = pymbar.MBAR(u_kln, N_k, verbose=True)
fe = mbar.f_k

if args.symmetrized_states:
    out_data = {"fe": fe[ :K/2 ], "lambdas": us_centers[ :K/2 ]}
else:
    out_data = {"fe":fe, "lambdas":us_centers}

pickle.dump(out_data, open(args.fe_out, "w"))
Esempio n. 6
0
namd_logfiles = [
    os.path.join(args.namd_dir, "%d" % i, NAMD_LOGFILE) for i in use_windows
]

u_kln, N_k = potential_energy_matrix(colvar_setup_files, colvar_traj_files,
                                     namd_logfiles)

#mbar = pymbar.MBAR( u_kln, N_k, verbose=True )

mbar = _run_mbar(u_kln, N_k)

weights = mbar.getWeights()

weights = weights[:, -1]

K = u_kln.shape[0]

weights = weights.reshape((K, -1))

nc_handle = nc.Dataset(args.out, mode="w", format="NETCDF4")

save_to_nc({"weights": weights}, nc_handle)

nc_handle.close()

for i in range(weights.shape[0]):
    print(i, weights[i].sum())

print("max weight", weights.max())